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A practical synthetic route to enantiopure 5-substituted cis-

decahydroquinolines has been developed, the key steps 

being a stereoselective cyclocondensation of 2-substituted 

6-oxocyclohexenepropionates 2 with (R)-phenylglycinol, 

the stereoselective hydrogenation of the resulting 

unsaturated tricyclic lactams, and the stereoselective 

reductive cleavage of the oxazolidine ring.  

 

The decahydroquinoline ring system is the central structure 

of many naturally occurring biologically active alkaloids, 

isolated not only from plants but mainly from other terrestrial 

(amphibians, arthropods)
1
 and marine (tunicates, flatworms)

2
 

organisms. A common structural feature of these alkaloids is 

the presence of a carbon side-chain, of variable length, at the 

C-5 position. Although decahydroquinoline alkaloids have 

received considerable synthetic attention,
3
 the enantioselective 

synthesis of 5-substituted cis-decahydroquinolines has not 

been explored so far. 

We present herein a general synthetic route to enantiopure 

5-substituted cis-decahydroquinolines, the key steps being a 

stereoselective cyclocondensation of (R)-phenylglycinol with a 

2-substituted 6-oxocyclohexenepropionate (2) and the 

stereoselective reduction of the resulting tricyclic lactam 3 

(Scheme 1).  

 

 
SCHEME 1. Synthetic Strategy 

 

 
 

Crucial for the implementation of this route is to have 

available a practical method for the preparation of the starting 

unsaturated δ-oxo esters 2 that allows a variety of R1 

substituents present in natural products to be introduced at the 

β position of the cyclohexenone ring. For this purpose, 1,3-
cyclohexanedione was converted to bromo enone 1 in two 

steps, by alkylation with methyl acrylate
4
 and subsequent 

bromination of the resulting diketo ester with (Ph3P)Br2.
5
  

 
TABLE 1. Synthesis of 2-Substituted 6-
oxocyclohexenepropionates 

 

 

 

entry series R1 methoda product 
yield 
(%) 

1 a CH3 A 2a 70 
2 b (CH2)3CH3 A 2b 54 
3 c C6H4-p-OCH3 B 2c 58 
4 d (CH2)2CH(O2C2H4) C 2d 88 
5 e (CH2)5OTBDMS C 2e 88 
6 f (CH2)5OTBDPS C 2f 89 

 

aMethod A: R1Li, (C6H5)SCu; Method B: R1MgBr, CuI; Method C: 9-R1-
(9-BBN), PdCl2(PPh3)2, K3PO4, DMF. 

 

The introduction of an alkyl substituent into bromo enone 1 

to give β-alkyl α,β-unsaturated cyclohexenones 2a and 2b 
was effected by reaction of 1 with the corresponding lithium 

phenylthio(alkyl)cuprates
6
 (Table 1, entries 1 and 2). In the 

butyl series, minor amounts of the ketone resulting from the 

attack of the butyl residue on the ester carbonyl group were 

also formed. To evaluate the versatility of the procedure we 

also studied the introduction of an aryl substituent. In this case 

the organocuprate was generated by treatment of the 

corresponding Grignard reagent with CuI
7
 (entry 3). Finally, 

functionalized carbon chains incorporating a protected 

aldehyde or hydroxy group were introduced in excellent yield 

via a Suzuki coupling.
8
 Thus, regioselective hydroboration of 

4-vinyl-1,3-dioxolane (entry 4) or silyl protected (TBDMS or 

TBDPS) 4-penten-1-ols (entries 5 and 6) with 9-BBN, 

followed by a cross-coupling reaction of the resulting 9-R1-9-

BBN derivatives with bromo enone 1 in the presence of a 

catalytic amount of PdCl2(PPh3)2 gave the respective 

substitution products 2d-f. 

With a versatile method in hand for the preparation of the 

required δ-oxo esters 2,
9
 we next studied their 

cyclocondensation with (R)-phenylglycinol.
10
 The reactions 

were performed in a Dean-Stark apparatus, in refluxing 

benzene containing a catalytic amount of AcOH. Under these 

conditions, δ-oxo esters 2a-f led to the corresponding tricyclic 
cis-hydroquinolones 3a-f, in which the migration of the 

carbon-carbon double bond has occurred, in the yields 

indicated in Table 2 (entries 1-6). Similarly, the known oxo 

esters 2g
9
 and 2h

11
 were converted to the respective 

cyclocondensation products 3g and 3h (entries 7 and 8). These 

transformations result in the generation of two stereogenic 

centers with a well-defined absolute configuration in a single 

synthetic step from an achiral precursor. In all cases, minor 

amounts (approximate ratio 4:1) of the diatereoisomers at the 
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hydroquinoline ring fusion carbons were also formed. The 

absolute configuration of the hydroquinoline ring fusion 

carbons in tricyclic lactams 3 was confirmed when lactam 3h 

was reduced to the known lactam 6h (see below). 
 
TABLE 2. Cyclocondensation Reactions of δδδδ-Oxo Esters 2 
with (R)-Phenylglycinol  

 
 

entry δ-oxo ester R1 producta yield (%)a 

1 2a CH3 3a 89 
2 2b (CH2)3CH3 3b 76 
3 2c C6H4-p-OCH3 3c 77 
4 2d (CH2)2CH(O2C2H4) 3d 77 
5 2e (CH2)5OTBDMS 3e 43 
6 2f (CH2)5OTBDPS 3f 51 
7 2g (CH2)3CO2Me 3g  77 
8 2h H  3h  42 
9 1 Br 3i 15 

 

a 3 and the diastereoisomer at the hydroquinoline ring fusion carbons in a 
ratio of ~ 4:1. 

 

The stereoselective formation of lactams 3 involves the 

initial generation of an imine A, which is in equilibrium via 

dienamine B with two diastereoisomeric imines C and four 

diastereoisomeric oxazolidines D (Scheme 2). A final 

irreversible lactamization occurs most rapidly from 

oxazolidine D1 through a chairlike six-membered transition 

state in which the propionate chain avoids repulsive 

interactions with R1 (A
1,2
 strain) and C6H5 groups.

12 

 

SCHEME 2. Proposed Mechanistic Pathway 

 

 
 

An alternative route to lactams 3 involving an initial 

cyclocondensation of bromo enone 1 with (R)-phenylglycinol 

and a subsequent cross-coupling reaction from the resulting 

tricyclic alkenyl bromide 3i was not further explored due to 

the low yield of the cyclocondensation step (Table 2, entry 9). 

The conversion of tricyclic lactams 3 to the target cis-

decahydroquinolines required the stereoselective reductive 

cleavage of the C-O oxazolidine bond, reduction of the lactam 

carbonyl group, debenzylation of the phenylethanol moiety, 

and the stereoselective hydrogenation of the hydroquinoline 

carbon-carbon double bond. The first two transformations 

were satisfactorily accomplished by alane reduction, which 

took place with retention of the configuration
13
 at the 8a-

stereocenter, leading to cis-octahydroquinolines 4a-g’ in the 

yields indicated in Table 3. Minor amounts (5-10%) of the 

corresponding 8a-epimers were also formed. Under the 

reaction conditions the butyrate chain of 3g underwent 

reduction to hydroxybutyl (compound 4g’). 

 
TABLE 3. Alane Reductions of Tricyclic Lactams 3 

 

 
 

entry series R1
 a product yield (%) 

1 a CH3 4a 54 
2 b (CH2)3CH3 4b 59 
3 c C6H4-p-OCH3 4c 55 
4 d (CH2)2CH(O2C2H4) 4d 64 
5 f (CH2)5OTBDPS 4f 52 
6 g (CH2)3CO2Me 4g’ 55 

 

a g’ series: R1= (CH2)4OH. 

 

However, catalytic hydrogenation of 4a, 4f, and 4g’ under a 

variety of conditions [Pd-C or Pd(OH)2, MeOH, Boc2O; PtO2, 

MeOH, then Pd-C or Pd(OH)2, Boc2O] was not stereoselective 

as C-5 epimeric mixtures of the respective 

decahydroquinolines 5a, 5f, and 5g’ (Figure 1) were obtained. 

In the 5-aryl series, all attempts to hydrogenate the conjugated 

carbon-carbon double bond of 4c were unsuccessful. 

 

 

 

FIGURE 1. Decahydroquinolines resulting from the 

hydrogenation of hexahydroquinolines 4. 

 

As could be expected, taking into account the 

conformational rigidity of tricyclic lactams 3, this 

inconvenience was overcome by reversing the order of the 

above transformations. Thus, hydrogenation of 3a using PtO2 

as the catalyst took place in nearly quantitative yield and 

complete stereoselectivity to give saturated lactam 6a (Table 

4, entry 1). The absolute configuration of 6a was 

unambiguously established by X-ray crystallographic 

analysis.
14
 Similarly, hydrogenation of 3b,e-g using either Pd-

C or PtO2 as the catalyst took place in excellent yield and 

stereoselectivity to give the respective decahydroquinoline 

derivatives 6b,e-g. However, as in the above reduction of 4c, 

the conjugated carbon-carbon double bond of the aryl 

substituted derivative 3c was reluctant to undergo reduction 

(entry 3). On the other hand, hydrogenation of the 
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unsubstituted derivative 3h led to lactam 6h (entry 7), which 

was identical (NMR, specific rotation) to that previously 

prepared by direct cyclocondensation of 2-

oxocyclohexanepropionic acid with (R)-phenylglycinol, whose 

absolute configuration had been unambiguously determined 

by X-ray crystallography.
12b
  

 
TABLE 4. Catalytic Hydrogenation of Tricyclic Lactams 3 

 

 
 

entry series R1 catalyst product yield (%) 

1 a CH3 A 6a 98 
2 b (CH2)3CH3 B 6b 96 
3 c C6H4-p-OCH3 A 6c  
4 e (CH2)5OTBDMS B 6e 84 

5 f (CH2)5OTBDPS A 6f 85 
6 g (CH2)3CO2Me A 6g 97 
7 h H B 6h 95 

 

 

To complete the synthesis, removal of the chiral auxiliary 

was performed in two steps. Thus, reduction of 6a, 6f, and 6g 

with alane brought about both the reductive opening of the 

oxazolidine ring, with retention of the configuration,
13
 and the 

reduction of the lactam and ester carbonyl groups to give the 

respective cis-decahydroquinolines 7a, 7f, and 7g’ (Scheme 

3). A final hydrogenation in the presence of Pd(OH)2 and 

(Boc)2O led to the enantiopure N-protected derivatives 8a, 8f, 

and 8g’. Alternatively, hydrogenation of 7a in the absence of 

(Boc)2O gave the N-unsubstituted cis-decahydroquinoline 

9a.
15 

 
SCHEME 3. Synthesis of Enantiopure 5-Substituted cis-
Decahydroquinolines 

 

 

In summary, we have developed an expeditious practical 

route to enantiopure 5-substituted cis-decahydroquinolines 

from achiral δ-oxo esters 2, which are easily accessible from 

1,3-cyclohexanedione. A stereoselective cyclocondensation 

reaction with (R)-phenylglycinol results in the straightforward 

construction of the hydroquinoline system. Two subsequent 

stereoselective reductive processes complete the synthesis 

(Scheme 4). 

 

SCHEME 4. A General Synthetic Route to Enantiopure 5-
Substituted cis-Decahydroquinolines 

 

 
Experimental Section 
 
General Procedure for the Synthesis of 2-Substituted 6-

Oxocyclohexenepropionates. Method A (with 2a as an 
Example). MeLi (32 mL, 1.6 M in Et2O) was added to a 
suspension of C6H5SCu (8.6 g, 50 mmol) in anhydrous THF (260 
mL) at −20 ºC, and the mixture was stirred at this temperature for 
15 min. After cooling at −78 ºC, bromo enone 1 (6.5 g, 25 mmol) 
in anhydrous THF (50 mL) was added, and the mixture was 
allowed to reach 0 ºC, stirred for 2.5 h, and poured into saturated 
aqueous NH4Cl. The aqueous layer was extracted with EtOAc, 
and the organic extracts were dried and concentrated. The residue 
was chromatographed (9:1 hexane-EtOAC) to give 2a (3.4 g, 
70%): 1H NMR (300 MHz) δ 1.88-1.96 (m, 2H), 1.97 (s, 3H), 
2.33-2.40 (m, 6H), 2.59-2.64 (m, 2H), 3.65 (s, 3H); 13C NMR 
(75.4 MHz) δ 21.0 (CH2), 21.1 (CH3), 22.1 (CH2), 32.8 (CH2), 
33.0 (CH2), 37.7 (CH2), 51.4 (CH3), 133.6 (C), 156.5 (C), 173.5 
(C), 198.2 (C); HMRS calcd for [C11H16O3 + Na]: 219.100, found: 
219.099. Method B (with 2c as an Example). CuI (340 mg, 1.78 
mmol) was added to a solution of bromo enone 1 (300 mg, 1.15 
mmol) in anhydrous THF (6 mL), and the resulting suspension 
was vigorously stirred at −10 ºC. p-Methoxyphenylmagnesium 
bromide (6.8 mL, 0.5 M in THF) was slowly added, and the 
mixture was stirred at −10 ºC for 16 h, poured into saturated 
aqueous NH4Cl (5 mL) and Et2O (5 mL), and stirred for 1 h. The 
aqueous layer was extracted with Et2O, and the organic extracts 
were dried and concentrated. The residue was chromatographed 
(3:2 hexane-Et2O) to give 2c (192 mg, 58%) as a yellow oil: 1H 
NMR (300 MHz) δ 2.04-2.11 (m, 2H), 2.31-2.37 (m, 2H), 2.47-
2.56 (m, 4H), 2.58-2.62 (m, 2H), 3.58 (s, 3H), 3.83 (s, 3H), 6.90-
6.94 (m, 2H), 7.08-7.12 (m, 2H); 13C NMR (75.4 MHz) δ 22.3 
(CH2), 22.5 (CH2), 33.5 (CH2), 33.6 (CH2), 37.9 (CH2), 51.3 
(CH3), 55.2 (CH3), 113.9 (CH), 128.0 (CH), 133.1 (C), 134.3 (C), 
158.3 (C), 159.3 (C), 163.2 (C), 173.3 (C), 199.2 (C); HMRS 
calcd for [C17H20O4 + H]: 289.1434, found: 289.1428.Anal. Calcd 
for C17H20O4·1/2H2O: C, 68.67; H, 7.12. Found: C, 68.85; H, 
7.00. Method C (with 2d as an Example). 2-Vinyl-1,3-dioxolane 
(0.29 mL, 2.9 mmol) was added to a solution of 9-BBN (5.8 mL, 
0.5 M in THF) at 0 ºC, and the mixture was stirred at rt for 3 h. 
Then, DMF (12 mL), K3PO4 (407 mg, 1.92 mmol), PdCl2(PPh3)2 
(42 mg, 0.06 mmol),  and bromo enone 1 (500 mg, 1.92 mmol) 
were added, and the mixture was heated at 60 ºC for 16 h. H2O (12 
mL) was added, and stirring was continued for 30 min. The 
aqueous layer was extracted with EtOAc, and the combined 
organic extracts were washed with H2O, dried, and concentrated. 
The residue was chromatographed (1:1 hexane-EtOAc) to give 2d 
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(475 mg, 88%) as a yellow oil: 1H NMR (300 MHz) δ 1.76-1.84 
(m, 2H), 1.89-1.97 (m, 2H), 2.28-2.32 (m, 8H), 2.56-2.64 (m, 2H), 
3.62 (s, 3H), 3.82-3.91 (m, 2H), 3.92-3.99 (m, 2H), 4.83-4.90 (m, 
1H); 13C NMR (75.4 MHz) δ  21.5 (CH2), 22.4 (CH2), 29.3 (CH2), 
31.0 (CH2), 32.3 (CH2), 33.9 (CH2), 38.5 (CH2), 51.8 (CH3), 65.7 
(2CH2), 104.0 (CH), 134.2 (C), 159.8 (C), 173.8 (C), 198.3 (C); 
HMRS calcd for [C15H22O5 + H]: 283.1540, found: 283.1533. 
Anal. Calcd for C15H22O5·1/2H2O: C, 61.84; H: 7.96. Found: C, 
61.98; H, 7.98. 
General Procedure for Cyclocondensation Reactions (with 

3g as an Example). (R)-Phenylglycinol (5.8 g, 42.6 mol) was 
added to a solution of keto ester 2g (4 g, 14.2 mol) and AcOH (1.2 
mL, 21.3 mol) in benzene (200 mL). The mixture was heated at 
reflux for 48 h with azeotropic elimination of H2O produced by a 
Dean-Stark apparatus. The resulting mixture was cooled and 
concentrated to give an oil. Flash chromatography (from 3:2 to 1:1 
hexane-EtOAc) afforded lactam 3g (3.2 g, 61%) and its C-7a, C-
11a diastereoisomer (0.8 g, 16%). 3g (higher Rf): 

1H NMR (300 
MHz) δ 1.58-1.91 (m, 6H), 1.99-2.12 (m, 4H), 2.17-2.25 (m, 1H), 
2.28-2.40 (m, 2H), 2.42-2.55 (m, 1H), 2.68 (dd, J = 18.6, 6 Hz, 
1H), 3.67 (s, 3H), 3.81 (t, J = 8.4 Hz, 1H), 4.55 (t, J = 8.4 Hz, 1H), 
5.28-5.47 (m, 2H), 7.17-7.35 (m, 5H); 13C NMR (75.4 MHz) δ 
22.9 (CH2), 23.0 (CH2), 25.0 (CH2), 25.9 (CH2), 31.3 (CH2), 33.3 
(CH2),  33.5 (CH2), 43.2 (CH), 51.4 (CH3), 58.4 (CH), 69.4 (CH2), 
94.2 (C), 120.9 (CH), 125.2 (2CH), 127.0 (CH), 128.4 (2CH), 
136.2 (C), 140.2 (C), 169.4 (C), 173.7 (C); mp 90-94 ºC; [α]22D 
−101.3 (c 1.1, MeOH). Anal. Calcd for C22H27NO4: C, 71.52; H, 
7.37; N, 3.79. Found: C, 71.50; H, 7.42; N, 3.84.  
General Procedure for Alane Reductions of Tricyclic 

Lactams 3 and 6 (with 4g’ as an Example). To a suspension of 
AlCl3 (362 mg, 2.71 mmol) in anhydrous THF (50 mL) at 0 ºC 
was slowly added LiAlH4 (340 mg, 8.94 mmol). After the mixture 
was stirred at 25 ºC for 30 min and cooled to −78 ºC, a solution of 
lactam 3g (500 mg, 1.35 mmol) in anhydrous THF (5 mL) was 
slowly added. The stirring was continued for 90 min at −78 ºC and 
for 90 min at 25 ºC.  Then, the mixture was cooled to 0 ºC, and the 
reaction was quenched with H2O. The aqueous layer was extracted 
with CH2Cl2, and the combined organic extracts were dried and 
concentrated. Column chromatography (from 8:2 to 1:1 hexane-
EtOAc) afforded a mixture of 4g’ (245 mg, 55%) and its C-8a 
epimer (22 mg, 5%). 4g’ (lower Rf): 

1H NMR (400 MHz) δ 1.26-
1.73 (m, 10H), 1.86-2.15 (m, 5H), 2.5 (m, 1H), 2.69-2.79 (m, 2H), 
3.61 (t, J = 6.4 Hz, 2H), 3.79 (dd, J = 10.6, 5.4 Hz, 1H), 3.85 (dd, 
J = 10.6, 6.2 Hz, 1H), 3.92 (t, J = 6.0 Hz, 1H), 5.24 (s, 1H),  7.26-
7.33 (m, 5H); 13C NMR (100.6 MHz) δ 18.9 (CH2), 24.1 (2CH2), 
24.9 (CH2), 26.4 (CH2), 32.5 (CH2), 34.4 (CH2), 38.8 (CH), 44.0 
(CH2), 55.0 (CH), 61.9 (CH2), 62.8 (CH2), 65.0 (CH2),  120.5 
(CH), 127.5 (2CH), 128.3 (CH), 128.4 (2CH), 139.0 (C), 140.3 
(C); [α]22D −27.4 (c 1.2, MeOH); HMRS calcd for [C21H31NO2 + 
H]: 330.2428, found: 330.2426. 
General Procedure for Catalytic Hydrogenation of Tricyclic 

Lactams 3 (with 6g as an Example). A solution of lactam 3g 
(500 mg, 1.35 mmol) in MeOH (40 mL) containing 40% PtO2 
(200 mg) was stirred under hydrogen at rt for 24 h. The catalyst 
was removed by filtration and washed with MeOH. The combined 
organic solutions were concentrated affording pure compound 6g 
(486 mg, 97%) as an oil: 1H NMR (300 MHz) δ 1.39-1.86 (m, 
13H), 2.05-2.21 (m, 1H), 2.30-2.35 (m, 2H), 2.40-2.53 (dd, J = 
11.1, 6.9 Hz, 1H), 2.60-2.68 (dd, J = 18.2, 6.9 Hz, 1H), 3.67 (s, 
3H), 3.82 (dd, J = 8.8, 8.1 Hz, 1H), 4.49 (t, J = 8.8 Hz, 1H), 5.29 
(t, J = 8.8 Hz, 1H), 7.15-7.34 (m, 5H); 13C NMR (75.4 MHz) δ 
17.9 (CH2), 23.6 (CH2), 24.1 (CH2), 24.6 (CH2), 30.4 (CH2), 31.2 
(CH2), 32.6 (CH2), 34.1 (CH2), 39.6 (CH), 43.4 (CH), 51.4 (CH3), 
58.0 (CH), 69.6 (CH2), 95.3 (C), 125.3 (2CH), 127.0 (CH), 128.4 
(2CH), 140.2 (C), 169.3 (C), 174.1 (C); [α]22D −67.7 (c 1.0, 

MeOH); HMRS calcd for [C22H29NO4 +H]: 372.2169, found: 
372.2163.Anal. Calcd for C22H29NO4: C, 71.13; H, 7.87; N, 3.77. 
Found: C, 70.84; H, 7.81; N, 3.69.  
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