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Abstract
Nucleophilic substitution reactions of 2-deoxyglycosyl donors indicated that the reactivity of the
oxygen nucleophile has a significant impact on stereoselectivity. Employing ethanol as the
nucleophile resulted in a 1:1 (α:β) ratio of diastereomers under SN1-like reaction conditions.
Stereoselective formation of the 2-deoxy-α-O-glycoside was only observed when weaker
nucleophiles, such as trifluoroethanol, were employed. The lack of stereoselectivity observed in
reactions of common oxygen nucleophiles can be attributed to reaction rates of the stereochemistry-
determining step that approach the diffusion limit. In this scenario, both faces of the prochiral
oxocarbenium ion are subject to nucleophilic addition to afford a statistical mixture of diastereomeric
products. Control experiments confirmed that all nucleophilic substitution reactions were performed
under kinetic control.

Introduction
The development of new methods for the synthesis of carbohydrates has been particularly
challenging because glycosylation reactions often proceed with low or unpredictable
selectivity.1 The problem of low selectivity has been especially difficult to surmount for the
synthesis of 2-deoxysugars, which are common structures found in biologically active natural
products.2 Although the use of participating groups at C-2 and their later removal can lead to
selective reactions, the direct synthesis of 2-deoxy-α-O-glycosides from 2-deoxyglycosyl
donors is not generally stereoselective.3 We have observed that the corresponding reactions
with carbon nucleophiles to form 2-deoxy-α-C-glycosides, however, occur with high
selectivity under comparable SN1-like conditions (Scheme 1).4 A similar situation holds for
C-glycosylations of other glycosyl donors, such as glucose-,5 mannose-,6 and ribose-derived
systems,7 where the C-glycosylation was selective, but the O-glycosylation was not.8 No
explanation has been provided to reconcile the different selectivities observed with the two
types of nucleophiles.

Our studies of the reactions of six-membered ring oxocarbenium ions with carbon nucleophiles
of varying reactivity suggest a possible explanation.9 The stereoselectivities of these reactions
are generally analyzed by considering stereoelectronic effects. In the absence of participating
counterions,10 both faces of the prochiral oxocarbenium ion can be attacked by a nucleophile
(Scheme 2). Nucleophilic addition along the stereoelectronically preferred trajectory would
provide the α-product 4 in a chair conformation (Scheme 2, path a).4b,11,12 As the nucleophile
becomes more reactive, the rates of nucleophilic addition to the cationic intermediate increase
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and approach the diffusion limit.13 In this case, both paths a and b result in product formation,
affording a statistical mixture of diastereomeric products. We recently provided evidence for
this divergence between stereoelectronically controlled and diffusion-controlled
diastereoselectivity in C-glycosylation reactions.9 Because of the similar nucleophilicity of
alcohols14 and silyl enol ethers15 (C-nucleophiles that react with oxocarbenium ions at rates
approaching the diffusion limit9), the reactions of alcohols should be comparably rapid.16 In
this Article, we provide evidence that the low stereoselectivity of some O-glycosylation
reactions are the result of reactions of oxocarbenium ion intermediates that approach the
diffusion-controlled rate limit.

Results and Discussion
Details of the Experimental Approach

Details of the experimental approach deserve mention prior to discussing the results of
nucleophilic substitution:

1. 2-Deoxythioglycosides and related monosubstituted model systems were chosen as
substrates for this study. Our previous experience with these systems provided
evidence that the reaction pathway (SN1 versus SN2) could be controlled with careful
choice of leaving group and activation conditions.9

2. In all cases, anomeric sulfides were employed as the oxocarbenium ion precursors.
17 N-Iodosuccinimide (NIS) was chosen as the thioglycoside activating agent. This
combination of C-1 leaving group and activating agent provided results consistent
with SN1-like additions to intermediate oxocarbenium ions.18,19 Where indicated,
2,6-di-tert-butyl-4-methylpyridine (DTBMP) was employed as an additive to prohibit
the epimerization of the acid-labile O-glycosylation products. Rigorous control
experiments were conducted to verify that product ratios were obtained under kinetic
control (vide infra, eq 3, Table 2).

3. Ethanol served as a model nucleophile due to its small size, and because its
nucleophilicity could be modified by incorporating electron-withdrawing halogen
substituents.14,20–23 Field inductive effect parameters (F) were used as a quantitative
measurement of the electron-withdrawing ability of the halogen substituents on the
alcohol nucleophiles.24,25 As the F-value increased, the alcohol should be rendered
less nucleophilic; competition experiments verified this hypothesis (vide infra, eq 4,
Table 3).

4. Both CH3CN and CH2Cl2 were employed as solvents. Comparable yields and
stereochemical trends were observed in either solvent, but CH3CN generally provided
higher diastereoselectivities consistent with stereoelectronically controlled attack on
an oxocarbenium ion intermediate.26

5. Diastereomeric ratios were obtained by analysis of GC and 1H NMR spectroscopy of
the unpurified reaction mixtures. The product stereochemistry was determined by
analysis of 1H NMR coupling constants and NOE measurements of the purified
products.

Nucleophilic Substitution Reactions of 2-Deoxythioglycosides
Experiments using 2-deoxyglucosyl donor 1c and a range of oxygen nucleophiles demonstrated
an erosion of stereoselectivity with increasing nucleophilicity (eq 1, Table 1). For example,
substitution with the weakest nucleophile examined, trifluoroethanol,14 resulted in an 83:17
(α:β) mixture of products (Table 1, entry 1).27 This stereochemical outcome is consistent with
stereoelectronically controlled attack (Scheme 2, path a), and the selectivity compares to those
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observed for reactions of less reactive carbon nucleophiles (Scheme 1). Nucleophiles with
fewer electron-withdrawing groups, which should be more nucleophilic,14 exhibit lower
selectivity. The strongest nucleophile employed, ethanol,14 afforded the 2-deoxy-α-O-
glycoside 11 in a 51:49 (α:β) mixture of diastereomers (Table 1, entry 6).28 The same
substitution reaction performed in CH2Cl2 resulted in a 52:48 (α:β) mixture of diastereomeric
products, suggesting that both reactions proceed through a similar SN1-like mechanism (vide
infra). These results clearly indicate that the nucleophilicity of alcohols impacts the
stereoselectivity of glycosylation reactions.29

(1)

Several factors were considered to explain the trend of decreasing selectivity with increasing
reactivity. The mechanism for activation of thioglycoside 1c involves two types of
intermediates. Activation of the sulfur atom occurs to form sulfonium ion A, followed by rate-
determining ionization of A to form oxocarbenium ion B (Scheme 3).19 The low
diastereoselectivities observed with strong nucleophiles could result from competitive SN2-
like pathways9,10,30 involving displacement of the activated starting material A (Scheme 3)
31 or analogous compounds, such as the glycosyl iodide.30c,32 This explanation, however, does
not explain the stereochemical data (eq 1, Table 1), because the β-substitution products
expected from direct displacement reactions of thioglycoside 1c30 are not the major products
in any case observed. Direct displacement of an adduct with CH3CN (a nitrilium ion), which
has been invoked in other glycosylation reactions,33 also does not satisfactorily explain the
observed diastereoselectivities. First, the expected β-glycoside products arising from direct
displacement of an α-nitrilium species33 are not favored for any of the substrates examined.
Second, invoking an intermediate nitrilium species does not account for the similar selectivity
trends observed in CH2Cl2 as in CH3CN. The loss of selectivity with increasing reactivity,
however, is consistent with erosion of diastereoselectivity by an SN1-like pathway involving
oxocarbenium ion B (Scheme 3), which has been observed for C-nucleophiles.9

The stronger nucleophiles employed in the substitution reactions of 2-deoxyglycosyl donor
1c follow the level of stereocontrol observed in a common glycosylation reaction. Substitution
using the glucose-derived nucleophile 1334 afforded a 57:43 (α:β) mixture of products (12, eq
2), comparable to the diastereoselectivities observed for reactions of alcohols containing a
single electron-withdrawing substituent (Table 1, entries 3–5).23
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(2)

Varying the protecting groups on the 2-deoxyglycosyl donor had a minimal effect on the
stereoselectivity of nucleophilic substitution. In all cases, reactions of trifluoroethanol provided
the highest level of stereocontrol favoring the stereoelectronically preferred α-product, while
use of ethanol as the nucleophile resulted in a near statistical mixture of diastereomers (eq 3,
Table 2). The relationship between nucleophilicity and stereoselectivity appears to be a general
characteristic of O-glycosylation reactions under SN1-like conditions.19

(3)

Competition experiments between select alcohol nucleophiles confirmed the relative
reactivities of the ethanol derivatives. Nucleophilic substitution reactions of 2-deoxyglycosyl
donor 1c were performed in the presence of an equimolar mixture of two nucleophiles of
differing reactivity (eq 4, Table 3).35 As expected, increasing the number of electron-
withdrawing substituents on the alcohol resulted in a decrease of nucleophilicity. For example,
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a competition experiment performed in CH3CN between ethanol and trifluoroethanol resulted
in near complete incorporation of ethanol, reflecting the relative nucleophilicities of the two
nucleophiles (Table 3, entry 1).36,37 Similarly, a competition experiment between
fluoroethanol and trifluoroethanol provided incorporation of the more nucleophilic alcohol
with nearly complete chemoselectivity (Table 3, entry 3). These results confirm that the
stereochemistry-determining step of the substitution reaction of trifluoroethanol with 2-
deoxyglycosyl donor 1c occurs at a rate below the diffusion limit. Lastly, ethanol and
fluoroethanol were subjected to a competition experiment in CH3CN. This experiment afforded
the ethanol adduct 11 as the major product, but with diminished chemoselectivity (Table 3,
entry 4). This result is consistent with the hypothesis that both nucleophiles react at rates near
the diffusion limit, in accord with the stereochemical data (eq 1, Table 1).

Comparison of the relative rates of reaction (kEtOH/kTFE) to the rates of nucleophilic addition
to analogous oxocarbenium ion intermediates supports the transition to diffusion-limited
diastereoselectivity with more nucleophilic alcohols. Additions of water to a propionaldehyde-
derived oxocarbenium ion occur at rates of approximately 4 × 108 M−1s−1, a rate at which
diffusional processes begin to be important.16a,38 The 50-fold decrease in reactivity of
trifluoroethanol (Table 3, entry 1) would suggest that the rate of addition to the oxocarbenium
ion intermediate is approximately 8 × 106 M−1s−1, which is about one thousand-fold slower
than the diffusion rate limit.

The competition experiment between ethanol and trifluoroethanol in CH2Cl2 resulted in lower
chemoselectivity than the identical reaction performed in CH3CN (Table 3, entry 2). This result
can be explained by considering that the rate of addition of trifluoroethanol to oxocarbenium
ion 5 (Scheme 2) approaches the diffusion rate limit in CH2Cl2.13 The dependence of
chemoselectivity on solvent choice is consistent with the stereochemical data, in which
stereoselectivity was greater in CH3CN than in CH2Cl2. Increasing the polarity of the solvent
results in the stabilization of the cationic intermediate, and subsequently reduces the rate of
nucleophilic addition.26 As the rate of nucleophilic addition is decreased from the diffusion
limit regime, greater facial selectivity for the stereoelectronically preferred product would be
observed.

(4)

Control experiments confirmed that the products derived from nucleophilic substitution of 2-
deoxythioglycoside 1c were formed under kinetic control.39,40 The presence or absence of
epimerization could be tested by re-subjecting the products of nucleophilic substitution to the
reaction conditions (eq 5, Table 4). For example, acetal 6 and tri-O-ethylthioglycoside 17 were
subjected to difluoroethanol and N-iodosuccinimide in CH3CN at −42 °C. Of the four possible
products, only acetal 6 (which did not undergo epimerization) and nucleophilic substitution
product 18 were observed (Table 4, entry 1). Increasing the temperature to 0 °C resulted in
neither epimerization nor incorporation of difluoroethanol into acetal 6. At 25 °C, however,
small amounts of epimerization of the trifluoroethanol addition product 6 was observed.41

Therefore, it was deemed critical to perform all nucleophilic substitution reactions at or below
0 °C. Following this model, control experiments were performed for each pyran system
investigated; those results are provided as supporting information.
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(5)

Nucleophilic Substitution Reactions of Monosubstituted Tetrahydropyran Acetals
The inverse relationship between nucleophilicity and selectivity was also observed for the
nucleophilic substitution reactions of monosubstituted tetrahydropyran acetals.17 In all cases
examined, reactions of trifluoroethanol provided the highest level of stereocontrol, favoring
the stereoelectronically preferred product, while use of ethanol as the nucleophile resulted in
a 1:1 mixture of diastereomers. The major products of addition to each model system matched
those products previously obtained with allyltrimethylsilane,42 which has a nucleophilicity
parameter comparable to trifluoroethanol.14,15

A graphical summary of the nucleophilic substitution data for the monosubstituted
tetrahydropyran acetals is presented in Figure 1. Data for the nucleophilic substitution of 2-
deoxythioglycosides (eq 1, Table 1) are included for comparison purposes. Clearly, the
nucleophilicity-selectivity relationship is not restricted to highly oxygenated carbohydrate
systems, but must be considered for any substitution reactions of acetals that proceed through
oxocarbenium ion intermediates. Specific details concerning the origin of stereoselectivity (or
lack thereof) of these nucleophilic substitutions provide additional insight into the trends
depicted in Figure 1.43

The stereochemical trend observed upon nucleophilic substitution of the C5-benzyloxymethyl-
substituted acetal 20 with various nucleophiles was consistent with reaction rates that approach
the diffusion limit (eq 6, Table 5). Activation of acetal 20 occurred readily at −78 °C in
CH2Cl2, and control experiments indicated that these conditions provided kinetic product
ratios.39,44 Formation of the favored 1,5-trans product (21–26) is consistent with
stereoelectronically controlled addition to the lowest energy oxocarbenium ion conformer 27
(Scheme 4, path a).4b At reaction rates below the diffusion limit, the minor 1,5-cis product
arises from stereoelectronically controlled addition to the higher energy half-chair conformer
28 in which the C-5 substituent resides in a pseudo-axial orientation (Scheme 4, path c).4b The
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erosion of stereoselectivity observed upon substitution with more reactive alcohols can be
explained by considering the diffusion-controlled addition to oxocarbenium ions 27 and 28
through paths b and d.

(6)

Nucleophilic substitution reactions of the C4-benzyloxy-substituted acetal 29 proceeded under
identical conditions to provide the expected stereochemical trend (eq 7, Table 6). As with the
C5-benzyloxymethyl-substituted acetal model system (20), CH2Cl2 was employed as the
solvent because it reliably provided kinetically derived diastereomeric ratios.39,44 The low-
energy oxocarbenium ion 36, in which the C4-benzyloxy substituent resides in the pseudo-
axial position to maximize electrostatic stabilization of the cationic center,42 is shown in
Scheme 4. Upon addition of trifluoroethanol, the major product 1,4-trans-30 arises from
addition to the stereoelectronically favored face (Scheme 5, path a). The minor product 1,4-
cis-30 arises from addition to the higher energy oxocarbenium ion 37 (path c) at rates below
the diffusion limit. As nucleophilicity increases, reaction rates for addition to oxocarbenium
ion 36 approach the diffusion rate limit. In this scenario, path b becomes a viable pathway for
the formation of the 1,4-cis product. Therefore, the substitution reaction of ethanol results in
a statistical mixture of products (35, Table 6, entry 6) arising from competing pathways a–d
(Scheme 5).

(7)

In stark contrast, the C3-benzyloxy-substituted acetal 38 displayed no stereoselectivity in
CH2Cl2 for any of the nucleophiles examined (eq 8). Substitution reactions employing both
ethanol and trifluoroethanol as the nucleophile resulted in a 49:51 (cis:trans) ratio of
diastereomers under conditions optimized for the C4- and C5-substituted acetals (20 and 29).
45,46
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(8)

Performing the nucleophilic substitution reactions of C3-benzyloxy-substituted acetal 38 in
CH3CN, however, resulted in the stereochemical trend observed for other substrates (eq 9,
Table 7).47 The more polar solvent is expected to stabilize the oxocarbenium ions 41 and 42
(Scheme 6), thus decreasing their electrophilicities and lowering rates of nucleophilic addition
from the diffusion-limit regime.26 Of note, the nucleophilic substitution reaction of
bromoethanol resulted in a data point that did not fit the expected trend (Table 7, entry 4).
Because the destabilizing steric interactions encountered in the favored transition state are
sensitive to nucleophile size,42 the unexpected erosion of selectivity may be the result of the
size of the bromine atom as compared to the other halogen substituents.48

(9)

Conclusion
The stereoselectivity of O-glycosylation reactions are significantly affected by the
nucleophilicity of the glycosyl acceptor. Common oxygen nucleophiles, such as ethanol, result
in diastereomeric mixtures of products, regardless of the glycosyl donor. Only upon the
addition of weaker nucleophiles, such as trifluoroethanol, is stereoselectivity observed favoring
the product of stereoelectronically controlled addition (Figure 1). In many cases, the complete
lack of stereocontrol observed for nucleophilic substitution may be attributed to reaction rates
of the stereochemistry-determining step at or near the diffusion limit.
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Experimental Section
General Procedure for the Nucleophilic Substitution of Acetals 1c, 20, 29, 38

To a cooled (−78 °C or 0 °C) solution of the sulfide in CH3CN or CH2Cl2 (0.10 M) was added
a nucleophile (4.0 equiv) and then N-iodosuccinimide (2.0 equiv). 2,6-Di-tert-butyl-4-
methylpyridine (2.0 equiv) was added, where indicated. After 1 h, the cooled solution was
washed with 10% aqueous Na2S2O3 (1 mL per mL of reaction volume), and the aqueous layer
was extracted with two portions of Et2O (2 mL per mL of reaction volume). The combined
organic layers were dried over MgSO4 and concentrated in vacuo. The unpurified product was
analyzed by GC and 1H NMR spectroscopy and then purified as indicated.

2-Deoxyglycoside trifluoroethanol substitution product α-6/β-6
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.050 g, 0.20 mmol), trifluoroethanol (0.058 mL, 0.80 mmol), and N-iodosuccinimide
(0.090 g, 0.40 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the
unpurified product indicated a pair of diastereomers in a 83:17 (α:β) ratio. Purification by flash
chromatography (3:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-6/
β-6 as a colorless oil (0.047 g, 81%): GC tR(major) 8.4 min, tR(minor) 8.7 min; [α]22

D + 80.2
(c 1.12, CHCl3); IR (thin film) 2934, 2830, 1468, 1267, 1067 cm−1; HRMS (ESI) m/z calcd
for C11H19F3O5Na (M + Na)+ 311.1082, found 311.1086. Anal. Calcd for C11H19F3O5: C,
45.83; H, 6.64. Found: C, 45.61; H, 6.66.

Major Isomer (α-6)
1H NMR (500 MHz, CDCl3) δ 5.01 (d, J = 3.4 Hz, 1H), 3.88 (m, 2H), 3.56–3.64 (m, 4H), 3.55
(s, 3H), 3.45 (s, 3H), 3.42 (s, 3H), 3.18 (t, J = 9.2 Hz, 1H), 2.31 (ddd, J = 13.3, 5.1, 1.2 Hz,
1H), 1.60 (ddd, J = 13.2, 11.4, 3.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 123.9 (q, J = 278.4
Hz), 98.1, 79.6, 78.1, 71.3, 71.1, 64.1 (q, J = 26.0 Hz), 60.57, 59.3, 57.5, 34.4.

Minor Isomer (β-6)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.55 (dd, J = 9.8, 1.8 Hz, 1H), 4.13 (dq, J =
12.6, 8.9 Hz, 2H), 3.54 (s, 3H), 3.43 (s, 3H), 3.30 (m, 2H), 3.13 (t, J = 9.2 Hz, 1H), 2.38 (dd,
J = 12.7, 5.1, 2.1 Hz, 1H), 1.53 (td, J = 11.9, 9.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ
123.8 (q, J = 278.4 Hz), 99.9, 80.6, 79.2, 75.2, 71.5, 65.5 (q, J = 34.7 Hz), 60.61, 59.4, 57.0,
35.5.

2-Deoxyglycoside difluoroethanol substitution product α-7/β-7
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.050 g, 0.20 mmol), difluoroethanol (0.050 mL, 0.80 mmol), and N-iodosuccinimide
(0.090 g, 0.40 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the
unpurified product indicated a pair of diastereomers in a 66:34 (α:β) ratio. Purification by flash
chromatography (3:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-7/
β-7 as a colorless oil (0.042 g, 78%): GC tR(major) 9.7 min, tR(minor) 9.9 min; [α]22

D +58
(c 0.80, CHCl3); IR (thin film) 2935, 2832, 1449, 1111 cm−1; HRMS (ESI) m/z calcd for
C11H20F2O5Na (M + Na)+ 293.1176, found 293.1169.

Major Isomer (α-7)
1H NMR (500 MHz, CDCl3) δ 5.89 (tt, J = 55.5, 4.1 Hz, 1H), 4.96 (d, J = 3.4 Hz, 1H), 3.76
(dtd, J = 15.0, 11.9, 3.7 Hz, 1H), 3.55–3.67 (m, 4H), 3.54 (s, 3H), 3.44 (s, 3H), 3.42 (s, 3H),
3.29 (m, 1H), 3.14 (m, 1H), 2.27 (ddd, J = 13.3, 5.1, 1.0 Hz, 1H), 1.58 (ddd, J = 13.3, 11.7,
3.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 114.2 (t, J = 241.1 Hz), 98.3, 79.7, 78.2, 71.2,
71.0, 66.5 (t, J = 28.0 Hz), 60.55, 59.3, 57.4, 34.6.
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Minor Isomer (β-7)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 5.90 (m, 1H), 4.49 (dd, J = 9.7, 1.7 Hz, 1H),
3.99 (m, 1H), 3.53 (s, 3H), 3.43 (s, 3H), 3.41 (s, 3H), 2.35 (ddd, J = 12.7, 5.0, 1.8 Hz, 1H),
1.51 (td, J = 11.9, 9.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 114.4 (t, J = 240.7 Hz), 100.2,
80.8, 79.4, 75.1, 71.6, 68.1 (dd, J = 30.5, 26.4 Hz), 60.60, 59.4, 57.0, 35.7.

2-Deoxyglycoside fluoroethanol substitution product α-8/β-8
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.030 g, 0.12 mmol), fluoroethanol (0.028 mL, 0.48 mmol), and N-iodosuccinimide (0.054
g, 0.24 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 56:44 (α:β) ratio. Purification by flash
chromatography (3:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-8/
β-8 as a colorless oil (0.021 g, 69%): GC tR(major) 10.4 min, tR(minor) 10.6 min; [α]22

D +41
(c 0.39, CHCl3); IR (thin film) 2934, 2830, 1450, 1110 cm−1; HRMS (ESI) m/z calcd for
C11H21FO5Na (M + Na)+ 275.1271, found 275.1266. Anal. Calcd for C11H21FO5: C, 52.37;
H, 8.39. Found: C, 52.38; H, 8.35.

Major Isomer (α-8)
1H NMR (500 MHz, CDCl3) δ 4.97 (d, J = 3.4 Hz, 1H), 4.49–4.61 (m, 2H), 3.81 (m, 2H),
3.56–3.66 (m, 4H), 3.55 (s, 3H), 3.45 (s, 3H), 3.41 (s, 3H), 3.17 (t, J = 9.2 Hz, 1H), 2.28 (dd,
J = 12.8, 5.2 Hz, 1H), 1.58 (ddd, J = 13.1, 11.6, 3.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ
97.7, 82.7 (d, J = 165.3 Hz), 79.9, 78.4, 71.4, 70.6, 66.3 (d, J = 19.9 Hz), 60.5, 59.2, 57.4, 34.8.

Minor Isomer (β-8)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.52–4.70 (m, 3H), 4.26 (m, 1H), 4.06 (dddd,
J = 35.0, 12.1, 4.3, 2.6 Hz, 1H), 3.69 (m, 1H), 3.54 (s, 3H), 3.43 (s, 3H), 3.41 (s, 3H), 3.30 (m,
2H), 3.10 (t, J = 9.2 Hz, 1H), 2.81 (dtt, J = 21.0, 13.6, 7.5 Hz, 1H), 2.38 (ddd, J = 12.6, 5.1,
1.8 Hz, 1H), 1.52 (td, J = 12.0, 9.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 100.0, 82.9 (d,
J = 165.8 Hz), 80.9, 79.6, 75.1, 71.7, 68.1 (d, J = 19.9 Hz), 60.6, 59.4, 56.9, 35.9.

2-Deoxyglycoside bromoethanol substitution product α-9/β-9
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.030 g, 0.12 mmol), bromoethanol (0.034 mL, 0.48 mmol), and N-iodosuccinimide (0.054
g, 0.24 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 55:45 (α:β) ratio. Purification by flash
chromatography (1:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-9/
β-9 as a colorless oil (0.028 g, 74%): GC tR(major) 13.2 min, tR(minor) 13.4 min; [α]22

D +21.8
(c 0.805, CHCl3); IR (thin film) 2932, 2830, 1459, 1113 cm−1; HRMS (ESI) m/z calcd for
C11H21BrO5Na (M + Na)+ 335.0470, found 335.0464. Anal. Calcd for C11H21BrO5: C, 42.19;
H, 6.76. Found: C, 41.94; H, 6.60.

Major Isomer (α-9)
1H NMR (500 MHz, CDCl3) δ 4.98 (d, J = 3.4 Hz, 1H), 3.92 (dt, J = 11.6, 6.1 Hz, 1H), 3.76
(m, 2H), 3.55–3.70 (m, 3H), 3.55 (s, 3H), 3.48 (m, 2H), 3.45 (s, 3H), 3.42 (s, 3H), 3.17 (t, J =
9.4 Hz, 1H), 2.26 (ddd, J = 13.1, 5.1, 1.0 Hz, 1H), 1.57 (ddd, J = 13.1, 11.5, 3.7 Hz, 1H); 13C
NMR (125 MHz, CDCl3) δ 97.8, 79.9, 78.4, 75.1, 70.9, 67.4, 60.5, 59.3, 57.4, 34.8, 30.6.

Minor Isomer (β-9)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.49 (dd, J = 9.7, 2.1 Hz, 1H), 4.33 (m, 1H),
4.17 (ddd, J = 11.6, 6.6, 5.3 Hz, 1H), 3.54 (s, 3H), 3.43 (s, 3H), 3.41 (s, 3H), 3.30 (m, 2H),
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3.11 (t, J = 9.2 Hz, 1H), 2.82 (m, 1H), 2.35 (ddd, J = 12.6, 5.1, 2.0 Hz, 1H), 1.51 (td, J = 12.3,
9.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 100.1, 80.9, 79.5, 71.6, 71.3, 69.2, 60.6, 59.4,
57.0, 35.8, 30.4.

2-Deoxyglycoside chloroethanol substitution product α-10β-10
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.030 g, 0.12 mmol), chloroethanol (0.032 mL, 0.48 mmol), and N-iodosuccinimide (0.054
g, 0.24 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 56:44 (α:β) ratio. Purification by flash
chromatography (1:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-10/
β-10 as a colorless oil (0.023 g, 72%): GC tR(major) 12.3 min, tR(minor) 12.4 min; [α]22

D
+26.5 (c 0.900, CHCl3); IR (thin film) 2933, 2831, 1448, 1112 cm−1; HRMS (ESI) m/z calcd
for C11H21ClO5Na (M + Na)+ 291.0975, found 291.0975. Anal. Calcd for C11H21ClO5: C,
49.16; H, 7.88. Found: C, 49.12; H, 7.77.

Major Isomer (α-10)
1H NMR (500 MHz, CDCl3) δ 4.97 (d, J = 3.4 Hz, 1H), 3.86 (m, 1H), 3.55–3.75 (m, 7H), 3.54
(s, 3H), 3.45 (s, 3H), 3.42 (s, 3H), 3.17 (t, J = 9.4 Hz, 1H), 2.26 (ddd, J = 13.1, 5.1, 1.1 Hz,
1H), 1.57 (ddd, J = 13.1, 11.5, 3.7 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 97.8, 79.9, 78.4,
71.4, 70.8, 67.5, 60.5, 59.3, 57.4, 43.0, 34.8.

Minor Isomer (β-10)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.49 (dd, J = 9.8, 1.8 Hz, 1H), 4.28 (m, 1H),
4.11 (dt, J = 10.8, 5.3 Hz, 1H), 3.54 (s, 3H), 3.43 (s, 3H), 3.41 (s, 3H), 3.30 (m, 2H), 3.10 (t,
J = 9.0 Hz, 1H), 2.82 (m, 1H), 2.35 (ddd, J = 12.6, 5.1, 1.8 Hz, 1H), 1.51 (td, J = 12.5, 9.9 Hz,
1H); 13C NMR (125 MHz, CDCl3) δ 100.2, 80.9, 79.5, 75.1, 71.7, 69.3, 60.6, 59.4, 57.0, 42.8,
35.8.

2-Deoxyglycoside ethanol substitution product α-11/β-11
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.030 g, 0.12 mmol), ethanol (0.028 mL, 0.48 mmol), and N-iodosuccinimide (0.054 g,
0.24 mmol) in CH3CN at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 51:49 (α:β) ratio. Purification by flash
chromatography (1:1 pentane:Et2O) afforded an inseparable mixture of diastereomers α-11/
β-11 as a colorless oil (0.023 g, 82%): GC tR(major) 9.4 min, tR(minor) 9.7 min; [α]22

D +1.0
(c 0.43, CHCl3); 1H NMR (500 MHz, CDCl3, mixture of anomers) δ 4.93 (d, J = 3.7 Hz, 1H),
4.44 (dd, J = 9.7, 1.8 Hz, 1H), 3.95 (dq, J = 9.3, 7.0 Hz, 1H), 3.55–3.70 (m, 9H), 3.55 (s, 3H),
3.54 (s, 3H), 3.45 (s, 3H), 3.42 (s, 3H), 3.41 (s, 6H), 3.30 (m, 2H), 3.16 (t, J = 9.2 Hz, 1H),
3.08 (t, J = 9.2 Hz, 1H), 2.30 (ddd, J = 12.5, 5.0, 1.8 Hz, 1H), 2.21 (dd, J = 12.8, 5.2 Hz, 1H),
1.52 (m, 2H), 1.21 (m, 6H); 13C NMR (125 MHz, CDCl3, mixture of anomers) δ 99.6, 97.1,
81.1, 80.1, 79.7, 78.7, 75.1, 71.8, 71.5, 70.4, 64.7, 62.6, 60.6, 60.5, 59.4, 59.2, 57.3, 56.9, 36.1,
35.0, 15.13, 15.07; IR (thin film) 2932, 2830, 1446, 1113 cm−1; HRMS (ESI) m/z calcd for
C11H22O5Na (M + Na)+ 257.1365, found 257.1361. Anal. Calcd for C11H22O5: C, 56.39; H,
9.46. Found: C, 56.47; H, 9.56.

2-Deoxyglycoside 2,3,4-tri-O-benzyl-αα α-D-glucopyranoside substitution product α-12/β-12
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
1c (0.010 g, 0.040 mmol), 2,3,4-tri-O-benzyl-α-D-glucopyranoside 1334 (0.020 g, 0.044
mmol), N-iodosuccinimide (0.018 g, 0.080 mmol), and 2,6-di-tert-butyl-4-methylpyridine
(0.017 g, 0.080 mmol) in CH3CN at 0 °C. 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 57:43 (α:β) ratio. Purification by flash
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chromatography (1:1 hexanes:EtOAc) afforded an inseparable mixture of diastereomers
α-12/β-12 as a colorless oil (0.014 g, 52%): [α]22

D +20 (c 0.47, CHCl3); 13C NMR (125 MHz,
CDCl3, mixture of anomers) δ 138.8, 138.7, 138.5, 138.4, 138.21, 138.18, 128.54, 128.52,
128.51, 128.48, 128.47, 128.44, 128.2, 128.12, 128.07, 127.99, 127.98, 127.97, 127.8, 127.74,
127.70, 127.68, 127.66, 100.1, 98.03, 97.99, 97.9, 82.29, 82.26, 81.0, 80.1, 79.9, 79.8, 79.7,
78.6, 77.8, 77.4, 77.3, 75.9, 75.8, 75.2, 74.9, 74.8, 73.41, 73.37, 71.9, 71.2, 70.7, 69.8, 69.7,
67.6, 65.8, 60.6, 60.5, 59.4, 59.2, 57.3, 56.9, 55.2, 35.8, 34.8; IR (thin film) 3063, 3030, 2930,
2834, 1454, 1097 cm−1; HRMS (ESI) m/z calcd for C37H48O10Na (M + Na)+ 675.3145, found
675.3151. Anal. Calcd for C37H48O10: C, 68.08; H, 7.41. Found: C, 68.09; H, 7.64.

Major Isomer (α-12)
1H NMR (500 MHz, CDCl3) δ 7.26–7.38 (m, 15H), 4.57–5.00 (m, 8H), 3.99 (m, 1H), 3.83
(dd, J = 11.4, 4.2 Hz, 1H), 3.74 (dd, J = 10.0, 3.1 Hz, 1H), 3.46–3.62 (m, 7H), 3.50 (s, 3H),
3.42 (s, 3H), 3.37 (s, 3H), 3.34 (s, 3H), 3.20 (m, 1H), 3.15 (t, J = 9.4 Hz, 1H), 2.24 (dd, J =
13.0, 5.0 Hz, 1H), 1.53 (ddd, J = 13.0, 11.6, 3.7 Hz, 1H).

Minor Isomer (β-12)
1H NMR (500 MHz, CDCl3) δ 7.26–7.38 (m, 15H), 4.57–5.00 (m, 8H), 4.18 (dd, J = 9.8, 1.2
Hz, 1H), 4.08 (dd, J = 11.0, 1.6 Hz, 1H), 3.99 (m, 1H), 3.46–3.62 (m, 7H), 3.51 (s, 3H), 3.40
(s, 3H), 3.37 (s, 3H), 3.35 (s, 3H), 3.20 (m, 1H), 2.99 (t, J = 9.1 Hz, 1H), 2.13 (dd, J = 12.5,
4.9 Hz, 1H), 1.47 (td, J = 12.2, 9.9 Hz, 1H)

C5-OBn Pyranoside trifluoroethanol substitution product trans-21/cis-21
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), trifluoroethanol (0.050 mL, 0.75 mmol), and N-iodosuccinimide
(0.084 g, 0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the
unpurified product indicated a pair of diastereomers in a 83:17 (trans:cis) ratio. Purification by
flash chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-21/cis-21 as a colorless oil (0.037 g, 65%): GC tR(major) 12.9 min, tR(minor) 13.2 min;
IR (thin film) 3034, 2940, 1445, 1282, 1156 cm−1; HRMS (ESI) m/z calcd for C15H19F3O3Na
(M + Na)+ 327.1184, found 327.1174. Anal. Calcd for C15H19F3O3: C, 59.20; H, 6.29. Found:
C, 59.50; H, 6.37.

Major Isomer (trans-21)
1H NMR (500 MHz, CDCl3) δ 7.25–7.37 (m, 5H), 4.96 (d, J = 2.6 Hz, 1H), 4.57 (m, 2H),
3.82–4.05 (m, 3H), 3.45 (m, 2H), 1.86 (m, 1H), 1.78 (m, 1H), 1.55–1.70 (m, 3H), 1.45 (m,
1H); 13C NMR (125 MHz, CDCl3) δ 138.33, 128.4, 127.64, 127.59, 124.3 (q, J = 278.4 Hz),
97.8, 73.4, 73.2, 68.8, 63.7 (q, J = 25.8 Hz), 29.0, 27.19, 17.4.

Minor Isomer (cis-21)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.53 (dd, J = 8.8, 2.2 Hz, 1H), 4.14 (dq, J =
12.6, 9.2 Hz, 1H), 3.65 (dddd, J = 10.8, 6.2, 4.5, 2.0 Hz, 1H), 3.57 (dd, J = 10.1, 6.2 Hz,
1H); 13C NMR (125 MHz, CDCl3, distinctive peaks) δ 138.30, 128.5, 127.72, 127.69, 124.0
(q, J = 277.9 Hz), 102.1, 75.7, 73.5, 73.1, 65.0 (q, J = 34.7 Hz), 30.6, 27.15, 21.3.

C5-OBn Pyranoside difluoroethanol substitution product trans-22/cis-22
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), difluoroethanol (0.048 mL, 0.75 mmol), and N-iodosuccinimide
(0.084 g, 0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the
unpurified product indicated a pair of diastereomers in an 74:26 (trans:cis) ratio. Purification
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by flash chromatography (5:1 hexane:EtOAc) afforded an inseparable mixture of
diastereomers trans-22/cis-22 as a colorless oil (0.045 g, 79%): GC tR(major) 14.1 min,
tR(minor) 14.3 min; IR (thin film) 3031, 2943, 2867, 1455, 1075 cm−1; HRMS (ESI) m/z calcd
for C15H20F2O3Na (M + Na)+ 309.1278, found 309.1281. Anal. Calcd for C15H20F2O3: C,
62.92; H, 7.04. Found: C, 63.20; H, 7.18.

Major Isomer (trans-22)
1H NMR (500 MHz, CDCl3) δ 7.25–7.38 (m, 5H), 5.97 (tt, J = 55.8, 8.4 Hz, 1H), 4.91 (d, J =
2.3 Hz, 1H), 4.57 (s, 2H), 3.95 (m, 1H), 3.84 (tdd, J = 15.8, 12.0, 3.9 Hz, 1H), 3.70 (m, 1H),
3.45 (m, 2H), 1.85 (m, 1H), 1.75 (m, 1H), 1.55–1.70 (m, 2H), 1.43 (m, 1H), 1.25 (m,
1H); 13C NMR (125 MHz, CDCl3) δ 138.35, 128.4, 127.61, 127.58, 114.6 (t, J = 240.7 Hz),
98.3, 73.4, 68.5, 66.5 (t, J = 28.0 Hz), 29.3, 27.3, 17.5.

Minor Isomer (cis-22)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 5.95 (tdd, J = 56.0, 5.4, 3.1 Hz, 1H), 4.47
(dd, J = 9.4, 1.8 Hz, 1H), 3.56 (dd, J = 10.2, 6.1 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ
138.29, 128.5, 127.72, 127.70, 114.7 (t, J = 240.9 Hz), 102.7, 75.6, 73.5, 73.2, 67.8 (dd, J =
29.6, 26.8 Hz), 30.7, 27.2, 21.5.

C5-OBn Pyranoside fluoroethanol substitution product trans-23/cis-23
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), fluoroethanol (0.044 mL, 0.75 mmol), and N-iodosuccinimide (0.084
g, 0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 62:38 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-23/cis-23 as a colorless oil (0.046 g, 91%): GC tR(major) 14.7 min, tR(minor) 14.9 min;
IR (thin film) 3030, 2946, 2865, 1453, 1041 cm−1; HRMS (ESI) m/z calcd for C15H21FO3Na
(M + Na)+ 291.1372, found 291.1372. Anal. Calcd for C15H21FO3: C, 67.14; H, 7.89. Found:
C, 67.44; H, 7.95.

Major Isomer (trans-23)
1H NMR (500 MHz, CDCl3) δ 7.25–7.37 (m, 5H), 4.92 (d, J = 2.7 Hz, 1H), 4.50–4.68 (m, 4H),
3.98 (m, 1H), 3.92 (ddd, J = 32.3, 5.1, 2.7 Hz, 1H), 3.70 (m, 1H), 3.45 (m, 2H), 1.88 (m, 1H),
1.75 (m, 1H), 1.67 (m, 1H), 1.59 (m, 1H), 1.43 (m, 1H), 1.25 (m, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.5, 128.43, 127.70, 127.60, 97.6, 83.02 (d, J = 168.8 Hz), 73.53, 73.3, 68.2, 66.0
(d, J = 19.9 Hz), 29.5, 27.5, 17.7.

Minor Isomer (cis-23)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.49 (dd, J = 9.4, 1.8 Hz, 1H), 4.07 (ddd, J
= 33.8, 4.4, 2.7 Hz, 1H), 3.80 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 138.4, 128.33, 127.66,
127.57, 102.3, 83.04 (d, J = 168.8 Hz), 75.5, 73.50, 67.6 (d, J = 19.9), 31.0, 21.7.

C5-OBn Pyranoside bromoethanol substitution product trans-24/cis-24
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), bromoethanol (0.053 mL, 0.75 mmol), and N-iodosuccinimide (0.084
g, 0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 62:38 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-24/cis-24 as a colorless oil (0.053 g, 85%): GC tR(major) 17.2 min, tR(minor) 17.4 min;
IR (thin film) 3029, 2942, 2861, 1454, 1124 cm−1; HRMS (ESI) m/z calcd for C15H21BrO3Na
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(M + Na)+ 351.0572, found 351.0574. Anal. Calcd for C15H21BrO3: C, 54.72; H, 6.43. Found:
C, 54.95; H, 6.59.

Major Isomer (trans-24)
1H NMR (500 MHz, CDCl3) δ 7.26–7.35 (m, 5H), 4.93 (d, J = 2.3 Hz, 1H), 4.57 (m, 2H), 4.01
(dddd, J = 12.0, 6.1, 4.0, 2.6 Hz, 1H), 3.98 (m, 1H), 3.81 (m, 1H), 3.41–3.58 (m, 4H), 1.88 (m,
1H), 1.73 (m, 1H), 1.50–1.69 (m, 2H), 1.42 (m, 1H), 1.25 (m, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.44, 128.4, 127.71, 127.59, 97.7, 73.5, 73.33, 68.5, 67.3, 31.2, 29.5, 27.5, 17.7.

Minor Isomer (cis-24)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.48 (dd, J = 9.5, 2.0 Hz, 1H), 4.14 (ddd, J
= 11.3, 7.1, 5.4 Hz, 1H), 3.66 (dddd, J = 10.9, 6.4, 4.8, 2.0 Hz, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.37, 128.5, 127.67, 127.57, 102.6, 75.6, 73.28, 68.9, 30.9, 30.7, 27.4, 21.7.

C5-OBn pyranoside chloroethanol substitution product trans-25/cis-25
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), chloroethanol (0.050 mL, 0.75 mmol), and N-iodosuccinimide (0.084
g, 0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 65:35 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-25/cis-25 as a colorless oil (0.046 g, 85%): GC tR(major) 16.4 min, tR(minor) 16.6 min;
IR (thin film) 3030, 2944, 2864, 1353, 1035 cm−1; HRMS (ESI) m/z calcd for C15H21ClO3Na
(M + Na)+ 307.1077, found 307.1074. Anal. Calcd for C15H21ClO3: C, 63.26; H, 7.43. Found:
C, 63.24; H, 7.53.

Major Isomer (trans-25)
1H NMR (500 MHz, CDCl3) δ 7.26–7.36 (m, 5H), 4.93 (d, J = 2.3 Hz, 1H), 4.57 (m, 2H), 4.01
(dddd, J = 12.0, 6.1, 4.5, 2.3 Hz, 1H), 3.94 (ddd, J = 10.9, 6.1, 5.3 Hz, 1H), 3.64–3.80 (m, 3H),
3.45 (m, 2H), 1.88 (m, 1H), 1.74 (m, 1H), 1.50–1.68 (m, 2H), 1.43 (m, 1H), 1.25 (m,
1H); 13C NMR (125 MHz, CDCl3) δ 138.44, 128.4, 127.71, 127.59, 97.8, 73.5, 73.33, 68.4,
67.3, 43.4, 29.5, 27.5, 17.7.

Minor Isomer (cis-25)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.48 (dd, J = 9.4, 2.1 Hz, 1H), 4.10 (ddd, J
= 11.0, 5.9, 5.3 Hz, 1H), 3.56 (dd, J = 10.0, 6.1 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 138.38,
128.5, 127.67, 127.57, 102.6, 75.6, 73.29, 68.9, 43.0, 30.9, 27.4, 21.7.

C5-OBn Pyranoside ethanol substitution product trans-26/cis-26
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
20 (0.050 g, 0.19 mmol), ethanol (0.043 mL, 0.75 mmol), and N-iodosuccinimide (0.084 g,
0.38 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 49:51 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-26/cis-26 as a colorless oil (0.038 g, 81%): GC tR(major) 13.8 min, tR(minor) 14.1
min; 1H NMR (500 MHz, CDCl3, mixture of anomers) δ 7.25–7.36 (10H), 4.88 (s, 1H), 4.57
(m, 4H), 4.43 (dd, J = 9.4, 2.1 Hz, 1H), 3.97 (m, 2H), 3.76 (ddd, J = 14.3, 9.8, 7.3 Hz, 1H),
3.66 (m, 1H), 3.41–3.60 (m, 6H), 1.86 (m, 2H), 1.78 (m, 1H), 1.48–1.69 (m, 7H), 1.41 (m,
2H), 1.23 (m, 6H); 13C NMR (125 MHz, CDCl3, mixture of anomers) δ 138.53, 138.49, 128.41,
128.37, 127.7, 127.6, 127.5, 102.0, 97.0, 75.5, 73.7, 73.51, 73.46, 73.3, 67.9, 64.2, 62.2, 31.3,
29.8, 27.7, 27.6, 21.9, 17.8, 15.3, 15.2; IR (thin film) 3029, 2933, 2870, 1450, 1111 cm−1;
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HRMS (ESI) m/z calcd for C15H22O3Na (M + Na)+ 273.1467, found 273.1465. Anal. Calcd
for C15H22O3: C, 71.97; H, 8.86. Found: C, 72.22; H, 9.00.

C4-OBn Pyranoside trifluoroethanol substitution product trans-30/cis-30
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.050 g, 0.20 mmol), trifluoroethanol (0.057 mL, 0.80 mmol), and N-iodosuccinimide
(0.089 g, 0.40 mmol) in CH2Cl2 at −78 °C. 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in an 88:12 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded a inseparable mixture of diastereomers
trans-30/cis-30 as a colorless oil (0.046 g, 81%): GC tR(major and minor) 12.6 min; IR (thin
film) 3033, 2928, 1445, 1282, 1156 cm−1; HRMS (ESI) m/z calcd for C14H17F3O3Na (M +
Na)+ 313.1028, found 313.1031. Anal. Calcd for C14H17F3O3: C, 57.93; H, 5.90. Found: C,
58.19; H, 6.02.

Major Isomer (trans-30)
1H NMR (500 MHz, CDCl3) δ 7.26–7.37 (m, 5H), 4.83 (t, J = 2.9 Hz, 1H), 4.57 (m, 2H), 4.00
(dq, J = 12.2, 8.9 Hz, 1H), 3.88 (dq, J = 12.2, 8.6 Hz, 1H), 3.84 (dd, J = 12.0, 2.2 Hz, 1H), 3.66
(dt, J = 12.4, 2.5 Hz, 1H), 3.49 (bs, 1H), 2.12 (tt, J = 12.6, 3.8 Hz, 1H), 2.00 (tt, J = 12.7, 3.7
Hz, 1H), 1.79 (m, 1H), 1.62 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 138.5, 128.5, 127.7,
127.6, 125.1 (q, J = 278.3 Hz), 98.1, 70.8, 70.4, 64.3 (q, J = 25.9 Hz), 62.8, 25.0, 22.3.

Minor Isomer (cis-30)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.76 (s, 1H), 3.71 (dd, J = 10.5, 4.4 Hz, 1H),
3.58 (t, J = 10.2 Hz, 1H); 13C NMR (125 MHz, CDCl3, distinctive peaks) δ 138.4, 96.9, 72.0,
70.6, 64.0 (q, J = 34.5 Hz), 63.1, 28.2, 24.6.

C4-OBn Pyranoside difluoroethanol substitution product trans-31/cis-31
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.050 g, 0.20 mmol), difluoroethanol (0.050 mL, 0.80 mmol), and N-iodosuccinimide
(0.089 g, 0.40 mmol) in CH2Cl2 at −78 °C. 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 82:18 (trans:cis) ratio. Purification by flash
chromatography (3:1 pentane:Et2O) afforded an inseparable mixture of diastereomers
trans-31/cis-31 as a colorless oil (0.037 g, 68%): GC tR(major and minor) 13.7 min; IR (thin
film) 3029, 2935, 2867, 1062 cm−1; HRMS (ESI) m/z calcd for C14H18F2O3Na (M + Na)+

295.1122, found 295.1126. Anal. Calcd for C14H18F2O3: C, 61.75; H, 6.66. Found: C, 62.04;
H, 6.76.

Major Isomer (trans-31)
1H NMR (500 MHz, CDCl3) δ 7.26–7.37 (m, 5H), 5.91 (tt, J = 55.7, 4.1 Hz, 1H), 4.75 (t, J =
3.1 Hz, 1H), 4.57 (m, 2H), 3.86 (m, 2H), 3.70 (m, 1H), 3.62 (ddd, J = 12.0, 3.8, 1.6 Hz, 1H),
3.48 (bs, 1H), 2.09 (tt, J = 12.3, 3.6 Hz, 1H), 2.00 (tt, J = 12.2, 3.7 Hz, 1H), 1.75 (m, 1H), 1.58
(m, 1H); 13C NMR (125 MHz, CDCl3) δ 138.50, 128.47, 127.7, 127.6, 114.5 (t, J = 240.7 Hz),
98.7, 71.0, 70.4, 66.8 (t, J = 28.0 Hz), 63.1, 25.6, 22.9.

Minor Isomer (cis-31)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.70 (t, J = 2.7 Hz, 1H), 1.91 (m, 2H), 1.83
(m, 1H); 13C NMR (125 MHz, CDCl3, distinctive peaks) δ 138.46, 128.49, 127.8, 127.7, 97.3,
72.1, 70.6, 66.4 (t, J = 28.6), 28.3, 24.8.

Beaver and Woerpel Page 15

J Org Chem. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



C4-OBn Pyranoside fluoroethanol substitution product trans-32/cis-32
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.10 g, 0.40 mmol), fluoroethanol (0.044 mL, 0.16 mmol), and N-iodosuccinimide (0.18
g, 0.79 mmol) in CH2Cl2 at −78 °C. 1H NMR spectroscopic analysis of the unpurified product
indicated a pair of diastereomers in a 71:29 (trans:cis) ratio. Purification by flash
chromatography (5:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-32/cis-32 as a colorless oil (0.072 g, 72%): GC tR(major and minor) 14.4 min; IR (thin
film) 3031, 2952, 2970, 1454, 1041 cm−1; HRMS (ESI) m/z calcd for C14H19FO3Na (M +
Na)+ 277.1216, found 277.1217. Anal. Calcd for C14H19FO3: C, 66.12; H, 7.53. Found: C,
66.31; H, 7.59.

Major Isomer (trans-32)
1H NMR (500 MHz, CDCl3) δ 7.25–7.37 (m, 5H), 4.75 (t, J = 3.1 Hz, 1H), 4.51–4.64 (m, 4H),
3.90 (dd, J = 11.7, 2.4 Hz, 1H), 3.62–3.77 (m, 2H), 3.59 (ddd, J = 12.0, 4.3, 1.5 Hz, 1H), 3.48
(bs, 1H), 2.06 (m, 1H), 1.91 (m, 1H), 1.73 (m, 1H), 1.58 (m, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.59, 128.45, 127.6, 98.4, 83.0 (d, J = 169.2 Hz), 71.3, 70.4, 66.7 (d, J = 19.9 Hz),
63.2, 26.1, 23.4.

Minor Isomer (cis-32)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.71 (t, J = 3.2 Hz, 1H), 3.97 (m, 1H); 13C
NMR (125 MHz, CDCl3) δ 138.56, 128.47, 127.7, 96.9, 82.9 (d, J = 169.2 Hz), 72.3, 70.5,
66.2 (d, J = 19.9 Hz), 62.9, 28.5, 24.9.

C4-OBn Pyranoside bromoethanol substitution product trans-33/cis-33
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.10 g, 0.40 mmol), bromoethanol (0.11 mL, 1.6 mmol), and N-iodosuccinimide (0.18 g,
0.80 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in n 61:39 (trans:cis) ratio. Purification by flash
chromatography (5:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-33/cis-33 as a colorless oil (0.10 g, 83%): GC tR(major) 17.1 min, tR(minor) 17.2 min;
IR (thin film) 3030, 2935, 2868, 1456, 1027 cm−1; HRMS (ESI) m/z calcd for C14H19BrO3Na
(M + Na)+ 337.0415, found 337.0415. Anal. Calcd for C14H19BrO3: C, 53.35; H, 6.08. Found:
C, 53.45; H, 6.11.

Major Isomer (trans-33)
1H NMR (500 MHz, CDCl3) δ 7.25 (m, 5H), 4.75 (t, J = 3.1 Hz, 1H), 4.57 (m, 2H), 3.99 (m,
1H), 3.93 (dd, J = 12.0, 2.3 Hz, 1H), 3.79 (m, 1H), 3.60 (ddd, J = 11.9, 4.0, 1.7 Hz, 1H), 3.50
(m, 3H), 2.06 (m, 1H), 1.91 (m, 1H), 1.75 (m, 1H), 1.57 (m, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.6, 128.4, 127.653, 127.646, 98.4, 71.2, 70.4, 67.7, 63.4, 31.0, 26.0, 23.4.

Minor Isomer (cis-33)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.71 (t, J = 2.6 Hz, 1H), 4.57 (m, 2H), 3.74
(m, 1H), 3.66 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.5, 128.5, 127.7, 97.0, 72.2, 70.6,
67.3, 63.2, 30.7, 28.5, 24.9.

C4-OBn Pyranoside chloroethanol substitution product trans-34/cis-34
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.10 g, 0.40 mmol), chloroethanol (0.11 mL, 1.6 mmol), and N-iodosuccinimide (0.18 g,
0.80 mmol) in CH2Cl2 at −78 °C. 1H NMR spectroscopic analysis of the unpurified product
indicated a pair of diastereomers in a 67:33 (trans:cis) ratio. Purification by flash
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chromatography (5:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-34/cis-34 as a colorless oil (0.085 g, 79%): GC tR(major) 16.2 min, tR(minor) 16.3 min;
IR (thin film) 3031, 2937, 2869, 1454, 1038 cm−1; HRMS (ESI) m/z calcd for C14H19ClO3Na
(M + Na)+ 293.0920, found 293.0925. Anal. Calcd for C14H19ClO3: C, 62.10; H, 7.07. Found:
C, 61.86; H, 7.08.

Major Isomer (trans-34)
1H NMR (500 MHz, CDCl3) δ 7.25–7.37 (m, 5H), 4.75 (t, J = 3.1 Hz, 1H), 4.57 (m, 2H), 3.95
(m, 1H), 3.92 (m, 1H), 3.73 (m, 1H), 3.67 (m, 2H), 3.59 (ddd, J = 11.9, 4.0, 1.6 Hz, 1H), 3.48
(bs, 1H), 2.06 (m, 1H), 1.91 (m, 1H), 1.75 (m, 1H), 1.57 (m, 1H); 13C NMR (125 MHz,
CDCl3) δ 138.6, 128.45, 127.653, 127.646, 98.5, 71.2, 70.4, 67.9, 63.4, 43.2, 26.0, 23.4.

Minor Isomer (cis-34)
1H NMR (500 MHz, CDCl3, distinctive peaks) δ 4.71 (t, J = 2.6 Hz, 1H), 4.57 (m, 2H), 3.49
(m, 1H), 1.85 (m, 1H), 1.67 (m, 1H); 13C NMR (125 MHz, CDCl3,) δ 138.5, 128.48, 127.7,
97.0, 72.2, 70.6, 67.4, 63.1, 43.0, 28.5, 24.9.

C4-OBn Pyranoside ethanol substitution product trans-35/cis-35
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
29 (0.050 g, 0.20 mmol), ethanol (0.046 mL, 0.80 mmol), and N-iodosuccinimide (0.089 g,
0.40 mmol) in CH2Cl2 at −78 °C. GC and 1H NMR spectroscopic analysis of the unpurified
product indicated a pair of diastereomers in a 51:49 (trans:cis) ratio. Purification by flash
chromatography (3:1 hexane:EtOAc) afforded an inseparable mixture of diastereomers
trans-35/cis-35 as a colorless oil (0.033 g, 70%): GC tR(major) 13.5 min, tR(minor) 13.6
min; 1H NMR (500 MHz, CDCl3, mixture of anomers) δ 7.25–7.37 (m, 10H), 4.66 (bs, 2H),
4.57 (m, 4H), 3.91 (dd, J = 11.7, 2.4 Hz, 1H), 3.71–3.83 (m, 2H), 3.65 (m, 2H), 3.40–3.56 (m,
5H), 2.04 (m, 2H), 1.80–1.94 (m, 3H), 1.67 (m, 2H), 1.58 (m, 1H), 1.22 (m, 6H); 13C NMR
(125 MHz, CDCl3, mixture of anomers) δ 138.64, 138.63, 128.45, 128.44, 127.66, 127.65,
127.64, 127.63, 98.4, 96.4, 72.4, 71.6, 70.50, 70.47, 63.8, 63.3, 62.9, 62.6, 28.8, 26.9, 25.1,
24.2, 15.3, 15.2; IR (thin film) 3030, 2934, 2872, 1364, 1090 cm−1; HRMS (ESI) m/z calcd
for C14H20O3Na (M + Na)+ 259.1310, found 259.1311. Anal. Calcd for C14H20O3: C, 71.16;
H, 8.53. Found: C, 71.35; H, 8.47.

C3-OBn Pyranoside trifluoroethanol substitution product cis-39/trans-39
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), trifluoroethanol (0.034 mL, 0.48 mmol), 2,6-di-tert-butyl-4-
methylpyridine (0.049 g, 0.24 mmol), and N-iodosuccinimide (0.054 g, 0.24 mmol) in CH3CN
at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of
diastereomers in an 86:14 (cis:trans) ratio. Purification by flash chromatography (3:1
pentane:Et2O) afforded a separable mixture of diastereomers cis-39/trans-39 as a colorless oil
(0.024 g, 69%). IR, mass spectrometry, and combustion analysis data was obtained for major
isomer (cis-39) and minor isomer (trans-39) as a mixture of diastereomers: GC tR(major) 12.5
min, tR(minor) 12.1 min; IR (thin film) 3029.8, 2954, 2861, 1280, 1162 cm−1; HRMS (ESI)
m/z calcd for C14H17F3O3Na (M + Na)+ 313.1028, found 313.1027.

Major Isomer (cis-39)
1H NMR (500 MHz, CDCl3) δ 7.26–7.38 (m, 5H), 4.58 (m, 2H), 4.56 (dd, J = 7.5, 2.2 Hz, 1H),
4.10 (m, 2H), 3.92 (m, 1H), 3.64 (tt, J = 8.9, 4.2 Hz, 1H), 3.40 (ddd, J = 12.2, 9.9, 2.8 Hz, 1H),
2.23 (m, 1H), 1.94 (m, 1H), 1.61–1.73 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.4, 128.5,
127.7, 127.6, 124.0 (q, J = 278.4 Hz), 99.9, 71.9, 69.9, 65.0 (q, J = 25.9 Hz), 60.8, 36.3, 31.3.
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Minor Isomer (trans-39)
1H NMR (500 MHz, CDCl3) δ 7.22–7.39 (m, 5H), 5.01 (t, J = 2.8 Hz, 1H), 4.55 (m, 2H), 3.80–
4.00 (m, 3H), 3.76 (m, 2H), 2.19 (ddt, J = 13.1, 4.5, 2.3 Hz, 1H), 2.0 (d, J = 12.2 Hz, 1H), 1.69
(m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.5, 128.5, 127.7, 127.6, 124.0 (q, J = 278.4 Hz),
98.8, 70.4, 70.1, 64.1 (q, J = 34.2 Hz), 59.4, 36.3, 31.9.

C3-OBn Pyranoside difluoroethanol substitution product cis-43/trans-43
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), difluoroethanol (0.030 mL, 0.48 mmol), 2,6-di-tert-butyl-4-
methylpyridine (0.054 g, 0.24 mmol), and N-iodosuccinimide (0.049 g, 0.24 mmol) in CH3CN
at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of
diastereomers in a 84:16 (cis:trans) ratio. Purification by flash chromatography (3:1
pentane:Et2O) afforded a separable mixture of diastereomers cis-43/trans-43 as a colorless oil
(0.022 g, 68%). IR, mass spectrometry, and combustion analysis data was obtained for major
isomer (cis-43) and minor isomer (trans-43) as a mixture of diastereomers: GC tR(major) 13.7
min, tR(minor) 13.3 min; IR (thin film) 3029, 2931, 2851, 1359, 1072 cm−1; HRMS (ESI) m/
z calcd for C14H18F2O3Na (M + Na)+ 295.1122, found 295.1120.

Major Isomer (cis-43)
1H NMR (500 MHz, CDCl3) δ 7.24–7.37 (m, 5H), 5.93 (tdd, J = 55.7, 5.4, 3.1 Hz, 1H), 4.58
(m, 2H), 4.47 (dd, J = 8.2, 2.6 Hz, 1H), 4.08 (dt, J = 12.4, 4.1 Hz, 1H), 3.95 (m, 1H), 3.75 (m,
1H), 3.61 (tt, J = 9.4, 4.3 Hz, 1H), 3.38 (ddd, J = 12.0, 10.9, 2.7 Hz, 1H), 2.24 (ddt, J = 12.7,
4.2, 2.1 Hz, 1H), 1.94 (m, 1H), 1.62 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.4, 128.5,
127.7, 127.6, 114.5 (t, J = 240.9 Hz), 100.5, 72.3, 69.8, 67.7 (t, J = 28.5 Hz), 61.1, 36.9, 31.4.

Minor Isomer (trans-43)
1H NMR (500 MHz, CDCl3) δ 7.24–7.36 (m, 5H), 5.90 (tdd, J = 55.6, 4.6, 3.7 Hz, 1H), 4.96
(t, J = 3.2 Hz, 1H), 4.55 (m, 2H), 3.88 (tt, J = 9.2, 4.2 Hz, 1H), 3.82 (m, 1H), 3.76 (m, 2H),
3.66 (m, 1H), 2.14 (dddd, J = 13.0, 4.5, 2.8, 2.0 Hz, 1H), 1.98 (m, 1H), 1.71 (ddd, J = 13.3,
10.0, 3.4 Hz, 1H), 1.64 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 138.8, 128.7, 127.81, 127.76,
114.6 (t, J = 241.0 Hz), 99.2, 70.8, 70.2, 66.8 (t, J = 28.0 Hz), 59.5, 36.7, 32.0.

C3-OBn Pyranoside fluoroethanol substitution product cis-44/trans-44
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), fluoroethanol (0.028 mL, 0.48 mmol), 2,6-di-tert-butyl-4-
methylpyridine (0.049 g, 0.24 mmol), and N-iodosuccinimide (0.054 g, 0.24 mmol) in CH3CN
at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of
diastereomers in a 74:26 (cis:trans) ratio. Purification by flash chromatography (3:1
pentane:Et2O) afforded a separable mixture of diastereomers cis-44/trans-44 as a colorless oil
(0.019 g, 63%). IR, mass spectrometry, and combustion analysis data was obtained for major
isomer (cis-44) and minor isomer (trans-44) as a mixture of diastereomers: GC tR(major) 14.3
min, tR(minor) 14.0 min; IR (thin film) 3028, 2959, 2864, 1359, 1058 cm-1; HRMS (ESI) m/
z calcd for C14H19FO3Na (M + Na)+ 277.1216, found 277.1215.

Major Isomer (cis-44)
1H NMR (500 MHz, CDCl3) δ 7.23–7.38 (m, 5H), 4.50–4.69 (m, 4H), 4.45 (dd, J = 8.7, 2.4
Hz, 1H), 4.07 (m, 1H), 3.71–3.85 (m, 2H), 3.60 (tt, J = 9.9, 4.3 Hz, 1H), 3.37 (td, J = 11.7, 2.5
Hz, 1H), 2.29 (ddt, J = 12.4, 4.2, 2.1 Hz, 1H), 1.94 (m, 1H), 1.60 (m, 2H); 13C NMR (125
MHz, CDCl3) δ 138.5, 128.5, 127.7, 127.6, 100.4, 83.0 (d, J = 169.2 Hz), 72.8, 69.8, 67.7 (d,
J = 19.4 Hz), 61.5, 37.4, 31.7.

Beaver and Woerpel Page 18

J Org Chem. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Minor Isomer (trans-44)
1H NMR (500 MHz, CDCl3) δ 7.21–7.40 (m, 5H), 4.96 (t, J = 3.1 Hz, 1H), 4.56 (dt, J = 47.6,
4.3 Hz, 2H), 4.55 (m, 2H), 3.92 (m, 2H), 3.85 (m, 1H), 3.72 (m, 2H), 2.16 (ddd, J = 13.1, 4.6,
2.2 Hz, 1H), 1.99 (m, 1H), 1.56–1.75 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 138.7, 128.5,
127.7, 127.6, 98.5, 82.9 (d, J = 169.2 Hz), 70.9, 70.0, 66.4 (d, J = 19.9 Hz), 59.1, 36.7, 32.0.

C3-OBn Pyranoside bromoethanol substitution product cis-45/trans-45
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), bromoethanol (0.033 mL, 0.48 mmol), 2,6-di-tert-butyl-4-
methylpyridine (0.049 g, 0.24 mmol), and N-iodosuccinimide (0.054 g, 0.24 mmol) in CH3CN
at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of
diastereomers in a 60:40 (cis:trans) ratio. Purification by flash chromatography (3:1
pentane:Et2O) afforded a separable mixture of diastereomers cis-45/trans-45 as a colorless oil
(0.017 g, 46%). IR, mass spectrometry, and combustion analysis data was obtained for major
isomer (cis-45) and minor isomer (trans-45) as a mixture of diastereomers: GC tR(major) 17.1
min, tR(minor) 16.8 min; IR (thin film) 3030, 2930, 2858, 1362, 1097 cm−1; HRMS (ESI) m/
z calcd for C14H19BrO3Na (M + Na)+ 337.0415, found 337.0410.

Major Isomer (cis-45)
1H NMR (500 MHz, CDCl3) δ 7.22–7.40 (m, 5H), 4.55 (m, 2H), 4.44 (dd, J = 8.6, 2.4 Hz, 1H),
4.06 (m, 1H), 3.82 (m, 1H), 3.75 (m, 1H), 3.59 (tt, J = 9.6, 4.3 Hz, 1H), 3.51 (m, 2H), 3.36 (td,
J = 11.6, 2.6 Hz, 1H), 2.25 (ddt, J = 12.5, 4.2, 2.0 Hz, 1H), 1.92 (m, 1H), 1.58–1.72 (m,
2H); 13C NMR (125 MHz, CDCl3) δ 138.5, 128.5, 127.6, 127.6, 100.5, 72.7, 69.8, 68.9, 61.4,
37.3, 31.6, 30.6.

Minor Isomer (trans-45)
1H NMR (500 MHz, CDCl3) δ 7.22–7.40 (m, 5H), 4.97 (t, J = 3.1 Hz, 1H), 4.55 (m, 2H), 4.07
(m, 1H), 3.96 (m, 1H), 3.90 (tt, J = 9.4, 4.2 Hz, 1H), 3.82 (td, J = 11.2, 3.2 Hz, 1H), 3.74 (m,
1H), 3.49 (m, 2H), 2.12 (m, 1H), 1.98 (m, 1H), 1.70 (ddd, J = 13.0, 9.7, 3.1 Hz, 1H), 1.64 (m,
1H); 13C NMR (125 MHz, CDCl3) δ 138.7, 128.5, 127.7, 127.6, 98.5, 70.9, 70.0, 67.5, 59.3,
36.7, 31.9, 30.8.

C3-OBn Pyranoside chloroethanol substitution product cis-46/trans-46
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), chloroethanol (0.032 mL, 0.48 mmol), 2,6-di-tert-butyl-4-
methylpyridine (0.049 g, 0.24 mmol), and N-iodosuccinimide (0.054 g, 0.24 mmol) in CH3CN
at 0 °C. GC and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of
diastereomers in a 75:25 (cis:trans) ratio. Purification by flash chromatography (3:1
pentane:Et2O) afforded a separable mixture of diastereomers cis-46/trans-46 as a colorless oil
(0.021 g, 64%). IR, mass spectrometry, and combustion analysis data was obtained for major
isomer (cis-46) and minor isomer (trans-46) as a mixture of diastereomers: GC tR(major) 16.2
min, tR(minor) 15.9 min; IR (thin film) 3030, 2929, 2856, 1454, 1065 cm−1; HRMS (ESI) m/
z calcd for C14H19ClO3Na (M + Na)+ 293.0920, found 293.0919.

Major Isomer (cis-46)
1H NMR (500 MHz, CDCl3) δ 7.24–7.38 (m, 5H), 4.58 (m, 2H), 4.45 (dd, J = 8.4, 2.4 Hz, 1H),
4.07 (m, 2H), 3.75 (m, 1H), 3.67 (m, 2H), 3.60 (tt, J = 9.8, 4.4 Hz, 1H), 3.37 (td, J = 11.6, 2.6
Hz, 1H), 2.26 (ddt, J = 12.5, 4.2, 2.0 Hz, 1H), 1.93 (m, 1H), 1.60 (m, 2H); 13C NMR (125
MHz, CDCl3) δ 138.5, 128.5, 127.7, 127.6, 100.5, 72.7, 69.8, 69.0, 61.4, 43.0, 37.3, 31.6.
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Minor Isomer (trans-46)
1H NMR (500 MHz, CDCl3) δ 7.23–7.38 (m, 5H), 4.96 (t, J = 3.1 Hz, 1H), 4.57 (m, 2H), 3.90
(m, 2H), 3.81 (td, J = 11.1, 2.8 Hz 1H), 3.74 (m, 1H), 3.66 (m, 3H), 2.13 (m, 1H), 1.97 (m,
1H), 1.71 (ddd, J = 13.2, 10.2, 3.5 Hz, 1H), 1.59 (m, 1H); 13C NMR (125 MHz, CDCl3) δ
138.7, 128.5, 127.7, 127.6, 98.6, 70.9, 70.0, 67.6, 59.3, 43.1, 37.7, 31.9.

C3-OBn Pyranoside ethanol substitution product cis-40/trans-40
The standard procedure for nucleophilic substitution of acetals was followed with thioglycoside
38 (0.030 g, 0.12 mmol), ethanol (0.028 mL, 0.48 mmol), 2,6-di-tert-butyl-4-methylpyridine
(0.049 g, 0.24 mmol), and N-iodosuccinimide (0.054 g, 0.24 mmol) in CH3CN at 0 °C. GC
and 1H NMR spectroscopic analysis of the unpurified product indicated a pair of diastereomers
in a 52:48 (cis:trans) ratio. Purification by flash chromatography (3:1 pentane:Et2O) afforded
a separable mixture of diastereomers cis-40/trans-40 as a colorless oil (0.027 g, 89%). IR, mass
spectrometry, and combustion analysis data was obtained for major isomer (cis-40) and minor
isomer (trans-40) as a mixture of diastereomers: GC tR(major) 13.6 min, tR(minor) 13.2
min; 1H NMR (500 MHz, CDCl3, mixture of anomers) δ 7.25–7.37 (m, 10H), 4.92 (t, J = 3.2
Hz, 1H), 4.56 (m, 4H), 4.35 (dd, J = 9.0, 2.3 Hz, 1H), 4.05 (ddd, J = 12.1, 4.7, 2.6 Hz, 1H),
3.90 (m, 2H), 3.70–3.80 (m, 3H), 3.57 (ddd, J = 14.8, 9.8, 4.4 Hz, 1H), 3.52 (dq, J = 9.4, 7.0
Hz, 1H), 3.44 (dq, J = 9.9, 7.1 Hz, 1H), 3.35 (td, J = 11.9, 2.4 Hz, 1H), 2.24 (ddt, J = 12.2, 4.0,
2.0 Hz, 1H), 2.07 (m, 1H), 1.89–1.98 (m, 2H), 1.71 (ddd, J = 13.1, 9.8, 3.3 Hz, 1H), 1.61 (m,
2H), 1.53 (m, 1H), 1.22 (m, 6H); 13C NMR (125 MHz, CDCl3, mixture of anomers) δ 138.8,
138.5, 128.5, 128.4, 127.66, 127.65, 127.59, 127.56, 100.2, 97.9, 73.2, 71.2, 70.0, 69.7, 64.4,
62.9, 61.7, 59.0, 38.0, 37.0, 32.0, 31.9, 15.3, 15.2; IR (thin film) 3030, 2930, 2871, 1361, 1070
cm−1; HRMS (ESI) m/z calcd for C14H20O3Na (M + Na)+ 259.1310, found 259.1317.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Stereoselectivity (d.r.) vs. Nucleophilicity (F)24 in Pyran Systems

Beaver and Woerpel Page 24

J Org Chem. Author manuscript; available in PMC 2011 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Nucleophilic Substitutions of 2-Deoxyglycoside 1
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Scheme 2.
Modes of Addition to the 2-Deoxyglucose-Derived Oxocarbenium Ion 5
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Scheme 3.
Reactive Intermediates Involved in Nucleophilic Substitutions
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Scheme 4.
Modes of Addition to the 5-CH2OBn-Substituted Oxocarbenium Ions 27 and 28
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Scheme 5.
Modes of Addition to the 4-OBn-Substituted Oxocarbenium Ions 36 and 37
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Scheme 6.
Modes of Addition to the 3-OBn-Substituted Oxocarbenium Ion
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Table 3

Competition Experiments Confirm the Relative Reactivities of the Alcohol Nucleophiles

entry solvent R1a R2a product ratio (R1:R2)

1 CH3CN CH3 CF3 98:2 (11:6)

2 CH2Cl2 CH3 CF3 87:13 (11:6)

3 CH3CN CH2F CF3 97:3 (8:6)

4 CH3CN CH3 CH2F 70:30 (11:8)

a
10 equiv of nucleophile.

b
Determined by GC analysis of the unpurified reaction mixture.
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Table 4

Control Experiments Confirm Kinetic Product Formation

entry Temp (°C) 6 (α:β)a 18 (α:β)a Incorporation Products (7, 19)

1 −42 61:39 58:42 none

2 0 62:38 59:41 none

3 25 71:29 59:41 none

a
Determined by GC analysis of the unpurified reaction mixture.
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