Enantioselective Approach to Quinolizidines: Total Synthesis of Cermizine D and Formal Syntheses of Senepodine G \& Cermizine C

Nagarathanam Veerasamy, Erik C. Carlson, Nathan D. Collett, Mrinmoy Saha, and Rich G. Carter
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331

Rich G. Carter: rich.carter@oregonstate.edu

Abstract

The formal total syntheses of C_{5}-epi-senepodine G and C_{5}-epi-cermizine C have been accomplished through a novel diastereoselecetive, intramolecular amide Michael addition process. The total synthesis of cermizine D has been achieved through use of an organocatalyzed, heteroatom Michael addition to access a common intermediate. Additional key steps of this sequence include a matched, diastereoselective alkylation with an iodomethylphenyl sulfide and sulfone-aldehyde coupling/reductive desulfurization sequence to combine the major subunits. The utility of a Hartwig-style C-N coupling has been explored on functionally dense coupling partners. Diastereoselective conjugate additions to α, β-unsaturated sulfones has been investigated which provided the key sulfone intermediate in just six steps from commercially available starting materials. The formal syntheses of senepodine G and cermizine C have been accomplished through an intramolecular cyclization process of a N-Boc protected piperidine sulfone.

Introduction

Since the initial isolation of lycopodine from Lycopodium complanatum in Germany by von Karl Bödeker in 1881, ${ }^{1}$ the lycopodium club mosses have produced a diverse collection of alkaloid natural products. These plants have been used for millennia for treatments of a wide range of ailments - from controlling fever to schizophrenia to memory loss. The first systematic study of the lycopodium club mosses was spearheaded by Professor William A. Ayer from the University of Alberta - leading to numerous advances in the field of structural determination, biogenesis and natural product synthesis. ${ }^{2}$ More recently, Professor Jun'ichi Kobayashi's laboratory at the University of Hokkaido has continued to mine these plants for additional alkaloid constituents - providing multiple new compounds and new chemical scaffolds. ${ }^{3}$ Several other laboratories have probed these plants for medicinally useful alkaloids. ${ }^{4}$

Pelletierine (1) was first isolated from a pomegrante by Tanret in 1878 and serves a common building block in the biosynthesis of many the lycopodium alkaloids (Figure 1). ${ }^{5}$ Despite its deceptively simple structure, ${ }^{6}$ this compound has been the target of considerable synthetic attention and numerous total syntheses. ${ }^{7,8}$ Many of the quinolizidine-natural products identified by Ayer, Kobayashi and others are derived from pelletierine through the pelletierine condensation. ${ }^{9}$ Representative members of these quinolizidine natural products

[^0]include cermizine C^{10} (and its biosynthetic precursor senepodine G), myrtine ${ }^{11}$ and lasbines I-II. ${ }^{12}$ More complex versions include the incorporation of a second formal unit of pelletierine such as cermizine D^{10} and cernuine. ${ }^{13}$ These quinolizidine natural products 2-8 have garnered considerable synthetic attention ${ }^{14,15,16}$ including total syntheses of the more complicated members cernuine (8) ${ }^{14 \mathrm{c}, 17}$ and cermizine $\mathrm{D}(7) .{ }^{14 \mathrm{c}, 17,18}$ This quinolizidine scaffold is also present in other members of the lycopodium alkaloids such as himeradine A. ${ }^{19}$ Our interest in these compounds was initially stimulated by himeradine A and has expanded into developing general approaches to access significant cross sections of the lycopodium alkaloid family. ${ }^{8 b}, 18,19 \mathrm{~b}, 20$ Herein, we disclose a full account of our total synthesis of cermizine $\mathrm{D}(7) .{ }^{18}$ In addition, we report the formal syntheses of both cermizine $C(\mathbf{2})$ and senepodine $G(3)$ as well as their C^{5} epimers.

Results and Discussion

Our efforts started with the observation that a core piperidine ring was present in each of these natural products. We envisioned that this piperidine scaffold could be constructed via an organocatalyzed, intramolecular heteroatom Michael addition of a suitably constructed enal precursor 9 (Scheme 1). ${ }^{8 \mathrm{~b}}$ To our surprise, this transformation had not been explored at the time we initiated this project. ${ }^{15 h}, 21$ Prior work in the area had focused on intermolecular version using highly nucleophilic nitrogen sources; ${ }^{22}$ however, it is important to note the pioneering intramolecular contributions from Hsung and co-workers using vinylogous amides. ${ }^{23}$ We were pleased to find that a general enantioselective approach could be developed using the Jørgensen catalyst $\mathbf{1 0}^{24}$ to provide the resultant cyclized product $\mathbf{1 1}$ in good yield and high eneantioselectivity. ${ }^{8 \mathrm{~b}}$ This approach was used for an efficient enantioselective total synthesis of (-)-pelletierine (1). ${ }^{8 b}$

Inspired by our initial successes with carbamate nitrogen nucleophiles in the intramolecular heteroatom Michael addition, ${ }^{8 b}$ we were intrigued by the possibility that alternate nitrogen nucleophiles could be utilized. We were particularly interested in the possibility that amides could serve as a nucleophile for this transformation - specifically on substrates containing additional stereochemistry in the resultant piperidine ring (e.g. 14) (Scheme 2). Interestingly, only limited examples of simple 1° amide nucleophiles ${ }^{25}$ have been exploited in γ - or Δ lactam formation via a heteroatom Michael manifold. ${ }^{26}$ Hirama and co-workers explored a silyloxy substituent within the carbon backbone of intramolecular heteroatom Michael addition of an amide in their synthesis of swainsonine. ${ }^{27}$ Shultz's laboratory posthumously reported an intramolecular heteroatom Michael addition onto a fused a, β-unsaturated lactone to generate a [4.3.0] bicyclic scaffold. ${ }^{28}$ We sought to probe the inherent stereoselectivity of the process and exploit the possibility that catalyst control could be used to guide the outcome of the transformation. The resultant product $\mathbf{1 2}$ from this cyclization could be readily converted to the [4.4.0] bicyclic lactam which Snider and co-workers have previously converted onto senepodine $G(\mathbf{3})$ and cermizine $C(\mathbf{2}) .{ }^{14 a, 29}$

The necessary cyclization precursor 15 was constructed in two steps from the previously prepared methyl ester $\mathbf{1 6}^{20}$ (Scheme 3). Treatment of methyl ester $\mathbf{1 6}$ with the dimethylaluminum-amide complex produced the amide 17. Cross metathesis with crotonaldehyde (18) using the Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst 19 produced the enal $\mathbf{1 5}$ in good yield. This product $\mathbf{1 5}$ proved stable for prolonged periods when stored frozen in benzene.

With the cyclization precursor in hand, we set out to explore the possibility of expanding the organocatalyzed intramolecular Michael addition to include amide nucleophiles (Table 1). Using an achiral Lewis acid $\left(\mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O}\right)$ we observed slow cyclization with essentially no diastereoselectivity (entry 1). Interestingly, we have exploited a related $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed,
intramolecular heteroatom Michael addition in our himeradine A work for the construction of a piperidine ring with high diastereocontrol. ${ }^{19 b}$ Use of our previous Jørgensen catalyst conditions ${ }^{8 \mathrm{~b}}$ at low temperatures did not induce any cyclization; however, warming of the reaction mixture to room temperature provided the cyclized product as a $1: 1$ diastereomeric mixture at C_{5} (entry 2). Use of the enantiomeric catalyst ent- $\mathbf{1 0}$ resulted in clean formation of C_{5}-epi-14 in reasonable yield [entry $3,50 \%$ yield, $1: 10 \mathrm{dr}\left(\mathbf{1 4}: \mathrm{C}_{5}\right.$-epi-14)]. We also screened alternative monofunctional catalysts (e.g. MacMillan's catalyst 20); however, this catalyst proved unselective (Entry 4). Our laboratory has extensively exploited the use of proline sulfonamides for a range of transformations. ${ }^{30}$ Consequently, we screened catalyst 21 in the transformation, but poor diastereoselectivity was observed (entry 5, 1:2 dr). Use of an alternate sulfonamide $\mathbf{2 2}{ }^{30 \mathrm{~g}}$ provided a significant rate acceleration but with continued modest levels of selectivity (entry $6,14 \mathrm{~h}, 70 \%$ yield, $1: 4 \mathrm{dr}$). The reaction did not proceed at any appreciable rate at temperatures below rt. Variation of the solvent mixture had little impact on the transformation (entries 7-9).

The formal synthesis of C_{5}-epi-senepodine G from aldehyde C_{5}-epi-14 is shown in Scheme 4. Treatment of aldehyde C_{5}-epi-14 with the known phosphonate $\mathbf{2 3}^{31}$ under MasamuneRoush conditions followed by hydrogenation yielded the thioester 24. Reduction using NaBH_{4} in $\mathrm{MeOH} / \mathrm{THF}$ followed by treatment with MsCl provided the 1° mesylate 25. The lactam 26 was constructed by treatment of $\mathbf{2 5}$ with NaHMDS. This intermediate ${ }^{32}$ has been previously converted onto C_{5}-epi-senepodine $\mathrm{G}\left(\mathbf{2 7}\right.$) and C_{5}-epi-cermizine C (28) by Snider and co-workers - thereby confirming the stereochemical assignment of the heteroatom Michael addition. ${ }^{14 \mathrm{a}}$

Next, we turned out attention toward cermizine D (7) (Scheme 5). Our initial retrosynthesis towards 7 exploited a common intermediate strategy to access the A and C rings. The B ring would be incorporated through a reductive ring closing metathesis (RCM) approach. ${ }^{33}$ The key C-N bond-forming event between allylic carbonate $\mathbf{3 1}$ and amine $\mathbf{3 0}$ would be facilitated
through allylic amination chemistry developed by Hartwig and co-workers. ${ }^{34}$ While we are unaware of an example using a-branched 2° amines for this transformation (e.g., 30), Helmchen and co-workers demonstrated some promising examples of utilizing this amination chemistry for the synthesis of a series of piperidinecontaining natural products. 35 Both of the proposed coupling partners for this reaction could be derived from a common intermediate 32. This aldehyde $\mathbf{3 2}$ is readily accessible from our intramolecular, heteroatom Michael addition chemistry. ${ }^{8 b}$

Synthesis of both of the key subunits from the common intermediate $\mathbf{3 2}$ is shown in Scheme 6. Starting from the known Boc-protected amine $\mathbf{3 3}^{15 h}, 21$ (accessible in one step from commercially available hex-5-en-1-amine or two steps from 1-bromo-5-hexene), cross metathesis with crotonaldehyde (18) provided the Michael addition precursor 34. Using a modified version of our originally developed conditions, ${ }^{8 b}$ organocatalyzed, intramolecular heteroatom Michael addition produced the desired common intermediate 32 in excellent yield and enantioselectivity. Conversion of $\mathbf{3 2}$ into the allylic carbonate $\mathbf{3 1}$ was accomplished through Wittig olefination followed by reduction and carbonate formation. Similarly, addition of MeMgBr to aldehyde $\mathbf{3 2}$ followed by DMP oxidation yielded ketone 35. Wittig olefination and Boc deprotection using TFA gave the target 2° amine as its TFA salt ($\mathbf{3 0} \cdot \mathbf{T F A}$).

With the two subunits in hand, we turned our attention to the critical C-N bond forming event (Scheme 7). Given the challenging steric nature of the transformation, we first tested the individual subunits with less demanding coupling partners. While C-N bond formation could be accomplished in both cases, the regioselectivity was disappointing. With the allyl carbonate $\mathbf{3 1}$ and pyrrolidine, the undesired linear coupling product 37 was observed in high yield (19:1 rr). The 2° amine $\mathbf{3 0}$ proved slightly more compatible with the coupling process, providing the branched to linear product ratio of $3: 2$ by ${ }^{1} \mathrm{H}$ NMR. Undeterred, we screened the desired combination of $\mathbf{3 1}$ and $\mathbf{3 0}$; however, no C-N coupled material was observed. Based on these results, it became clear that a revised approach towards cermizine D was necessary.

Our revised approach is shown in Scheme 8. We envisioned a reductive amination strategy to couple the two subunits and our previous reductive RCM approach to form the central B ring. The A ring enone $\mathbf{4 5}$ could be derived from previously prepared piperidine intermediate 32. The amine 44 could be accessed through Ellman t-butyl sulfinamide chemistry. ${ }^{36}$

Both the 1° amine 44 and the enone $\mathbf{4 5}$ could be readily accessed from known intermediates (Scheme 9). The requisite 1° amine 44 was available in three steps from the known aldehyde $\mathbf{4 6}^{37}$ via imine formation with (R) - t-butyl sulfinamide (47) followed by addition of methallyl Grignard and treatment with concentrated HCl . The diastereoselectivity in the key $\mathrm{C}-\mathrm{C}$ bond forming event was $6: 1$ based on ${ }^{1} \mathrm{H}$ NMR analysis. The enone $\mathbf{4 5}$ was available via Grignard addition to the aldehyde $\mathbf{3 2}$ followed by DMP oxidation. Enone $\mathbf{4 5}$ provided us with an alternative method to gauge enantioselectivity after nucleophilic addition to the aldehyde $\mathbf{3 2}$. The resultant enantioselectivity was established by chiral HPLC analysis to be 90% ee; however, this enantioselectivity could be increased through a single recrystallization to 99%. Imine formation between enone 45 and amine 44 appeared to be feasible under forcing [$\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$, neat, overnight] conditions; however, reductive amination of the intermediate imine proved unselective. More troubling was the observation that the C_{5} stereocenter appeared to have epimerized under the reaction conditions. One possible manifold for this epimerization at C_{5} could be through β-elimination of the intermediate imine followed by re-closure.

Given the roadblocks encountered in both of our approaches involving C-N bond forming strategies to couple the two subunits of cermizine D, we sought an alternate approach that incorporated the carbon backbone first (Scheme 10). In addition, the β-elimination phenomenon observed in the reductive amination process would likely need to be circumvented. Finally, we desired to return to the common intermediate approach found in our original strategy towards cermizine D. Based on these requirements, our ultimately successful retrosynthetic approach exploited the key common intermediate $\mathbf{3 2}$ to access both the A and C rings of the natural product. The two subunits would be joined through a tandem sulfone-aldehyde coupling/reductive desulfurization sequence. The necessary sulfone 56 would be accessible from the same key aldehyde $\mathbf{3 2}$.

In order to incorporate the C_{15} methyl stereocenter, we envisioned using a diastereoselective Evans alkylation (Scheme 11). This historically reliable method has been routinely employed to circumvent mismatched stereochemical combination in synthesis. ${ }^{38}$ Based on the Evans model, we required the (S)-benzyl oxazolidinone $\mathbf{5 9}$ which was readily accessed from the aldehyde $\mathbf{3 2}$ through homologation followed by Pinnick oxidation and acyl oxazolidinone formation. The analogous (R)-oxazolidinone series was also prepared through the same process.

The exploration of the diasteroselectivity in the key alkylation yielded unexpected results (Table 2). In contrast to what is normally seen in Evans alkylations, a pronounced matched/ mismatched effect was observed. Treatment of oxazolidinone $\mathbf{6 0}$ with LiHMDS led to poor conversion (entry 1) and essentially no diastereoselectivity. Use of alternate bases (and at slightly higher equivalencies) led to improved levels of reactivity. NaHMDS (entry 2) gave a slight preference for the desired stereochemistry (92% yield, $1.5: 1 \mathrm{dr} 66: 64$)]. The major isomer 66 generated crystals suitable for X-ray crystallographic analysis ${ }^{39}$ - thereby establishing both the absolute configuration of the newly created stereocenter as well as confirming the stereochemical assignment of the heteroatom Michael reaction. Despite this low selectivity, a 55% isolated yield of the major isomer could be obtained - providing reasonable material throughput. KHMDS (entry 3) gave continued high chemical yields but now with a slight preference for the undesired stereoisomer [87\% yield, 1:1.4 dr (66:64)]. Use of the alternate (R)-oxazolidinone $\mathbf{6 1}$ led to a highly diastereoselective process favoring the undesired stereoisomer 65 [77\% yield, 20:1 dr (65:67), Entry 4]. Confirmation of the stereochemistry was obtained by reduction of the acyl oxaxolidinone and comparison with the products derived from the (S)-oxazolidinone series. One possible explanation for this pronounced difference in diastereoselectivity could be a chelation of the enolate derived from oxazolidinone and the Boc moiety (e.g. intermediates 62 and 63). While this would create a typically unfavorable 9 -membered cyclic structure, the presence of multiple sp^{2} hybridized atoms would reduce the number of disruptive transannular interactions. Please note that the Boc-protected nitrogen likely forces the C_{13} substituent to adopt an axial conformation. ${ }^{40}$

With the C_{15} alkylated material in hand, we constructed the needed sulfone $\mathbf{5 6}$ in three steps (Scheme 12). Borohydride reduction of the C_{8} carbonyl provided the alcohol 68. Conversion to the sulfide was accomplished using diphenyl disulfide and PBu_{3} in excellent yield. Subsequent oxidation using ammonium molybdate gave the target sulfone 56 in high yield.

Given the poor diastereoselectivity in the key C_{15} alkylation, we explored alternate approaches to its construction (Scheme 13). Using aldehyde 58, Eschenmoser methylenation provided the enal 70, which was reduced to the corresponding alcohol 71. While compelling precedent existed for diastereoselective hydrogenation of 1,1-disubstituted alkenes similar to 71, ${ }^{41}$ attempted reduction using $10 \mathrm{~mol} \%(S)-\mathrm{Ru}(\mathrm{OAc})_{2}(\mathrm{~T}-\mathrm{BINAP})(74)$ gave low yield (40%) and no diastereoselectivity. We also explored a reductive protonation strategy through the a, β-unsaturated oxazolidione 73. This strategy proved similarly unsuccessful, as L-Selectride reduction showed a slight preference for the undesired C_{15} stereochemistry after protonation with methanol. It should be noted that this reduction strategy is dependent on controlling the s-cis $/ s$-trans ratio between the 1,1 -disubstituted alkene and the C_{8} carbonyl moiety.

While our original alkylation sequence did provide an effective way to access the sulfone 56, we were intrigued by the possibility of exploiting to our advantage the pronounced mismatched/matched relationship of the diastereoselective alkylation (Scheme 14). One possibility would involve using the matched oxazolidinone 61 with an electrophile such as thiophenylmethyl iodide $\left(\mathrm{PhSCH}_{2} \mathrm{I}\right)$ or phenyl iodomethyl sulfone $\left(\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{I}\right)$. We were only aware of a single example for utilizing one of those electrophiles with an oxazolidinone-based nucleophile. Baker and co-workers reported the alkylation of $\mathbf{7 5}$ with $\mathrm{PhSCH}_{2} \mathrm{I}$ in low yield upon extended reaction times $\left(5 \mathrm{~d},-20^{\circ} \mathrm{C}, 30 \%\right.$ yield). ${ }^{42}$ Alternatively, we considered the possibility of a diastereoselective thio-Michael addition based on some compelling literature precedent; ${ }^{43}$ however, our preliminary examples exploring conjugate reduction and hydrogenations as described previously in Scheme 13 made this approach seem less attractive.

Our second generation approach to the synthesis of sulfone 56 is shown in Scheme 15. We were pleased to find that alkylation of oxazolidinone $\mathbf{6 1}$ with the $\mathrm{PhSCH}_{2} \mathrm{I}$ proceeded smoothly to provide the desired product $\mathbf{8 2}$ in 70% yield and 10:1 dr. It was key that the electrophile was prepared immediately prior to use as storage for even 3 hours resulted in dramatically reduced yields. We attribute the efficiency of this process to the matched
relationship of the oxazolidinone and piperidine stereochemistries as shown in intermediate 63. Reduction of $\mathbf{8 2}$ under standard conditions produced the alcohol 83 . Next, oxidation of the sulfide using ammonium molybdate followed by iodide incorporation yielded 84. Finally, dehalogenation using Pd / C and hydrogen gas provided the previously prepared sulfone 56 in 99 \% yield.

While the second-generation route provided noticeable improvements in stereoselectivity and material through-put, the lingering issue of the overall step-count for the process remained. In principle, the conversion of aldehyde $\mathbf{3 2}$ into sulfone 56 should be a two-step process: olefination to make the α, β-unsaturated sulfone and diastereoselective conjugate addition of a methyl nucleophile to make the target intermediate 56. While tempting, serious hurdles remained for implementing such an approach - particularly in the diastereoselective conjugate addition step. We had hoped that substrate control could be exploited to direct the newly formed stereochemistry. While only limited examples of such transformations are known, ${ }^{44}$ Isobe's work using 1-TMS, 1-phenylsulfonyl alkenes was compelling. ${ }^{44 \mathrm{~b}}$ Regarding reagent-controlled conjugate additions, we were unaware of compelling precedent for conjugate addition of methyl nucleophiles to α, β-unsaturated sulfones. Feringa and co-workers have reported an elegant catalytic process using pyridinyl sulfones and monodentate phosphoramidite ligands; however, they specifically commented in the manuscript that "...with the less reactive dimethyl zinc no conversion was obtained ..." 45

In order to explore a substrate-controlled conjugate addition process, we synthesized the required a, β-unsaturated sulfones and silyl sulfones (Scheme 16). Olefination of aldehyde 32 with the HWE reagent $\mathbf{8 5}$ produced the target alkene in modest E / Z selectivity (4:1, 86:87). No attempt was made to improve this selectivity of this process at this time. In order to study the possible influence of the Boc moiety, we replaced the nitrogen protecting group with a benzyl moiety via TFA deprotection and nitrogen alkylation. The vinyl silyl sulfones 92 and 93 were constructed via Isobe's two step protocol of Peterson olefination followed by sulfide oxidation in again modest, but unoptimized E / Z selectivity.

With these Michael acceptors in hand, we first explored the potential of the vinyl silyl sulfones (Table 3). Use of methyl lithium resulted in preferencial desilylation followed by olefin isomerization to produce 95 (entry 1). We are unsure of the enantiomeric purity of this product as a viable epimerization mechanism can be envisioned involving a β elimination process to form a dienyl sulfone intermediate. Using lower order cuprates, we were successful in facilitating the desired conjugate addition (entries 3 and 4); however, these transformations produced primarily the undesired C_{15} epimer after desilylation. Use of the alternate olefin isomer 93 (entry 5) continued to favor the undesired stereochemistry in the conjugate addition - albiet in reduced selectivity (55\% yield, 1.9:1 dr (94:56).

We also explored the possibility for conjugate addition to the vinyl sulfone 86 with more success (Table 4). Initial attempts with MeLi or high order cuprates resulted in extensive decomposition of the starting material (entries 1 and 2). We attribute this decomposition pathway to a competitive deprotonation process of γ-hydrogens of the vinyl sulfone via a similar pathway to the product 95 seen in the previous table. Fortunately, use of lower order cuprate nucleophiles under carefully controlled conditions did produce the desired conjugate
addition product - albeit in modest yield and no diastereoselectivity (entry 3). Despite these shortcomings, this conjugate addition process provides an exceedingly short approach to sulfone 56 - just six steps from commercially available reagents. Attempts to improve the stereoselectivity and chemical yield of this process through use of alternate electrophile $\mathbf{8 7}$ resulted in decomposition (entry 4). In addition, use of the benzyl protected series $\mathbf{8 8}$ proved similarly ineffective. It is clear from these experiments that a delicate balance exists in controlling the reactivity of these α, β-unsaturated sulfones.

$\mathrm{R}_{1}=\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}$
$87 \mathrm{PG}=\mathrm{Boc}$
$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{SO}_{2} \mathrm{Ph}$

With multiple viable routes to the key intermediate 56, we embarked on our key coupling strategy (Scheme 17). Treatment of sulfone 56 with LDA followed by the addition of aldehyde 32 produced both the expected product $96 / 97$ and the unexpected cyclic product 98 as a single diastereomer with undetermined stereochemistry at C_{8}. Fortunately, the undesired product 98 could be completely suppressed by reducing the reaction time for deprotonation from 15 min to 1 min - resulting in a 93% yield of the desired $\mathrm{C}_{7}-\mathrm{C}_{8}$ coupled material as a stereochemical mixture. This mixture could be interconverted through an oxidation/ reduction process. Interestingly, formation of the unexpected product $\mathbf{9 8}$ could be optimized to 87% yield through variation in the reaction time and temperature. Subsequent desulfurization produced the known lactam intermediate 12. ${ }^{14}$ This lactam $\mathbf{1 2}$ constitutes a formal synthesis of both senepodine $G(3)$ and cermizine C (2) based on work by Snider and coworkers. ${ }^{14}$

The total synthesis of cermizine D is shown in Scheme 18. Using hydroxyl sulfone 97, Raney Ni desulfurization yielded the free alcohol which proved unstable to purification. Consequently, direct Boc deprotection of the crude material revealed the intermediate 99 as its bis HCl salt. While desulfurizations of keto sulfones are well-precedented, proportionally less work has focused on the desulfurization of hydroxy sulfones ${ }^{46}$ - likely due to the competitive elimination pathway commonly seen in Julia couplings. ${ }^{47}$ Treatment of the salt 99 with triphenyl phosphine and carbon tetrabromide in the presence of triethyl amine generated the natural product 7 in 60% yield over three steps. We were pleased to find that upon comparison of our ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR and optical rotation data for $7 \cdot$ TFA that it was in good agreement with the data reported by Takayama and co-workers. ${ }^{14 c, 17}$ While not directly stated in the original isolation paper, the spectroscopic data reported by Hirasawa and co-workers was collected on the TFA salt of cermizine D. ${ }^{18}$

Conclusion

In summary, a novel diastereoselecetive, intramolecular amide Michael addition process has been developed and applied to the formal synthesis of C_{5}-epi-senepodine G and C_{5}-epicermizine C . In addition, the total synthesis of cermizine D has been accomplished using a common intermediate $\mathbf{3 2}$ which was accessed via an organocatalyzed, heteroatom Michael addition. This common intermediate $\mathbf{3 2}$ is exploited to construct two of the three piperidine rings found in cermizine D as well as the vast majority of the carbon framework. Additional key steps of this sequence include a matched, diastereoselective alkylation with an iodomethylphenyl sulfide and sulfone-aldehyde coupling/reductive desulfurization sequence
to combine the major subunits. The longest linear sequence of the synthesis (just nine steps using the cuprate addition strategy in Table 4 or 16 steps via the sulfide alkylation strategy described in Scheme 15) compares favorably to prior work in the field. Through the cermizine D work, the possible utility of Hartwig-style C-N couplings have been explored on functionally dense coupling partners - providing important limitations to the methodology. Finally, the serendipitous discovery of an intramolecular cyclization process ${ }^{48}$ on sulfone 56 provided a rapid route to the formal synthesis of senepodine G and cermizine C. Subsequent application to additional lycopodium alkaloids will be reported in due course.

Experimental Section

General

Infrared spectra were recorded neat unless otherwise indicated and are reported in $\mathrm{cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR spectra were recorded in deuterated solvents and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated solvents and are reported in ppm relative to tetramethylsilane and referenced internally to the residually protonated solvent. HRMS data was collected using a TOF mass spectrometer.

Routine monitoring of reactions was performed using EM Science DC-Alufolien silica gel, aluminum-backed TLC plates. Flash chromatography was performed with the indicated eluents on EM Science Gedurian 230-400 mesh silica gel.

Air and/or moisture sensitive reactions were performed under usual inert atmosphere conditions. Reactions requiring anhydrous conditions were performed under a blanket of argon, in glassware dried in an oven at $120^{\circ} \mathrm{C}$ or by flame, then cooled under argon. Dry THF and DCM were obtained via a solvent purification system. All other solvents and commercially available reagents were either purified via literature procedures or used without further purification.

Amide 17-To a solution of $\mathbf{1 6}(0.140 \mathrm{~g}, 0.986 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt was added dimethylaluminumamide ($0.733 \mathrm{~mL}, 1.13 \mathrm{mmol}, 1.5 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the reaction was warmed to $33^{\circ} \mathrm{C}$. After stirring for 16 h , dimethylaluminumamide $(0.30 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1.5$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added. After stirring for 24 h , the reaction was cooled to rt and quenched with $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and allowed to stir for 10 minutes, sat. aq. Rochel's salt (5 mL) was added and stirred 10 minutes to form two clear layers. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-50 \% \mathrm{EtOAc} /$ hexanes, to give $17(0.105 \mathrm{~g}$, $0.83 \mathrm{mmol}, 85 \%)$ as a white solid. Mp 93.2-91.7 ${ }^{\circ} \mathrm{C} ;[\mathrm{a}]_{\mathrm{D}}{ }^{23}=+5.98^{\circ}\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$; IR (neat) $3352,3183,2954,2911,1664,1631,1413,1152 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.48(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.97$ $(\mathrm{m}, 4 \mathrm{H}), 1.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9,136.5,116.6,42.8$, 41.0, 30.4, 19.5; HRMS (EI+) calcd. for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}(\mathrm{M}+)$ 127.0997, found 127.0993.

Enal 15-To a solution of $\mathbf{1 7}(178 \mathrm{mg}, 1.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at rt was added sequentially crotonaldehyde ($0.59 \mathrm{~mL}, 495 \mathrm{mg}, 7.06 \mathrm{mmol}$) and $2^{\text {nd }}$ Gen. Hoveyda-Grubbs catalyst ($6.7 \mathrm{mg}, 0.010 \mathrm{mmol}$). After 1 h , another portion of the $2^{\text {nd }}$ Gen. Hoveyda-Grubbs catalyst ($2.2,0.003 \mathrm{mmol}$) was added. After stirring for 2 h , the reaction was concentrated in vacuo and loaded directly onto silica gel and purified by chromatography, eluting with $10-$ $100 \% \mathrm{EtOAc} /$ hexanes and $5-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give $15(184 \mathrm{mg}, 1.19 \mathrm{mmol}, 84 \%)$ as a brown oil and recovered alkene $17(29 \mathrm{mg}, 0.22 \mathrm{mmol}):[a]_{\mathrm{D}}{ }^{23}=-7.93^{\circ}(\mathrm{c}=1.35$, CHCl_{3}); IR (neat) $3350,3198,2960,1684,1405, \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.48$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.07(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{brs}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.30-2.17 (m, 3H), 2.12-2.06 (m, 1H) $1.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9,173.9,156.2,134.6,42.5,39.6,29.9,19.8 ;$ HRMS (EI+) calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}(\mathrm{M}+)$ 155.0946 , found 155.0944 .

Aldehyde 14-To a solution of $15(0.0574 \mathrm{~g}, 0.401 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added 10 $(0.0479 \mathrm{~g}, 0.080 \mathrm{mmol})$ in DCE $(1.9 \mathrm{~mL})$. After 4 d , the reaction was concentrated in vacuo and loaded directly silica gel, purified by chromatography eluting in $100 \% \mathrm{EtOAc}$ to give a crude mixture of three compounds which were concentrated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred with 10% aq. $\mathrm{HCl}(3 \mathrm{~mL})$. After 2 hours, the reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to give $14(10: 1 \mathrm{dr})(0.031 \mathrm{mg}, 0.200 \mathrm{mmol}, 50 \%)$ as a greenish oil: $[a]_{\mathrm{D}}{ }^{23}=+10.43^{\circ}\left(\mathrm{c}=1.63, \mathrm{CHCl}_{3}\right)$; IR (neat) $3213,2955,1722,1660,1457,1408,1338$, $1280, \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 6.14($ brs, 1 H$), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.75$ (dd, $J=18.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65-2.56 (dd, $J=18.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.44$ (dd, $J=$ $13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 200.0,172.4,50.5,47.5,39.6,37.1,27.4,21.3$; HRMS (EI+) calcd. For $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}(\mathrm{M}+)$ 155.0946, found 155.0921.

Thioester SI-1—To a solution of $\mathbf{1 4}(0.280 \mathrm{~g}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5.8 \mathrm{~mL})$ was added sequentially $\mathrm{LiCl}(0.059 \mathrm{~g}, 1.39 \mathrm{mmol})$, DIPEA $(0.150 \mathrm{~g}, 1.16 \mathrm{mmol})$. After 10 min , the solution was cooled to $0^{\circ} \mathrm{C}$. After 5 min , a precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $23(0.18 \mathrm{~g}, 1.16$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ was cannulated into the reaction $(2 \times 0.5 \mathrm{~mL} \mathrm{MeCN}$ rinse $)$. The reaction was allowed to warm to rt over 10 min . After 30 min , the reaction was quenched with aq. $\mathrm{HCl}(2 \mathrm{~mL} 1.22 \mathrm{M})$ and extracted with $\mathrm{EtOAc}(3 \mathrm{X} 20 \mathrm{~mL})$. The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo and purified by chromatography over silica gel, eluting with $95 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give SI-1 ($0.160 \mathrm{~g}, 0.66 \mathrm{mmol}, 57 \%$) as a white solid. Mp $76.5-75.0^{\circ} \mathrm{C} ;[\mathrm{a}]_{\mathrm{D}}{ }^{23}=-34.3^{\circ}\left(\mathrm{c}=0.525, \mathrm{CHCl}_{3}\right)$; IR (neat) $2954,2927,2862,1662$ $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{bs}, 1 \mathrm{H})$, $3.56(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 3 \mathrm{H}) 1.30(\mathrm{t}, 3 \mathrm{H}), 1.05(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4,172.9,138.8,131.7,51.6,39.5,39.0,36.8,27.4$, 23.1, 21.4, 14.7; HRMS (EI+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SN}(\mathrm{M}+$) 242.1215, found 242.1214.

Thioester 24-To a solution of SI-1 ($0.615 \mathrm{~g}, 2.54 \mathrm{mmol}$) in EtOAc (60 mL) at rt, under an inert argon atmosphere was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 0.490 \mathrm{~g})$, the reaction flask was purged with a balloon of H_{2} gas and let stir under a balloon of H_{2} gas. After 2 d , the H_{2} atmosphere was purged with argon for 5 min . The reaction was then filtered through celite (EtOAc 200 mL wash), concentrated in vacuo and purified by chromatography over silica gel, eluting with $10 \% \mathrm{MeOH} / E t O A c$, to give $24(0.615 \mathrm{~g}, 2.54 \mathrm{mmol}, 99 \%)$ as a white wax: $[\mathrm{a}]_{\mathrm{D}}{ }^{23}=$ $-2.46^{\circ}\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)$; IR (neat) $3215,2954,2927,1684,1653 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.7(\mathrm{bs}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{bd}, 1 \mathrm{H}), 1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}) 1.05(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.0,172.4,52.6,43.5$, 39.7, 37.1, 36.1, 27.6, 23.3, 21.5, 21.0, 14.8; HRMS (EI+) calcd. For $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+$) 243.1293, found 243.1290.

Alcohol SI-2—To a solution of $24(0.082 \mathrm{~g}, 0.34 \mathrm{mmol})$ in MeOH/THF 1:1 (4 mL) at rt was added $\mathrm{NaBH}_{4}(0.100 \mathrm{~g}, 2.63 \mathrm{mmol})$ in small portions to maintain continuous hydrogen evolution. After 1 hour, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$ and extracted with EtOAc (3 X 10 mL). The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo and purified by chromatography over silica gel eluting with $20 \% \mathrm{MeoH} / \mathrm{EtOAc}$ to give SI-2 $(0.061 \mathrm{~g}, 0.328 \mathrm{mmol}, 98 \%)$ as a white wax: $[a]_{\mathrm{D}}{ }^{23}=-21.6^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right)$; IR (neat) 3286, 2933, $1653 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.8(\mathrm{bs}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{bd}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 173.1,61.9,52.9,39.5,37.5,36.2,32.2,27.6,21.5,21.2$; HRMS (EI+) calcd. For $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+)$ 185.14158, found 185.14196.

Mesylate 25—To a solution of SI-2 $(0.120 \mathrm{~g}, 0.648 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sequentially $\mathrm{Et}_{3} \mathrm{~N}(0.131 \mathrm{~g}, 1.296 \mathrm{mmol})$ and $\mathrm{MsCl}(0.118 \mathrm{~g}, 1.038 \mathrm{mmol})$. After 15 min , the ice bath was removed and the reaction was allowed to war to rt. After 45 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc (3 X 15 mL). The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$, to give $25(0.150 \mathrm{~g}, 0.570 \mathrm{mmol}, 88 \%)$ as a white solid. Mp 91.5-90.0 ${ }^{\circ} \mathrm{C} ;[\mathrm{a}]_{\mathrm{D}}{ }^{23}=-33.41^{\circ}\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right)$; IR (neat) $3177,2943,2916,1653$ $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.45(\mathrm{bs}, 1 \mathrm{H}), 4.24(\mathrm{t}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H})$, 3.57-3.54 (m, 1H), 2.41 (m, 2H), 1.92-1.84 (m, 3H), 1.83-1.73 (m, 2H), 1.60-1.49 (m, 4H), $1.02(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,69.5,52.7,39.7,37.4,37.1,36.3,29.0$, 27.6, 21.5, 21.1; HRMS (EI+) calcd. For $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+)$ 263.1191, found 263.1197.

Lactam 26-To a solution of $\mathbf{2 5}(11 \mathrm{mg}, 0.042 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added NaHMDS ($0.045 \mathrm{mmol}, 4.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF). After 5 min , the ice bath was removed and the reaction was allowed to war to rt . After 55 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(15$ mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 15 \mathrm{~mL})$. The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo to give $26(6 \mathrm{mg}, 0.038 \mathrm{mmol}, 90 \%)$ as a clear oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{23}=-29.7^{\circ}(\mathrm{c}=0.93$, CHCl_{3}); IR (neat) $2928,2854,1647 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.78$ (bd, 1H), $3.19(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.36(\mathrm{~m}, 2 \mathrm{H})$, $0.98(\mathrm{~d}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,56.7,41.8,41.2,39.7,34.6,26.5,25.4$, 24.3, 21.3. The spectral data match those previously reported for 26. ${ }^{14 \mathrm{a}}$

Boc protected amine 33-To a solution 6-bromo-1-hexene (SI-3) (2.08 g, 12.70 mmol) in DMF/ $\mathrm{H}_{2} \mathrm{O}(9: 1,50 \mathrm{~mL})$ was added $\mathrm{NaN}_{3}(2.07 \mathrm{~g}, 31.83 \mathrm{mmol})$. After 12 h , brine was added and the azide was extracted with ether $(3 \times 40 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo at $0^{\circ} \mathrm{C}$ to give crude azide. The crude azide was then re-dissolved in THF $/ \mathrm{H}_{2} \mathrm{O}(5: 1,50 \mathrm{~mL})$ and was added $\mathrm{PPh}_{3}(4.00 \mathrm{~g}, 15.2 \mathrm{mmol})$. After 15 h , were added $\mathrm{Et}_{3} \mathrm{~N}(5.14 \mathrm{~g}, 7.05 \mathrm{~mL}, 50.83 \mathrm{mmol})$ and Boc-anhydride $(8.33 \mathrm{~g}, 8.77 \mathrm{~mL}, 38.13 \mathrm{mmol})$. After 12 h , THF was removed in vacuo, brine $(100 \mathrm{~mL})$ was added and extracted with ether $(3 \times 100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo, purified by chromatography over silica gel, eluting with $1-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give $\mathbf{3 3}^{21 \mathrm{a}}$ (2.43 g , 12.23 mmol , 96% over 3 steps) as a colorless oil. IR (neat) 3364 , 3075, 2975, 2931, 1700, $1642,1365,1172 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 5.80(\mathrm{ddt}, J=13.3,10.1,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.12-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.12(\mathrm{~m}, 2 \mathrm{H})$,
$1.48-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 156.0$, $138.5,114.6,79.0,40.4,33.3,29.5,28.4,26.0$; HRMS (EI+) calcd. For $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})$ 200.1651 , found 200.1648 .

Enal 34-To a solution of $\mathbf{3 3}(1.5 \mathrm{~g}, 7.52 \mathrm{mmol})$ in dry DCM $(85 \mathrm{~mL})$ was added crotonaldehyde $\mathbf{1 8}(0.266 \mathrm{~g}, 3.12 \mathrm{~mL}, 37.5 \mathrm{mmol})$ and $2^{\text {nd }}$ Gen. Hoveyda-Grubbs catalyst ($71 \mathrm{mg}, 0.113 \mathrm{mmol}$) and stirred at room temperature. After 5 h , the solvent was removed in vacuo and the crude was purified by chromatography over silica gel, eluting with 25-40\% EtOAc/hexanes to give $\mathbf{3 4}{ }^{21 \mathrm{a}}$ ($1.59 \mathrm{~g}, 7.01 \mathrm{mmol}, 94 \%$) as a dark colored oil. IR (neat) 3357, 2976, 2934, 2865, 1693, 1521, 1366, $1169 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.15-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.1,158.2,156.0,133.2,79.3,40.1,32.3,29.7,28.4,25.0$; HRMS (EI+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 228.1600, found 228.1608.

Aldehyde 32-To a solution of $\mathbf{3 4}(970 \mathrm{mg}, 4.27 \mathrm{mmol})$, in $\mathrm{MeOH}(30.6 \mathrm{~mL})$ was added a solution of the catalyst $\mathbf{1 0}(254 \mathrm{mg}, 0.43 \mathrm{mmol})$ in DCE $(10.2 \mathrm{~mL})$ via syringe and placed in the freezer unstirred $\left(-25^{\circ} \mathrm{C}\right)$. After 10 d , water $(50 \mathrm{~mL})$ was added and extracted with DCM $(3 \times 60 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo, purified by chromatography over silica gel eluting with $0-25 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give known $\mathbf{3 2}{ }^{21 \mathrm{a}}$ $(825 \mathrm{mg}, 3.63 \mathrm{mmol}, 85 \%)$ as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-36.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2935, 2864, 2727, 1693, 1521, 1416, 1167, $867 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.60-$ $9.61(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (ddd, J $=15.2,6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 200.5,154.5,79.7,45.8,44.5,39.1,28.8,28.2,25.1,18.8$. HRMS (EI +) calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+)$ 227.1522, found 227.1513.

Benzoate SI-5—To a solution of aldehyde 32 ($89.5 \mathrm{mg}, 0.394 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(44.7 \mathrm{mg}, 1.183 \mathrm{mmol})$. After 30 min , the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to give the crude alcohol 32, which was carried to the next step.

To a solution of crude alcohol SI-4 $(\sim 0.39 \mathrm{mmol})$ in DCM $(1.97 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DMAP ($144.4 \mathrm{mg}, 1.18 \mathrm{mmol}$) followed by p-chlorobenzoyl chloride ($103.4 \mathrm{mg}, 75.5 \mathrm{~mL}$, 0.591 mmol). After 15 min , the reaction mixture was warmed to rt over a period of 30 min . After 12 h , water $(5 \mathrm{~mL})$ was added extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$
extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $15-30 \%$ EtOAc/Hexanes to obtain known SI-5 ${ }^{21 \mathrm{a}}$ ($121.6 \mathrm{mg}, 0.33 \mathrm{mmol}, 84 \%$ over 2 steps) as a colorless oil. The enantiomeric excess was determined with the aid of HPLC analysis Chiralcel IC ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ column), hexane:isopropanol 90:10, flow $=1.0 \mathrm{~mL} /$ $\min , t_{r_{\text {minor }}}=11.5 \mathrm{~min}, t_{r_{\text {major }}}=10.2 \mathrm{~min} .[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-11.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2934, 2861, 1721, 1688, 1595, 1448, 1415, 1365, 1307, 1275, 1169, 1145, 1091, 760 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-2.25 (m, 1H), 1.81-1.90 (m, 1H), 1.55-1.72 (m, 5H), 1.38-1.49 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, 4{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 165.7,154.9,139.3,131.0,128.9,128.6,79.4,63.0,48.0,38.8$, 29.0, 28.8, 28.4, 25.5, 19.0; HRMS (ES+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Cl}(\mathrm{M}+\mathrm{H}) 368.1629$, found 368.1618 .

Ester SI-6—To a solution of $\mathbf{3 2}(450 \mathrm{mg}, 1.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(522 \mathrm{mg}, 2.96 \mathrm{mmol})$. After 16 h , the resulting solution was concentrated in vacuo and suspended in a $3: 1$ mixture of hexanes/ether $(60 \mathrm{~mL})$ and filtered over Celite ${ }^{\circledR}$, then rinsed with a $3: 1$ mixture of hexanes/ether $(30 \mathrm{~mL})$. The resulting solution was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-30 \%$ $\mathrm{EtOAc} /$ Hexanes to give SI-6 $(445 \mathrm{mg}, 1.58 \mathrm{mmol}, 80 \%)$ as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{23}=-16.5^{\circ}$ $\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $2975,2936,2858,1725,1689,1412,1272 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{dt}, J=15.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=15.6,1 \mathrm{H}), 4.34(\mathrm{bs}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.32(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,154.8,146.0,122.6,79.4,51.3,49.6,38.7,32.9,28.3,25.3,18.8$; HRMS (EI+) calcd. For $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{4}(\mathrm{M}+$) 284.1862, found 284.1868.

Alcohol SI-7—To a solution of SI-6 ($356 \mathrm{mg}, 1.258 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H ($3.77 \mathrm{~mL}, 3.77 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After 2 h , the mixture was warmed to room temp and quenched with sat. aq. sodium tartrate (150 mL). After vigorous stirring for 1 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and washed with brine $(30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel eluting with $20-40 \%$ EtOAc/Hexanes to give SI-7 (298 mg , $1.17 \mathrm{mmol}, 93 \%)$ as a colorless oil. $[a]_{\mathrm{D}}{ }^{23}=-33.3^{\circ}\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 3446,2933 , $2859,1685,1418,1364,1162 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.54-5.66(\mathrm{~m}, 2 \mathrm{H}), 4.22$ (bs, 1H), 3.99-4.02 (m, 2H), $3.91(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{bs}$, $1 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 155.2,131.4,129.0,79.2,63.2,50.2,38.9,32.8,28.4$, 27.7, 25.4, 18.8; HRMS (EI+) calcd. For $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3}(\mathrm{M}+)$ 256.1913, found 256.1918.

Carbonate 31-To a solution of SI-7 (158 mg, 0.62 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sequentially pyridine ($147 \mathrm{mg}, 0.150 \mathrm{~mL}, 1.86 \mathrm{mmol}$) and $\mathrm{ClCO}_{2} \mathrm{Me}(64.4 \mathrm{mg}$, $0.054 \mathrm{~mL}, 0.68 \mathrm{mmol})$. After 1 h , the solution was then diluted with water (15 mL) and sequentially extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with brine (20 mL) and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel eluting with $10-25 \%$ $\mathrm{EtOAc} / \mathrm{Hexanes}$ to give $31(158 \mathrm{mg}, 0.502 \mathrm{mmol}, 81 \%)$ as a colorless oil. [a] ${ }_{\mathrm{D}}{ }^{23}=-27.4^{\circ}$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); IR (neat) $2934,2857,1750,1688,1266 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR (300 MHz , $\mathrm{CDCl} 3)$ § $5.69-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{bs}, 1 \mathrm{H}), 3.95$ $(\mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.30$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,155.0,133.6,125.3,79.2,68.3,54.7,49.9,38.9,32.9,28.4,27.7,25.4,18.8$; HRMS (EI+) calcd. For $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{5}(\mathrm{M}+)$ 314.1967, found 314.1961.

Ketone 35-To a solution of $\mathbf{3 2}(410 \mathrm{mg}, 1.80 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ at rt was slowly
 to stir at rt for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. Then the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 30 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, and concentrated in vacuo to give SI-8.

To a solution of crude $\mathbf{S I - 8}(1.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added sodium bicarbonate ($756 \mathrm{mg}, 9 \mathrm{mmol}$) followed by Dess Martin's reagent ($1.56 \mathrm{~g}, 3.6 \mathrm{mmol}$). After 2 h the reaction was quenched with 10% aqueous sodium bicarbonate (10 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated in vacuo and purified by chromatography over silica gel, eluting with $0-25 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give known 35 ($315 \mathrm{mg}, 1.3 \mathrm{mmol}, 73 \%$ over 2 steps) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.74(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12,1 \mathrm{H}), 2.79(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,154.7,79.6,47.3,44.3,39.4,30.1,29.7,28.4$, 25.3, 18.9.

Abstract

Alkene SI-9—To a solution of $\mathbf{3 5}(315 \mathrm{mg}, 1.3 \mathrm{mmol})$ in THF (8 mL) was added a premade solution of methyl triphenylphosphonium bromide ($932.7 \mathrm{mg}, 2.61 \mathrm{mmol}$) with n BuLi ($1.55 \mathrm{~mL}, 2.48 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) in THF (5 mL) at $0^{\circ} \mathrm{C}$. After 2 h , the reaction was quenched with water $(5 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 25 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, and concentrated in vacuo and purified by chromatography over silica gel, eluting with 0-25\% EtOAc/Hexanes to give SI-9 ($242 \mathrm{mg}, 1.01 \mathrm{mmol}, 78 \%$) as a colorless oil. $[a]_{\mathrm{D}}{ }^{23}=-26.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $3073,2974,2934,2856$, 1693, 1647, 1413, 1364, 1266, $1161 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.74(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38(\mathrm{bs}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.37(\mathrm{~m}$, $1 \mathrm{H}), 2.18-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.50(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,142.8,112.6,79.0,48.5,38.8,38.1,28.2,27.3$, 25.5, 22.1, 18.8; HRMS (EI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 240.1964$, found 240.1960.

Alkene 30•TFA—To a solution of SI-9 ($120 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added TFA (2.3 mL). The solution was allowed to stir for 2 h . The solution was concentrated in vacuo to give $\mathbf{3 0 \cdot} \mathbf{T F A}(127 \mathrm{mg}, 0.50 \mathrm{mmol}, 99 \%)$ as a colorless glassy solid. $[a]_{\mathrm{D}}{ }^{23}=-9.8^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $2950,2865,2545,1780,1674,1437,1202$ $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{bs}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=36.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{bs}, 1 \mathrm{H})$, 3.12 (bs, 1H), $2.90(\mathrm{bs}, 1 \mathrm{H}), 2.43(\mathrm{bs}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.70(\mathrm{~m}$, $4 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9$, 115.5, 55.2, 45.1, 42.0, 28.4, 22.2, 21.7; HRMS (EI+) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}(\mathrm{M}+$) 253.1290, found 253.1287.

Amines $\mathbf{3 7 / 3 8}$-To a solution of $\mathbf{3 1}(25 \mathrm{mg}, 0.08 \mathrm{mmol})$ and pyrrolidine ($7.4 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added a pre-made solution of $\mathbf{3 6}(2.7 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(4.3 \mathrm{mg}, 0.008 \mathrm{mmol})$ in THF $(0.25 \mathrm{~mL})$ at rt . After 16 h , the solution was concentrated in vacuo and purified by chromatography over basic alumina eluting 10-30\% $\mathrm{EtOAc} / \mathrm{Hexanes}$ to give a $19: 1$ mixture of $\mathbf{3 7}(19 \mathrm{mg}, 0.062 \mathrm{mmol}, 77 \%)$ and $\mathbf{3 8}(1 \mathrm{mg}$, $0.003 \mathrm{mmol}, 4 \%)$ as colorless oils. $[\mathrm{a}]_{\mathrm{D}}{ }^{23}=-28.5^{\circ},\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2930, 2850, 2778, 1694, $1164 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.48-5.68(\mathrm{~m}, 2 \mathrm{H}), 4.25$ (bs, $1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (s, 3H), 2.20-2.45 (m, 2H), $1.77(\mathrm{~s}, 4 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,129.8,79.0,58.2,53.9,39.0,33.0,30.3,29.7,28.5,27.5,25.5,23.4,18.8 ;$ HRMS (EI+) calcd. For $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 309.2542$, found 309.2543.

Ketone 45-To a solution of $\mathbf{3 2}(530 \mathrm{mg}, 2.09 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a premade solution of $\mathbf{5 1}(8 \mathrm{~mL}, 4.0 \mathrm{mmol}, 0.2 \mathrm{M}$ in THF) at rt . After 30 min , the temperature was raised to $-50^{\circ} \mathrm{C}$ and stirred at this temperature for the next 3 h . Then, the reaction was quenched with saturated (aq) $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and washed with brine $(15 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to provide crude alcohol 53. The crude alcohol 53 was then redissolved in DCM (45 mL) and was added $\mathrm{NaHCO}_{3}(877.8 \mathrm{mg}, 10.45 \mathrm{mmol})$ followed by Dess Martin's reagent (1.77 g , $4.18 \mathrm{mmol})$ at rt . After 3 h , the reaction was quenched with saturated aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. Then the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 5-20\% $\mathrm{EtOAc} / \mathrm{Hexanes}$ to give 45 (trans:cis = 1:0.14), ($477 \mathrm{mg}, 1.46 \mathrm{mmol}, 70 \%$ over 2 steps) as pale yellow oil. $[a]_{\mathrm{D}}{ }^{20}=+16.5\left(c=1.05, \mathrm{CHCl}_{3}\right)$; IR (neat) $2974,2934,2862,1689,1609$, $1164 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.63(\mathrm{~m}, 3.5 \mathrm{H}$, mixed isomers), $7.34-7.41$ $(\mathrm{m}, 3.7 \mathrm{H}$, mixed isomers), $6.86(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.2 \mathrm{H}$, cis isomer), $6.79(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), 6.24 ($\mathrm{d}, J=12.8 \mathrm{~Hz}, 0.2 \mathrm{H}$, minor isomer), 4.81 (bs, 1.2 H , mixed isomers), 4.05 (bs, 1.20 H , mixed isomers), 2.68-2.92 ($\mathrm{m}, 3.7 \mathrm{H}$, mixed isomers), 1.44-1.68 (m, 8.8 H , mixed isomers), 1.44 ($\mathrm{s}, 10.8 \mathrm{H}$, mixed isomers); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.9$, $198.4,154.8,154.7,143.0,140.3,135.2,134.5,133.1,130.5,129.6,129.3,128.9,128.6$, $128.4,128.3,126.1,79.6,47.9,44.2,41.7,39.4,28.4,28.2,25.3,18.9$. HRMS (CI+) calcd. For $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}(\mathrm{M}+)$ 329.1991, found 329.1978.

Aldehyde 46-To a solution of oxalyl chloride ($980.7 \mathrm{mg}, 7.726 \mathrm{mmol}, 0.663 \mathrm{~mL}$) in DCM $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of DMSO ($644 \mathrm{mg}, 8.24 \mathrm{mmol}, 0.585 \mathrm{~mL}$) in DCM (4 mL). After $10 \mathrm{~min}, \mathbf{S I - 1 0}(1.0 \mathrm{~g}, 5.15 \mathrm{mmol})$ in DCM $(5 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ dropwise. After 1.5 hours, $\mathrm{Et}_{3} \mathrm{~N}(2.34 \mathrm{~g}, 3.23 \mathrm{~mL}, 23.18 \mathrm{mmol})$ was added and the mixture was warmed to $0^{\circ} \mathrm{C}$. Once the mixture reached $0^{\circ} \mathrm{C}$, the reaction was quenched with water $(25 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(25 \mathrm{~mL})$ and the dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel; eluting with $8-15 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain $\mathbf{4 6}^{\mathbf{3 7}}$ (881 $\mathrm{mg}, 4.60 \mathrm{mmol}, 89 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.25-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.80(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.71 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,138.5,128.4,127.7,127.6,73.0$, 69.8, 43.6, 29.2, 19.0.

Imine 48-To a solution of $46(881 \mathrm{mg}, 4.58 \mathrm{mmol})$ and $47(610 \mathrm{mg}, 5.04 \mathrm{mmol})$ in DCM $(8 \mathrm{~mL})$ was added anhydrous $\mathrm{CuSO}_{4}(1.827 \mathrm{~g}, 11.45 \mathrm{mmol})$ and the mixture was stirred at rt. After 12 h , the mixture was filtered through a pad of Celite ${ }^{\circledR}$ concentrated in vacuo and purified by chromatography over silica gel eluting with $10-25 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain $48(1339 \mathrm{mg}, 4.53 \mathrm{mmol}, 99 \%)$ as a pale yellow oil. $[a]_{\mathrm{D}}{ }^{20}=-188.50^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3083, 3061, 3027, 2928, 2864, 1621, 1454, 1362, 1083, 737, $698 \mathrm{~cm}^{-1 ; 1}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 4 \mathrm{H}), 4.51$ ($\mathrm{s}, 2 \mathrm{H}$), $3.51(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,138.5,128.4,127.62,127.58,72.9$, 69.8, 56.5, 35.9, 29.3, 22.4, 22.3; HRMS (EI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})$ 296.1684, found 296.1690.

Sulfonamide 50—To a solution of $48(1.40 \mathrm{~g}, 4.74 \mathrm{mmol})$ in $\mathrm{PhMe}(24 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a premade solution of $49(7.10 \mathrm{mmol}, 14.22 \mathrm{~mL}, 0.2 \mathrm{M}$ in THF) slowly. After 2 h the reaction mixture was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and warmed to rt. The dried $\left(\mathrm{MgSO}_{4}\right)$ mixture was filtered through Celite ${ }^{\circledR}$, concentrated in vacuo, and purified by chromatography over silica gel eluting with $20-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain 50 (1.37 g , $3.87 \mathrm{mmol}, 82 \%)$ as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-74.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3268, $3225,3069,3030,2937,2861,1652,1455,1363,1069 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $3.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=14.0,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.60(\mathrm{~m}$, 2H), 1.43-1.50 (m, 2H), $1.20(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,138.6,128.4$, 127.6, 127.5, 114.2, 72.9, 70.2, 55.6, 51.5, 44.4, 35.1, 29.7, 22.6, 22.0, 21.9. HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NS}(\mathrm{M}+\mathrm{H}) 352.2310$, found 352.2310 .

J Org Chem. Author manuscript; available in PMC 2014 May 17.

Amine 44-To a solution of $\mathbf{5 0}(1.140 \mathrm{~g}, 3.24 \mathrm{mmol})$ in $\mathrm{MeOH}(21 \mathrm{~mL})$ was added conc. $\mathrm{HCl}(12.8 \mathrm{M}, 6.48 \mathrm{mmol}, 0.504 \mathrm{~mL})$. The resulting solution was allowed to stir for 1 h before being concentrated in vacuo, and purified by chromatography over silica gel eluting with $50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 44 ($930 \mathrm{mg}, 3.24 \mathrm{mmol}, 99 \%$) as the HCl salt which was then dissolved in aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, and extracted with DCM $(3 \times 30 \mathrm{~mL})$ to obtain 44 as the free amine. $[a]_{\mathrm{D}}{ }^{20}=+5.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3077 , 3026, 2933, 2847, 1656, 1454, 1360, $1095 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.16-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.44-1.59(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,138.6,128.4,127.7,127.5,112.8$, $72.9,70.3,48.4,47.0,37.8,29.9,23.0,22.3$. HRMS (EI+) calcd. For $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}(\mathrm{M}+\mathrm{H})$ 248.2014 , found 248.2015 .

Enol ether Sl-11—To a suspension of methoxymethyl-triphenylphosphonium chloride $\mathbf{5 7}$ $(15.09 \mathrm{~g}, 44.01 \mathrm{mmol})$ in ether (371 mL) was added $\mathrm{PhLi}(20.7 \mathrm{~mL}, 41.4 \mathrm{mmol}, 2.0 \mathrm{M}$ in $\mathrm{Bu}_{2} \mathrm{O}$) at $-78{ }^{\circ} \mathrm{C}$ dropwise over 10 min period. The resulting solution was then warmed to rt over a period of 15 min . After 20 min , the reaction mixture was cooled back to $0{ }^{\circ} \mathrm{C}$ and added a solution of aldehyde $32(23.79 \mathrm{mmol})$ in ether $(247 \mathrm{~mL})$. After 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, the precipitate was dissolved, extracted with ether $(3 \times 150 \mathrm{~mL})$, washed with sat. aq. NaHCO_{3}. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by column chromatography over silica gel, eluting with $0-20 \%$ $\mathrm{EtOAc} /$ Hexanes to obtain the enol ether SI-1149 ($4.0 \mathrm{~g}, 15.4 \mathrm{mmol}, 65 \%)$ as a colorless oil of 1:1.27 ($Z: E$) diastereomeric mixture. $[a]_{\mathrm{D}}{ }^{20}=-43.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) 2932, 2855, 1693, 1448, 1415, 1270, 1108, $934 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dt}, J=6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dt}, J=12.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{td}, J=13.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.6-1.51(\mathrm{~m}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$, $148.1,147.5,103.4,99.6,79.0,78.9,59.5,55.8,50.7,38.9,28.5,28.2,27.8,27.2,25.6$, 25.5, 24.4, 18.9, 18.8; HRMS (EI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3}(\mathrm{M}+)$ 255.1835, found 255.1828.

Oxazolidinone 60-To a stirred solution of enol ether SI-11 (8.1 mmol) in acetone (97 mL) was added PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(771 \mathrm{mg}, 4.05 \mathrm{mmol})$. After 20 min , the reaction was quenched with water $(20 \mathrm{~mL})$, extracted with DCM $(3 \times 50 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to obtain crude $\mathbf{5 8}^{50}$. The crude aldehyde $\mathbf{5 8}$ is taken to the next step.

To a solution of crude aldehyde $58(\sim 8.1 \mathrm{mmol})$ in a $1: 1$ mixture $(200 \mathrm{~mL})$ of ${ }^{\mathrm{t}} \mathrm{BuOH}$ and $\mathrm{H}_{2} \mathrm{O}$ was added 2-methyl-2-butene ($19.94 \mathrm{~mL}, 186.3 \mathrm{mmol}$) followed by $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ $(11.18 \mathrm{~g}, 81.0 \mathrm{mmol})$ and $\mathrm{NaOCl}_{2}(3.68 \mathrm{~g}, 40.5 \mathrm{mmol})$. After 2.5 h , the reaction mixture was quenched with aq. sat. $\mathrm{NaCl}(50 \mathrm{~mL})$ and extracted with ether $(3 \times 100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and to obtain the crude acid SI-12. The crude acid SI-12 is taken to the next step.

To a solution of crude acid SI-12 ($\sim 8.1 \mathrm{mmol}$) in dry THF (66 mL) was added triethylamine $(1.64 \mathrm{~g}, 2.6 \mathrm{~mL}, 18.3 \mathrm{mmol})$ followed by pivaloyl chloride ($977 \mathrm{mg}, 1.0 \mathrm{~mL}, 8.1 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. After $3 \mathrm{~h}, \mathrm{LiCl}(364 \mathrm{mg}, 8.61 \mathrm{mmol})$ and ($4 S$)-benzyloxazolidin-2-one (59) (1.21 g , 6.82 mmol) were added sequentially and the mixture was warmed to rt over a period of 3 h . After 30 min , the reaction was quenched with water $(50 \mathrm{~mL})$ and extracted with ether ($3 \times$ $100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 38-50\% Ether/Pentane to obtain $\mathbf{6 0}{ }^{51}(2.49 \mathrm{~g}$, $5.98 \mathrm{mmol}, 73 \%$ over 3 steps $)$ as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+14.87^{\circ}\left(c=1.58, \mathrm{CHCl}_{3}\right)$; IR (neat) 2926, 2852, 1783, 1687, 1416, 1389, 1364, 1161, $701 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 40$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.32(\mathrm{~m}, 1 \mathrm{H})$, $4.13-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.74-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}$, 9H), 1.27-1.40 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 173.0,155.1,153.4,135.5$, 129.4, 128.9, 127.2, 79.2, 66.2, 55.2, 49.6, 38.7, 38.0, 32.3, 29.0, 28.4, 25.6, 24.3, 19.1; HRMS (EI+) calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) 417.2390$, found 417.2382.

Oxazolidinone 66-To a solution of oxazolidinone $\mathbf{6 0}(708 \mathrm{mg}, 1.70 \mathrm{mmol})$ in dry THF (9.4 mL) at $-78{ }^{\circ} \mathrm{C}$ was added NaHMDS ($1.36 \mathrm{~mL}, 2.72 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF). After 30 min , $\mathrm{MeI}(2.4 \mathrm{~g}, 1.06 \mathrm{~mL}, 17 \mathrm{mmol})$ was added. After 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ether $(3 \times 50 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extracted was concentrated in vacuo and purified by chromatography over silica gel, eluting with $25-$ 45% Ether/Pentane to obtain $\mathbf{6 6}^{52}(396 \mathrm{mg}, 0.92 \mathrm{mmol}, 54 \%)$ as a colorless solid. Mp. 135$137{ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}{ }^{20}=+23.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 2933, 2863, 1783, 1681, 1475, 1417, 1392, 1163, $741 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.24-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.28$ (s, 1H), 3.26 (dd, $J=13.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dd, $J=12.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 5 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,155.2,153.2,135.7,129.5,128.8,127.2,79.1$, 66.3, 55.4, 47.6, 39.2, 38.3, 34.6, 33.4, 29.5, 28.4, 25.7, 19.2, 18.7; HRMS (EI+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+) 430.2468$, found 430.2460 .

Oxazolidinone 61—To a solution of crude acid SI-12 (~7.17 mmol) in dry THF (58 mL) was added triethylamine ($1.45 \mathrm{~g}, 2.02 \mathrm{~mL}, 14.34 \mathrm{mmol}$) followed by pivaloyl chloride (865 $\mathrm{mg}, 0.883 \mathrm{~mL}, 7.17 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After $3 \mathrm{~h}, \mathrm{LiCl}(364 \mathrm{mg}, 8.61 \mathrm{mmol})$ and ($4 R$)-benzyloxazolidin-2-one (ent-59) ($1.21 \mathrm{~g}, 6.82 \mathrm{mmol}$) were added sequentially and the mixture was warmed to rt over a period of 3 h . After 30 min , the reaction was quenched with water $(50 \mathrm{~mL})$ and extracted with ether $(3 \times 100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 38-50\% Ether/Pentane to obtain $\mathbf{6 1}(2.34 \mathrm{~g}, 5.62 \mathrm{mmol}, 78 \%$ over 3 steps $)$ as a colorless oil. [a $]_{\mathrm{D}}{ }^{20}$ $=-46.4^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right)$; IR (neat) 2931, 2857, 1783, 1682, 1477, 1416, 1391, 1271, $1162,762,702 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.66-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.38(\mathrm{~d}, J=10.5,1 \mathrm{H}), 3.01-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.80(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.0,155.1,153.4,135.5,129.4,128.9,127.3,79.4,66.2,55.3,50.0,38.9,38.0,32.7,28.9$, 28.5, 25.6, 24.4, 19.1; HRMS (CI+) calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) 417.2390$, found 417.2378 .

Oxazolidinone 65-To a solution of oxazolidinone $61(66 \mathrm{mg}, 0.158 \mathrm{mmol})$ in dry THF $(0.49 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added NaHMDS ($0.127 \mathrm{~mL}, 0.253 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF). After 30 min , MeI ($224 \mathrm{mg}, 0.1 \mathrm{~mL}, 1.58 \mathrm{mmol}$) was added. After 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extracte was concentrated in vacuo and purified by chromatography over silica gel, eluting with $25-45 \%$ Ether/Pentane to obtain $65(53 \mathrm{mg}, 0.122 \mathrm{mmol}, 77 \%)$ as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-77.2^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 2930, 2855, 1782, 1686, 1454, 1415, 1389, $1168,730 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 4{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}) 3.93(\mathrm{~d}, J=12.8,1 \mathrm{H}), 3.72-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.85(\mathrm{~m}$, 2 H), $2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 4{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 176.9,155.2,152.9,135.4,129.4,128.9$, 127.3, 79.5, 66.1, 55.4, 49.6, 38.7, 37.9, 35.6, 33.8, 29.7, 28.4, 25.6, 19.4, 18.2; HRMS (EI +) calcd. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+) 430.2468$, found 430.2470 .

Alcohol 68-To a solution of the oxazolidinone $\mathbf{6 6}(151 \mathrm{mg}, 0.351 \mathrm{mmol})$ in dry THF $(14.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MeOH}(56.1 \mathrm{mg}, 0.71 \mathrm{~mL}, 1.75 \mathrm{mmol})$ followed by LiBH_{4} $(36.7 \mathrm{mg}, 1.68 \mathrm{mmol})$. After 30 min , the reaction mixture was warmed to rt over a period of 10 min . After 2 h , the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, extracted with ether $(3 \times 30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain the alcohol $68^{53}(88.5 \mathrm{mg}, 0.344 \mathrm{mmol}, 98 \%)$ as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-44.7^{\circ}(c=1.00$, CHCl_{3}); IR (neat) 3438, 2929, 1682, 1417, 1365, 1317, 1270, 1167, 1026, 991, 877, 768 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.40(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 155.2,79.3,68.4,48.5$, 38.9, 33.7, 32.7, 28.5, 25.6, 18.8, 17.4; HRMS (EI+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3}(\mathrm{M}+$) 257.1991, found 257.1992.

Sulfide 69-To a solution of alcohol $\mathbf{6 8}(85 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry THF $(0.78 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{PhSSPh}(144 \mathrm{mg}, 0.66 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{P}(153.4 \mathrm{mg}, 0.187 \mathrm{~mL}, 0.76 \mathrm{mmol})$. After 10 min , the reaction was warmed to rt over a period of 20 min . After 12 h , the solvent was removed in vacuo and purified by chromatography over silica gel, eluting with 15-30\% Ether/Pentane to obtain the sulfide $\mathbf{6 9}(114 \mathrm{mg}, 0.327 \mathrm{mmol}, 99 \%)$ as a colorless oil. [a $]_{\mathrm{D}}{ }^{20}$ $=-33.1^{\circ}\left(c=0.96, \mathrm{CHCl}_{3}\right)$; IR (neat) 2920, 2845, 1733, 1683, 1652, 1635, 1540, 1558, $1506,1457 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), 7.18 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.78$ (t, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,137.4,129.1,128.8,125.6$, 79.2, 48.4, 41.2, 38.9, 35.7, 30.4, 28.5, 27.9, 25.6, 19.6, 18.9; HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+)$ 349.2076, found 349.2076.

Sulfone 56—To a solution of sulfide $\mathbf{6 9}(114 \mathrm{mg}, 0.327 \mathrm{mmol})$ in dry $\mathrm{EtOH}(3.35 \mathrm{~mL})$ was added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(81.6 \mathrm{mg}, 0.066 \mathrm{mmol})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(1.7 \mathrm{~mL}, 16.5$ $\mathrm{mmol}, 30 \%$ aqueous). After 12 h , water (10 mL) was added, extracted with DCM (3×20 $\mathrm{mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain 56 ($123.4 \mathrm{mg}, 0.32 \mathrm{mmol}$, 99%) as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-23.48^{\circ}\left(c=1.15, \mathrm{CHCl}_{3}\right)$; IR (neat) $2929,1733,1683$, 1653, 1635, 1418, 1364, 1306, 1148, 1086, $1025 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,140.8,133.3,129.1,127.6,79.3,62.0$, 47.7, 39.1, 36.3, 28.4, 27.8, 26.1, 25.4, 19.9, 18.8; HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$ (M +) 381.1974, found 381.1962 .

Oxazolidinone 73-To a solution of aldehyde $\mathbf{5 8}(26 \mathrm{mg}, 0.107 \mathrm{mmol})$ in DCM (0.8 mL) were sequentially added N, N-dimethylmethyleneiminium iodide ($49.8 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(21.8 \mathrm{mg}, 30.3 \mathrm{~mL}, 0.215 \mathrm{mmol})$. After 24 h , sat. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added and extracted with DCM $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to obtain the crude 70. The crude 70 is taken to the next step.

To a solution of crude enal $70(\sim 0.107 \mathrm{mmol})$ in a $1: 1$ mixture $(2.6 \mathrm{~mL})$ of ${ }^{\mathrm{t}} \mathrm{BuOH}$ and $\mathrm{H}_{2} \mathrm{O}$ was added 2-methyl-2-butene ($0.26 \mathrm{~mL}, 2.4 \mathrm{mmol}$) followed by $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(146.6 \mathrm{mg}$, $1.06 \mathrm{mmol})$ and $\mathrm{NaOCl}_{2}(48.3 \mathrm{mg}, 0.53 \mathrm{mmol})$. After 2.5 h , the reaction mixture was quenched with aq. sat. $\mathrm{NaCl}(5 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and to obtain the crude acid SI-13. The crude acid SI-13 is taken to the next step.

To a solution of crude acid SI-13 ($\sim 0.107 \mathrm{mmol}$) in dry THF $(0.856 \mathrm{~mL})$ was added triethylamine ($21.7 \mathrm{mg}, 30.1 \mathrm{~mL}, 0.214 \mathrm{mmol}$) followed by pivaloyl chloride ($12.9 \mathrm{mg}, 13.2$ $\mathrm{mL}, 0.107 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After $3 \mathrm{~h}, \mathrm{LiCl}(5.4 \mathrm{mg}, 0.128 \mathrm{mmol})$ and $(4 R)-$ benzyloxazolidin-2-one (ent-59) ($18 \mathrm{mg}, 0.102 \mathrm{mmol}$) were added sequentially and the mixture was warmed to rt over a period of 3 h . After 30 min , the reaction was quenched with water $(5 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 38-50\% Ether/Pentane to obtain $73(19.7 \mathrm{mg}, 0.046 \mathrm{mmol}, 43 \%$ over 3 steps $)$ as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-38.8^{\circ}\left(c=1.43, \mathrm{CHCl}_{3}\right)$; IR (neat) 2934, 1788, 1684, 1413, 1364, 1160, 1042, $918,735,703 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.41(\mathrm{~m}$, $1 \mathrm{H}), 4.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.45-3.47$ (m, $1 \mathrm{H}), 2.81-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (dd, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,154.9,153.1$, $141.0,135.3,129.4,129.0,127.4,123.3,79.4,66.6,55.6,49.0,39.4,37.6,33.5,28.5,27.1$, 25.5, 18.8; HRMS (ES+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 451.2209$, found 451.2190.

Alcohol 71—To a solution of crude enal $70(\sim 0.103 \mathrm{mmol})$ in $\mathrm{MeOH}(0.78 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(0.22 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(3.9 \mathrm{mg}, 0.103 \mathrm{mmol}, 3$ portions) portionwise over a period of 20 min . After an additional 30 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and
purified by column chromatography over silica gel, eluting with $10-30 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Pentane}$ to obtain a alcohol $71(17.5 \mathrm{mg}, 0.069 \mathrm{mmol}, \sim 40 \%$ over 2 steps $)$. $[a]_{\mathrm{D}}{ }^{20}=-35.5^{\circ}(c=0.96$, CHCl_{3}); IR (neat) $3423,2934,2860,1674,1418,1366,1321,1265,1162,1041,898,802$, $767 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.12$ (br s, 1H), 1.57-1.66 (m, 6H), $1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,146.4$, $113.8,79.7,67.4,49.1,39.6,35.1,28.4,25.5,18.8$; HRMS (ES+) calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})$ 278.1732, found 278.1736.

Oxazolidinone 65-To a solution of $73(16.5 \mathrm{mg}, 0.039 \mathrm{mmol})$ in THF (0.53 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added L-Selectride ($42.4 \mathrm{~mL}, 42.4 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF). After 15 min , the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(1 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5$ $\mathrm{mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo to obtain 65 and its C_{15}-epimer $(14.1 \mathrm{mg}, 0.033 \mathrm{mmol}, 85 \%)$ as a ($2: 1$) diastereomeric mixture.

Alcohol 72—To a solution of allylic alcohol $71(9.3 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at rt was added $(S)-\mathrm{Ru}(\mathrm{OAc})_{2}(\mathrm{~T}-\mathrm{BINAP})(5.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$, the argon was then removed by flushing with H_{2} gas. After 5 min , the reaction was sealed under 1 atm of H_{2} (balloon). After 3 d , the hydrogen was removed by flushing with argon and filtered through Celite ${ }^{\circledR}$ washing with $\mathrm{EtOH}(5 \mathrm{~mL})$. The filtered extract was concentrated in vacuo to give alcohol $72(3.7 \mathrm{mg}, 0.014 \mathrm{mmol}, \sim 40 \%)$ as a $1: 1$ diastereomeric mixture.

Oxazolidinone 82—To a solution of $\mathbf{6 1}(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF $(0.58 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added NaHMDS ($0.115 \mathrm{~mL}, 0.23 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF). After 30 min , neat $\mathrm{PhSCH}_{2} \mathrm{I}^{54}$ ($350 \mathrm{mg}, 1.4 \mathrm{mmol}$) was added. After 1 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5$ $\mathrm{mL})$, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-40 \%$ Ether/Pentane to obtain $82^{42}(48 \mathrm{mg}, 0.088 \mathrm{mmol}, 63 \%)$ as a colorless oil. [a] ${ }_{\mathrm{D}}{ }^{20}=-28.2^{\circ}(c=1.05$, CHCl_{3}); IR (neat) 2974, 2929, 1782, 1684, 1482, 1414, 1389, 1364, 1273, 1159, 1107, 739 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 8 \mathrm{H}), 4.64(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.11-4.27(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.41(\mathrm{~m}, 3 \mathrm{H})$, $2.72-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, 1.34-1.42 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 174.4,155.2,152.9,136.3$, $135.5,129.8,129.4,128.90,128.86,127.2,126.3,79.7,66.1,55.6,49.2,40.9,38.9,37.8$, 36.5, 31.9, 29.4, 28.4, 25.5, 19.3; HRMS (ES+) calcd. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})$ 539.2580, found 539.2593.

Alcohol 83-To a solution of $\mathbf{8 2}(42 \mathrm{mg}, 0.078 \mathrm{mmol})$ in $\mathrm{THF}(3.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MeOH}(12.4 \mathrm{mg}, 0.017 \mathrm{~mL}, 0.39 \mathrm{mmol})$ followed by $\mathrm{LiBH}_{4}(8.2 \mathrm{mg}, 0.374 \mathrm{mmol})$. After 30 min , the reaction mixture was warmed to rt over a period of 10 min . After 2 h , the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $35-45 \% \mathrm{EtOAc} /$ Hexanes to obtain 83 ($27.6 \mathrm{mg}, 0.076 \mathrm{mmol}, 97 \%$) as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-40.8^{\circ}\left(c=1.30, \mathrm{CHCl}_{3}\right)$; IR (neat) $3419,2927,2856,1689,1665$, $1419,1365,1272,1068,738,691 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $87.37-7.39$ (m, 2H), 7.27-7.31 (m, 2H), $7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72-3.77$ (m, 2H), 3.16 (dd, $J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (dd, $J=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.76-2.83 (m, 1H), 1.75 (br s, 2H), 1.59-1.64 (m, 5H), 1.42-1.50 (m, 11H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 155.5,137.0,129.2,128.9,125.9,79.6,64.3,48.0,39.4,37.8,36.2$, 30.8, 28.5, 28.0, 25.4, 18.8; HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}$ (M+H) 366.2103, found 366.2108 .

Sulfone SI-14—To a solution of sulfide $\mathbf{8 3}(12.5 \mathrm{mg}, 0.034 \mathrm{mmol})$ in $\mathrm{EtOH}(0.36 \mathrm{~mL})$ was added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{mg}, 0.007 \mathrm{mmol})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(0.163 \mathrm{~mL}, 1.7 \mathrm{mmol}$, 30% aqueous). After 12 h , water (2 mL) was added, extracted with DCM ($3 \times 5 \mathrm{~mL}$). The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 50-85\% EtOAc/Hexanes to obtain the sulfone SI-14 ($12.7 \mathrm{mg}, 0.032$ $\mathrm{mmol}, 94 \%)$ as a colorless oil. [a] $]_{\mathrm{D}}{ }^{20}=-21.9^{\circ}\left(c=0.48, \mathrm{CHCl}_{3}\right)$; IR (neat) 3434,2926 , $2854,1681,1447,1420,1366,1305,1146,740 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta$ 7.95-7.97 (m, 2H), 7.64-7.68 (m, 1H), 7.57-7.60 (m, 2H), $4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.84 (br s, 2H), 3.31 (br s, 2H), 2.76 (t, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17-2.19 (m, 1H), 1.73$1.87(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta$ $155.0,140.5,133.5,129.3,127.7,79.8,63.8,57.5,47.3,39.5,33.7,31.5,28.5,27.9,25.3$, 18.8; HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})$ 420.1821, found 420.1816 .

Iodide 84-To a solution of sulfone SI-14 ($14.0 \mathrm{mg}, 0.036 \mathrm{mmol}$) in THF (1.24 mL) at 0 ${ }^{\circ} \mathrm{C}$ were sequentially added imidazole ($7.4 \mathrm{mg}, 0.108 \mathrm{mmol}$), $\mathrm{PPh}_{3}(18.4 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{I}_{2}(17.7 \mathrm{mg}, 0.07 \mathrm{mmol})$. After 20 min , the reaction mixture was warmed to rt over a period of 5 min . After 3 h , the reaction was quenched with aq. sat. sodium thiosulfate (5 mL) and extracted with ether $(3 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-35 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain the iodide $84(15.3 \mathrm{mg}, 0.03 \mathrm{mmol}, 84 \%)$ as a colorless oil. [a] $]_{\mathrm{D}}{ }^{20}=-14.6^{\circ}(c=1.0$, CHCl_{3}); IR (neat) 2930, 2856, 1681, 1447, 1417, 1365, 1307, 1152, 1086, $738 \mathrm{~cm}^{-1 ;{ }^{1} \mathrm{H}}$

NMR (400 MHz, $\left.40{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right)$ § 7.97-7.99 (m, 2H), 7.65-7.69 (m, 1H), 7.57-7.61 (m, 2 H), 4.31 (br s, 1H), 3.99 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.61$ (m, 2H), 3.21-3.37 (m, 2H), 2.79 (t, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.46(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 154.9,140.4,133.6,129.3,127.8,79.7,59.4$, $47.5,39.2,34.8,32.7,28.8,28.5,25.5,19.1,13.7$; HRMS (ES+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{INO}_{4} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na}) 530.0838$, found 530.0833.

Sulfone 56-To a stirred solution of iodide $84(10 \mathrm{mg}, 0.0197 \mathrm{mmol})$ in $\mathrm{EtOH}(0.48 \mathrm{~mL})$ at under argon was added $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 20 \mathrm{wt} \%)$, the argon was then removed by flushing with H_{2} gas. After 5 min , the reaction was sealed under 1 atm of H_{2} (balloon). After 18 h , the hydrogen was removed by flushing with argon and filtered through Celite ${ }^{\circledR}$ washing with $\mathrm{EtOH}(5 \mathrm{~mL})$. The filtered extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20 \%-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give sulfone 3 $(7.4 \mathrm{mg}, 0.0195 \mathrm{mmol}, 99 \%)$ as a colorless oil.

Vinyl sulfones 86 and 87 -To a solution of $\mathrm{PhSO}_{2} \mathrm{Me}(1.08 \mathrm{~g}, 6.94 \mathrm{mmol})$ in THF (61.2 mL) at $0^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(6.1 \mathrm{~mL}, 15.3 \mathrm{mmol}, 2.5 \mathrm{M}$ solution in Hexanes). After 20 $\min , \mathrm{ClP}(\mathrm{O})(\mathrm{OEt})_{2}(1.19 \mathrm{~g}, 0.99 \mathrm{~mL}, 6.88 \mathrm{mmol})$ was added. After 30 min , the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and was added a solution of aldehyde $32(1.16 \mathrm{~g}, 5.1 \mathrm{mmol})$ in THF (16.1 mL). After 15 min , the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ over a period of 10 min . After 2 h , the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ solution, extracted with ether $(3 \times 100 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $10-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain sequentially 86 ($1.22 \mathrm{~g}, 3.4 \mathrm{mmol}, 66 \%$) followed by 87 ($305 \mathrm{mg}, 0.85 \mathrm{mmol}, 17 \%$).
(E) vinyl sulfone 86: $[\alpha]_{\mathrm{D}}{ }^{20}=-15.9^{\circ}\left(c=1.10, \mathrm{CHCl}_{3}\right)$; IR (neat) $3059,2975,2934,2859$, 1693, 1681, 1633, 1476, 1416, 1319, 1147, 1086, 752, $688 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 40$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.95(\mathrm{~m}$, $1 \mathrm{H}), 6.39$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (br s, 1H), 3.98 (br s, 1H), 2.60-2.69 (m, 2H), 2.37-2.41 $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, 40^{\circ} \mathrm{C}\right.$, $\left.\mathrm{CDCl}_{3}\right)$ § 154.7, 143.7, 140.6, 133.2, 132.0, 129.2, 127.6, 79.8, 49.3, 39.0, 32.1, 28.4, 28.1, 25.2, 18.8; HRMS (ES+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na}) 388.1559$, found 388.1545.
(Z) vinyl sulfone 87: $[a]_{\mathrm{D}}{ }^{20}=-9.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $3060,2974,2934,2864$, $1688,1681,1626,1476,1447,1414,1365,1317,1149,1086,750,688 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 2 \mathrm{H}), 6.30$ (br s, 2H), $4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.86(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.47(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 155.0$,
143.9, 141.7, 133.3, 131.3, 129.2, 127.2, 79.5, 50.0, 39.1, 28.7, 28.6, 28.4, 25.4, 19.0; HRMS (ES+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{NaS}(\mathrm{M}+\mathrm{Na}) 388.1559$, found 388.1555 .

Vinyl sulfone 88-To a solution of $86(105 \mathrm{mg}, 0.287 \mathrm{mmol})$ in $\mathrm{DCM}(0.66 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA ($1.21 \mathrm{~g}, 0.814 \mathrm{~mL}, 10.63 \mathrm{mmol}$). After 30 min , reaction mixture was warmed to rt. After 10 min , the solvent was removed under reduced pressure and the crude TFA salt SI-15 was taken to next step.

To a solution of crude TFA salt SI-15 ($\sim 0.287 \mathrm{mmol}$) in acetonitrile $(0.8 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(79.4 \mathrm{mg}, 0.575 \mathrm{mmol})$ TBAI ($105.3 \mathrm{mg}, 0.287 \mathrm{mmol}$) followed by benzyl bromide ($54.1 \mathrm{mg}, 37.6 \mathrm{~mL}, 0.316 \mathrm{mmol}$). After 1.5 h , the reaction mixture was directly purified by chromatography over silica gel, eluting with 70-100\% EtOAc/Hexanes to obtain $\mathbf{8 8}$ (86 mg , $0.242 \mathrm{mmol}, 84 \%$ over 2 steps $)$. $[a]_{\mathrm{D}}{ }^{20}=-17.1^{\circ}\left(c=2.20, \mathrm{CHCl}_{3}\right)$; IR (neat) 3060,3028 , 2932, 2854, 2794, 2756, 1629, 1446, 1318, 1307, 1291, 1146, 1086, 1069, 749, 688 $\mathrm{cm}^{-1 ; 1}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.9(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}) 6.42(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.63(\mathrm{~m}, 3 \mathrm{H})$, $2.08(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.32-$ $1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,140.7,139.1,133.3,131.6,129.3$, $128.7,128.3,127.6,126.9,59.4,58.2,51.3,33.5,30.4,25.1,23.1$; HRMS (ES+) calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 356.1684$, found 356.1667.

Sulfides 90 and 91 -To a solution of $\mathbf{8 9}(0.639 \mathrm{~g}, 2.38 \mathrm{mmol})$ in THF $(12.9 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(1.5 \mathrm{~mL}, 2.38 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in Hexanes). After 5 min , the reaction mixture was warmed to $-45^{\circ} \mathrm{C}$ over a period of 3 h . After 10 min , it was warmed to $-25^{\circ} \mathrm{C}$ over a period of 1 h . After 5 min , cooled back to $-78^{\circ} \mathrm{C}$ and added a solution of aldehyde $32(250 \mathrm{mg}, 1.1 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$. After 5 min , the reaction mixture was warmed to $-10^{\circ} \mathrm{C}$ over a period of 20 min . After 15 min , the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ solution, extracted with ether $(3 \times 30 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 5$20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain a (3:1) diastereomeric mixture of vinyl sulfides 90 and 91 ($134 \mathrm{mg}, 0.33 \mathrm{mmol}, 30 \%$). IR (neat) 2971, 2936, 2860, 1690, 1583, 1476, 1413, 1364,

1248, 1164, 1054, 839, $741 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.28(\mathrm{~m}, 5.2 \mathrm{H}$, mixed isomers), $7.10-7.14(\mathrm{~m}, 1.3 \mathrm{H}$, mixed isomers), 6.58 ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), 6.46 (t, $J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor isomer), 4.46 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, major isomer), 4.33 (br s, 0.3 H , minor isomer), 4.05 (br d, $J=12.4 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor isomer), 3.96 (br d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), 2.89 (ddd, $J=15.2,8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, major isomer), $2.74-2.82(\mathrm{~m}, 1.3 \mathrm{H}$, mixed isomers), $2.47-2.64(\mathrm{~m}, 1.6 \mathrm{H}$, mixed isomers), $1.53-1.65$ ($\mathrm{m}, 7 \mathrm{H}$, mixed isomers), $1.49(\mathrm{~s}, 9 \mathrm{H}$, major isomer), $1.45(\mathrm{~s}, 2.7 \mathrm{H}$, minor isomer), $1.32-1.40(\mathrm{~m}, 0.8 \mathrm{H}$, mixed isomers), 0.18 (s, 2.7H, minor isomer), $0.02\left(\mathrm{~s}, 9 \mathrm{H}\right.$, major isomer); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, 40$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 154.9,149.5,137.7,137.6,135.7,134.3,129.7,128.7,128.6,128.2,125.9$, $125.2,79.4,79.1,50.7,50.0,39.1,33.0,31.7,28.54,28.45,27.8,25.5,25.4,19.1,0.5,-1.1$; HRMS (ES+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{SiS}(\mathrm{M}+\mathrm{H}) 406.2236$, found 406.2224 .

Sulfones 92 and 93-To a solution of mixture of sulfides 90 and 91 ($64 \mathrm{mg}, 0.158 \mathrm{mmol}$) in $\mathrm{EtOH}(1.6 \mathrm{~mL})$ was added $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(39 \mathrm{mg}, 0.032 \mathrm{mmol})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ ($0.82 \mathrm{~mL}, 7.9 \mathrm{mmol}, 30 \%$ aqueous). After 4 h , water (10 mL) was added, extracted with $\mathrm{DCM}(3 \times 15 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 30-50\% Ether/Pentane to obtain 92 (48.2 mg , $0.11 \mathrm{mmol}, 70 \%)$ and 93 ($16.1 \mathrm{mg}, 0.037 \mathrm{mmol}, 23 \%$).
(Z) vinyl sulfone 92: IR (neat) 2974, 2937, 2863, 1685, 1593, 1476, 1446, 1414, 1299, $1249,1165,1141,1085,884,843,760,590 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.61(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.51-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.40(\mathrm{~m}, 3 \mathrm{H})$, $0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,154.8,147.9,143.4,132.7,129.0$, 127.0, 79.5, 49.8, 38.9, 31.4, 28.7, 28.5, 25.3, 18.9, -0.4; HRMS (ES+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{SiS}(\mathrm{M}+\mathrm{H}) 438.2134$, found 438.2136 .
(\boldsymbol{E}) vinyl sulfone 93: IR (neat) 2974, 2933, 2857, 1686, 1588, 1475, 1446, 1414, 1365, $1295,1164,1143,1086,847,761,721,691 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.57(\mathrm{~m}, 4 \mathrm{H}), 4.48-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{br} \mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-$ $2.81(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{ddd}, J=14.8,8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.45-$ $1.47(\mathrm{~m}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,154.8,143.9,141.8$, 132.6, 128.8, 127.3, 80.0, 50.1, 39.2, 31.7, 28.5, 28.3, 25.3, 19.1, 0.5; HRMS (ES+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{SiS}(\mathrm{M}+\mathrm{H}) 438.2134$, found 438.2137.

Sulfone 94-To a stirred suspension of $\mathrm{CuI}(24.0 \mathrm{mg}, 0.126 \mathrm{mmol})$ in ether $(0.32 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(0.155 \mathrm{~mL}, 0.248 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in ether). After 25 min , a solution of vinyl sulfone $\mathbf{9 2}(9.2 \mathrm{mg}$, c) in ether $(0.05 \mathrm{~mL})$ was added. After 35 min , the
reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and crude was taken to the next step.

To a solution of crude sulfone ($\sim 21 \mathrm{mmol}$) in $\mathrm{MeOH}(0.26 \mathrm{~mL})$ was added $\mathrm{KF}(6.3 \mathrm{mg}$, 0.109 mmol) at rt . Aft 1 h , the reaction mixture was quenched with aq. NaHSO_{3} solution (5 $\mathrm{mL})$, extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by column chromatography over silica gel, eluting with $10-30 \% \mathrm{EtOAc} /$ Hexanes to obtain a $1: 8$ diastereomeric mixture of sulfones ($\mathbf{3}$ and epi- $\mathrm{C}_{15} \mathbf{3}$ respectively) $(7.5 \mathrm{mg}, 20 \mathrm{mmol}, 93 \%, 2$ steps $) .[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-21.67^{\circ}\left(c=0.48, \mathrm{CHCl}_{3}\right)$; IR (neat) 2926, $2852,1682,1447,1416,1365,1305,1271,1149,1070 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.93 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.97 (br s, 1H), 3.16 (dd, $J=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.30(\mathrm{~m}$, 2H) $1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,140.2,133.4,129.3$, 127.9, 79.2, 62.6, 47.7, 38.8, 36.8, 29.2, 28.5, 25.9, 25.6, 20.3, 19.1; HRMS (EI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}(\mathrm{M}+)$ 381.1974, found 381.1964.

Sulfone 56-To a stirred suspension of $\mathrm{CuI}(28.8 \mathrm{mg}, 0.151 \mathrm{mmol})$ in ether (0.88 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(0.185 \mathrm{~mL}, 0.296 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in ether). After 5 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$. After 5 min , a solution of vinyl sulfone $\mathbf{8 6}(18 \mathrm{mg}, 50 \mathrm{mmol})$ in ether $(0.13 \mathrm{~mL})$ was added. After 5 min , the reaction mixture was slowly warmed to -20 ${ }^{\circ} \mathrm{C}$ over a period of 45 min . After 5 h , the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by column chromatography over silica gel, eluting with $10-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain a 1.0:1.2 mixture of sulfones ($\mathbf{5 6}$ and $\mathbf{9 4}$ respectively) ($10.8 \mathrm{mg}, 28.3 \mathrm{mmol}, 55 \%$).

Hydroxy sulfones 96 and 97-To a solution of sulfone 56 ($60 \mathrm{mg}, 0.157 \mathrm{mmol}$) in dry THF (0.253 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{LDA}^{55}(0.236 \mathrm{~mL}, 0.236 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF/ hexanes). After 1 min , a solution of aldehyde $32(89.1 \mathrm{mg}, 0.392 \mathrm{mmol})$ in THF (0.147 mL) was added. After 20 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-80 \%$ ether/pentane to obtain a 1.0:1.5 mixture of $\mathbf{9 7}$ and $\mathbf{9 6}$ respectively ($84.9 \mathrm{mg}, 0.146 \mathrm{mmol}, 93 \%$) as a colorless oil.

97: $[a]_{\mathrm{D}}{ }^{20}=-45.0^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) 3391, 2929, 2851, 1683, 1652, 1418, $1366,1273,1166,1145,868,723,613 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, 4{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 6 \mathrm{H}), 4.30-4.38(\mathrm{~m}, 4 \mathrm{H}), 3.94-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 3.38 (br s, 2H), 2.74-2.80 (m, 4H), 2.26 (br s, 4H), 1.67-1.73 (m, 4H), 1.47-1.59 (m, 24H), $1.41-1.42(\mathrm{~m}, 40 \mathrm{H}), 1.26-1.28(6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 156.5,155.0$, $142.7,133.5,132.8,129.2,129.0,128.7,128.3,128.2,128.1,128.0,80.2,79.4,79.3,72.8$, 66.1, 49.0, 46.4, 39.2, 34.7, 34.4, 29.6, 29.5, 29.2, 28.6, 28.5, 28.4, 28.3, 28.1, 28.0, 25.6, 25.4, 19.3, 19.0, 18.9, 18.0; HRMS (ES+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 609.3573$, found 609.3569 .

96: $[a]_{\mathrm{D}}{ }^{20}=-37.7^{\circ}\left(c=0.98, \mathrm{CHCl}_{3}\right)$; IR (neat) $3420,2929,2854,1683,1652,1473$, $1456,1418,1365,1271,1165,1145,1083 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) δ 7.88-7.96 (m, 4H), 7.50-7.60 (m, 6H), 4.18-4.25 (m, 4H), $4.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.80-3.90(\mathrm{~m}$, $4 \mathrm{H}), 3.45-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.69-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.80$ $(\mathrm{m}, 8 \mathrm{H}), 1.32-1.54(\mathrm{~m}, 58 \mathrm{H}), 1.23-1.25(6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta$ $155.3,155.2,155.1,154.9,141.9,141.6,140.5,133.5,133.3,129.14,129.07,129.0,128.1$, $128.0,128.0,79.5,79.3,79.2,71.1,68.0,48.4,39.5,39.3,39.1,37.0,35.4,35.1,34.9,29.6$, 29.1, 28.53, 28.47, 28.46, 28.43, 28.33, 28.30, 28.0, 27.8, 25.5, 25.4, 25.3, 25.2, 19.1, 19.0, 18.9, 18.5, 17.4; HRMS (ES+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 609.3573$, found 609.3562 .

Keto sulfone SI-16—To a solution of alcohol $96(15 \mathrm{mg}, 24.6 \mathrm{mmol})$ in DCM (0.71 mL) at $0{ }^{\circ} \mathrm{C}$ was added solid $\mathrm{NaHCO}_{3}(10.35 \mathrm{mg}, 0.123 \mathrm{mmol})$ followed by DMP $(20.87 \mathrm{mg}$, 0.049 mmol). After 30 min , the reaction mixture was warmed to rt over a period of 15 min . After 1.5 h , the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ solution and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $20-30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain the keto sulfone SI-16 (13.9 mg, $23.0 \mathrm{mmol}, 93 \%$) as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-13.3^{\circ}(c=0.70$, CHCl_{3}); IR (neat) 2929, 2855, 1717, 1684, 1447, 1417, 1365, 1271, 1165, 1083, 1083, 872 $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.51(\mathrm{~m}, 4 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H}), 4.21-4.37(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.86(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.91(\mathrm{~m}, 2 \mathrm{H})$, $2.40-2.65(\mathrm{~m}, 6 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.76-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 10 \mathrm{H})$, $1.35-1.40(\mathrm{~m}, 44 \mathrm{H}), 1.20-1.31(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.04(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 40^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 200.8,200.7,200.5,200.4,154.8,154.7,154.5,139.0$, $133.94,133.90,129.1,129.0,128.9,128.8,79.42,79.38,79.2,78.4,48.0,47.1,46.8,46.0$, $45.9,45.7,40.0,39.7,39.2,34.5,33.7,31.1,30.5,28.5,28.42$, 28.35, 27.7, 27.3, 25.3, 25.14, 25.11, 18.9, 18.84, 18.76, 18.67, 17.5, 17.0, 16.8; HRMS (ES+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{NaS}(\mathrm{M}+\mathrm{Na}) 629.3236$, found 629.3194 .

Hydroxy sulfones 97 and 96-To a solution of keto sulfone SI-16 ($4.0 \mathrm{mg}, 6.6 \mathrm{mmol}$) in $\mathrm{MeOH}(0.12 \mathrm{~mL})$ at rt was added $\mathrm{NaBH}_{4}(2.5 \mathrm{mg}, 6.6 \mathrm{mmol})$. After 1h, the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $30-80 \%$ ether/pentane to obtain a $1.0: 1.5$ mixture ($4.0 \mathrm{mg}, 6.5 \mathrm{mmol}, 99 \%$) of 97 and 96 respectively as colorless oil.

Cyclic Sulfone-To a solution of sulfone $\mathbf{5 6}(20 \mathrm{mg}, 52.4 \mathrm{mmol})$ in THF $(0.39 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{LDA}_{9}(0.131 \mathrm{~mL}, 0.131 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF/hexanes). After 20 min , the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After 15 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether $(3 \times 10 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with 70-80\% EtOAc/Hexane to obtain $98(14 \mathrm{mg}, 45.5 \mathrm{mmol}, 87 \%)$ as a colorless oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+55.0^{\circ}(c$ $=0.2, \mathrm{CHCl}_{3}$); IR (neat) $3064,2926,2854,1645,1447,1308,1148,1083,688.6,525.7$, $458.0 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{tt}, J=7.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.72-4.74(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.35$ $(\mathrm{m}, 1 \mathrm{H}), 3.06-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=13.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=14.7,11.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,139.9,133.7,128.93,128.85,72.3,53.3,42.8$, 33.8, 32.2, 25.5, 25.3, 24.2, 18.9; HRMS (ES+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})$ 308.1320, found 308.1309 .

Amide 12—To a solution of sulfone $98(8.5 \mathrm{mg}, 28 \mathrm{mmol})$ in dry $\mathrm{MeOH}(0.55 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}(199 \mathrm{mg}, 1.4 \mathrm{mmol})$ followed by $5 \% \mathrm{Na} / \mathrm{Hg}(318 \mathrm{mg}, 0.69 \mathrm{mmol})$. After 20 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, diluted with EtOAc (5 $\mathrm{mL})$ and filtered through Celite ${ }^{\circledR}$ and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and purified by chromatography over silica gel, eluting with $40-60 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to obtain the known amide $\mathbf{1 2}^{14 \mathrm{a}}$ ($4.0 \mathrm{mg}, 23.9 \mathrm{mmol}, 86 \%$) as a colorless oil. $[a]_{\mathrm{D}}{ }^{20}=-24.4^{\circ}\left(c=0.32, \mathrm{CHCl}_{3}\right)$; IR (neat) $2929,2855,1636,1463$, $1447,1279,1258,1103 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.79(\mathrm{dq}, J=12.6,2.1 \mathrm{~Hz}$, 1 H), $3.34-3.38$ (m, 1H), 2.47 (ddd, $J=16.8,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (td, $J=12.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=16.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.69(\mathrm{~m}$, $4 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.5,55.6,43.0,40.6,36.9,33.6,25.4,25.1,24.5,20.5$; HRMS (ES+) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})$ 168.1388, found 168.1394.

Cermizine D (7)—To a solution of sulfone 97 ($44.2 \mathrm{mg}, 73.0 \mathrm{mmol}$) in $\mathrm{EtOH}(1.46 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was added skeletal Raney $\mathrm{Ni}(1.77 \mathrm{~g}, 3$ portions) portionwise over a period of 7 h . After an additional 8 h , the reaction mixture was cooled down to rt and filtered through Celite ${ }^{\circledR}$. The solvent was removed in vacuo to obtain the crude alcohol SI-17, which was unstable to purification and carried on crude.

To a solution of the crude alcohol SI-17 ($\sim 73 \mathrm{mmol}$) in $\mathrm{MeOH}(1.53 \mathrm{~mL})$ was added TMSCl $(133.3 \mathrm{mg}, 0.156 \mathrm{~mL}, 1.23 \mathrm{mmol}$). After 4 h , the solvent was removed in vacuo to obtain the crude 99. The crude 99 is taken to the next step.

To a solution of crude alcohol $99(\sim 73 \mathrm{mmol})$ in DCM $(2.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sequentially $\mathrm{PPh}_{3}(28.8 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{CBr}_{4}(36.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(44.3 \mathrm{mg}$, $0.06 \mathrm{~mL}, 0.438 \mathrm{mmol})$. The solution was slowly warmed to rt over a period of 15 min . After 3 h , the solvent was removed in vacuo and purified by chromatography over silica gel, by eluting with (2:4:94) to ($2: 10: 88$) ratio of $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{MeOH}: \mathrm{CHCl}_{3}$ to afford cermizine $\mathrm{D}(7)^{10}$ $(11.0 \mathrm{mg}, 0.044 \mathrm{mmol}, 60 \%$ over 3 steps$)$ as a pale yellow oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+40.8^{\circ}(c=0.90$, MeOH); IR (neat) 3360, 3294, 2926, 2853, 1639, 1455, 1442, 1373, $1121 \mathrm{~cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$) $\delta 3.39$ (br d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15-3.19 (m, 1H), 3.03-3.07 (m, 2H), $2.59-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.01(\mathrm{qd}, J=12.6,4.2,1 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 3 \mathrm{H})$, $1.53-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{td}, J=12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.24(\mathrm{~m}, 3 \mathrm{H})$, 1.12 (ddd, $J=14.0,9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{q}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, MeOH-d ${ }_{4}$) $\delta 57.7,53.5, ~ 48.6, ~ 46.2, ~ 39.9, ~ 39.8, ~ 39.0, ~ 33.2, ~ 25.3, ~ 25.1, ~ 24.3, ~$ 24.0, 21.3, 18.2; HRMS (EI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2}(\mathrm{M}+)$ 250.2409, found 250.2414.

TFA salt of cermizine-D (7•TFA)—To a solution of cermizine D (7) ($2.0 \mathrm{mg}, 8.0 \mathrm{mmol}$) in dry DCM $(0.1 \mathrm{~mL})$ was added TFA (3 drops) at $0^{\circ} \mathrm{C}$. After 10 min , the solvent was removed in vacuo to afford the cermizine D bis-TFA salt (7•TFA) ${ }^{14 \mathrm{c}}(3.8 \mathrm{mg}, 8.0 \mu \mathrm{~mol}$, $99 \%)$ as pale yellow oil. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+16.8^{\circ}(c=0.41, \mathrm{MeOH})\left\{\right.$ lit. ${ }^{11}[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+24.2^{\circ}(\mathrm{c}=$ $0.50, \mathrm{MeOH})\}$; IR (neat) $3390,2960,2925,2853,1674,1455,1430,1202,1139,799,721$ $\mathrm{cm}^{-1 ;}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{MeOH}-\mathrm{d}_{4}$) $\delta 3.96$ (br t, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71-3.74$ (m, 2H), 3.45 (br d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=13.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (td, $J=14.2$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (ddd, $J=11.2,9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.06$ (m, 5H), $1.55-1.85(\mathrm{~m}, 10 \mathrm{H}), 1.02(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(175 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.\mathrm{d}_{4}\right) \delta 62.5,54.2,51.5,50.0,46.0,39.1,38.1,36.4,31.0,25.0,24.7,23.7,23.2,23.1,21.6$, 18.6; HRMS (EI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H}) 251.2487$, found 251.2478 .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Financial support was provided by the National Institutes of Health (NIH) (GM63723) and Oregon State University). The authors are grateful to Professor Claudia Maier \& Jeff Morré (OSU) for mass spectra data and Dr. Lev Zakharov (OSU) for x-ray crystallographic analysis of 66. Finally, the authors thank Professor James D. White (OSU) and Dr. Roger Hanselmann (Rib-X Pharmaceuticals) for their helpful discussions.

References

1. Bödeker K. Justus Liebigs Ann Chem. 1881; 208:363-367.
2. (a) Ayer WA, Trifonov S. Lycopodium alkaloids. Alkaloids (Academic Press). 1994; 45:233-266.
(b) Ayer WA, Ma YT, Liu JS, Huang MF, Shultz LW, Clardy J. Can J Chem. 1994; 72:128-130.(c) Tori M, Shimoji T, Takaoka S, Nakashima K, Sono M, Ayer WA. Tetrahedron Lett. 1999; 40:323324.(d) Tori M, Shimoji T, Shimura E, Takaoka S, Nakashima K, Sono M, Ayer WA. Phytochem. 2000; 53:503-509.
3. (a) Hirasawa Y, Kobayashi J. Heterocycles. 2009; 77:679-729.(b) Kubota T, Yahata H, Yamamoto S, Hayashi S, Shibata T, Kobayashi J. Bioorg Med Chem Lett. 2009; 19:3577-3580. [PubMed: 19447614] (c) Ishiuchi J, Kubota T, Hayashi S, Shibata T, Kobayashi J. Tetrahedron Lett. 2009; 50:4221-4224.(d) Ishiuchi K, Kodama S, Kubota T, Hayashi S, Shibata T, Kobayashi J. Chem Pharm Bull. 2009; 57:877-881. [PubMed: 19652418] (e) Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J. Tetrahedron Lett. 2009; 50:6534-6536.(f) Ishiuchi KI, Kubota T, Ishiyama H, Hayashi S, Shibata T, Kobayashi J. Tetrahedron Lett. 2011; 52:289-292.(g) Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J. Bioorg Med Chem. 2011; 19:749-753. [PubMed: 21215644]
4. For comprehensive reviews of the lycopodium alkaloid family, see: Ma X, Gang DR. Nat Prod Rep. 2004; 21:752-772. [PubMed: 15565253] Kitajima M, Takayama H. Top Curr Chem. 2012; 309:132. [PubMed: 21452079]
5. (a) Tanret C. Compt Rend. 1878; 86:1270-71.(b) Tanret C. Compt Rend. 1880; 90:695-98.(c) Hess K. Ber Dtsch Chem Ges. 1917; 50:368-379.(d) Hess K, Eichel A. J Chem Soc, Abs. 1918; 114(I): 33.(e) Beets MGJ. Recl Trav Chim Pays-Bas. 1943; 62:553-556.(f) Galinovsky F, Vogl O, Weiser R. Monatsh Chem. 1952; 83:114-122.
6. King JA, Hofmann V, McMillan FH. J Org Chem. 1951; 16:1100-1110.Bowman RE, Evans DD. J Chem Soc. 1956:2553-2555.
7. Early total syntheses: Beyerman HC, Maat L. Recl Trav Chim Pays-Bas. 1963; 82:103339.Beyerman HC, Maat L. Recl Trav Chim Pays-Bas. 1965; 84:385-88.Beyerman HC, Maat L, van Veen A, Zweistra A. Recl Trav Chim Pays-Bas. 1965; 84:1367-79.
8. Total syntheses since 2005: Turcaud S, Martens T, Sierecki E, Perard-Viret J, Royer J. Tetrahedron Lett. 2005; 46:5131-5134.Carlson EC, Rathbone LK, Yang H, Collett ND, Carter RG. J Org Chem. 2008; 73:5155-5158. [PubMed: 18529081] Cheng G, Wang X, Su D, Liu H, Liu F, Hu Y. J Org Chem. 2010; 75:1911-1916. [PubMed: 20155953] Beng TK, Gawley RE. J Am Chem Soc. 2010; 132:12216-12217. [PubMed: 20806976] Liu JD, Chen YC, Zhang GB, Li ZQ, Chen P, Du JY, Tu YQ, Fana CA. Adv Synth Catal. 2011; 353:2721-2730.Monaco MR, Renzi P, Schietroma DMS, Bella M. Org Lett. 2011; 13:4546-4549. [PubMed: 21812495] Bosque I, Gonzaíez-Goméz JC, Foubelo F, Yus M. J Org Chem. 2012; 77:780-784. [PubMed: 22118411] Chiou WH, Chen GT, Kao CL, Gao YK. Org Biomol Chem. 2012; 10:2518-2520. [PubMed: 22349358]
9. (a) Matsunaga T, Kawasaki I, Kaneko T. Tetrahedron Lett. 1967; 8:2471-2473.(b) Quick J, Meltz C. J Org Chem. 1979; 44:573-578.
10. Morita H, Hirasawa Y, Shinzato T, Kobayashi J. Tetrahedron. 2004; 60:7015-7023.
11. (a) Slosse P, Hootele C. Tetrahedron Lett. 1978:397-398.(b) Slosse P, Hootele C. Tetrahedron Lett. 1979:4587-4588.(c) Slosse P, Hootele C. Tetrahedron. 1981; 37:4287-4292.
12. Fuji K, Yamada T, Fujita E, Murata H. Chem Pharm Bull. 1978; 26:2515-2521.
13. Marion L, Manske RHF. Can J Res. 1948; 26:1-2. [PubMed: 18913988]
14. Cermizine C and Senepodine G: Snider B, Grabowski JF. J Org Chem. 2007; 72:1039-1042. [PubMed: 17253832] Amat M, Griera R, Fabregat R, Bosch J. Tetrahedron: Asymm. 2008; 19:1233-1236.Nishikawa Y, Kitajima M, Kogure N, Takayama H. Tetrahedron. 2009; 65:16081617.Cui L, Peng Y, Zhang L. J Am Chem Soc. 2009; 131:8394-8395. [PubMed: 19492799] Cheng G, Wang X, Su D, Liu H, Liu F, Hu Y. J Org Chem. 2010; 75:1911-1916. [PubMed: 20155953] Taber DF, Guo P, Pirnot MT. J Org Chem. 2010; 75:5737-5739. [PubMed: 20704446] Bosque I, Gonzaíez-Goméz JC, Foubelo F, Yus M. J Org Chem. 2012; 77:780-784. [PubMed: 22118411]
15. Myrtine: Comins DL, LaMunyon DH. J Org Chem. 1992; 57:5807-5809.Pilli RA, Dias LC, Maldaner AO. J Org Chem. 1995; 60:717-722.Gardette D, Mialhe YG, Gramain JC, Perrin B, Remuson R. Tetrahedron: Asymmetry. 1998; 9:1823-1828.Back TG, Hamilton MD, Lim VJJ, Parvez M. J Org Chem. 2005; 70:967-972. [PubMed: 15675856] Davis FA, Xu H, Zhang J. J Org Chem. 2007; 72:2046-2052. [PubMed: 17305397] Pizzuti MG, Minnaard AJ, Feringa BL. Org Biomol Chem. 2008; 6:3464-3466. [PubMed: 19082145] Amorde SA, Jewett IT, Martin SF. Tetrahedron. 2009; 65:3222-3231. [PubMed: 20890382] Fustero S, Moscardo J, Rosello MS, Flores S, Guerola M, Pozo C. Tetrahedron. 2011; 67:7412-7417.
16. Lasubines I \& II: Comins DL, LaMunyon DH. J Org Chem. 1992; 57:5807-5809.Pilli RA, Dias LC, Maldaner AO. J Org Chem. 1995; 60:717-722.Ma D, Zhu W. Org Lett. 2001; 3:3927. [PubMed: 11720571] Back TG, Hamilton MD. Org Lett. 2002; 4:1779-1781. [PubMed: 12000297] Back TG, Hamilton MD, Lim VJJ, Parvez M. J Org Chem. 2005; 70:967-972. [PubMed: 15675856] Yu RT, Rovis T. J Am Chem Soc. 2006; 128:12370-12371. [PubMed: 16984159] Mancheno OG, Arrayas RG, Adrio J, Carretero JC. J Org Chem. 2007; 72:1029410297. [PubMed: 18027970]
17. Nishikawa Y, Kitajima M, Takayama H. Org Lett. 2008; 10:1987-1990. [PubMed: 18429621]
18. Veerasamy N, Carlson EC, Carter RG. Org Lett. 2012; 14:1596-1599. [PubMed: 22372610]
19. (a) Morita H, Hirasawa Y, Kobayashi J. J Org Chem. 2003; 68:4563-4566. [PubMed: 12762772]
(b) Collett ND, Carter RG. Org Lett. 2011; 13:4144-4147. [PubMed: 21749086]
20. (a) Yang H, Carter RG, Zakharov LN. J Am Chem Soc. 2008; 130:9238-9239. [PubMed: 18582046] (b) Yang H, Carter RG. J Org Chem. 2010; 75:4929-4938. [PubMed: 20586477] (c) Saha M, Carter RG. Org Lett. 2013; 15:736-739. [PubMed: 23384410]
21. (a) Fustero S, Jiménez D, Moscardó J, Catalán S, del Pozo C. Org Lett. 2007; 9:5283-5286. [PubMed: 17985918] (c) Fustero S, Moscardo J, Jimenez D, Peerez-Carrion MD, SanchezRosesllo M, del Pozo C. Chem Eur J. 2008; 14:9868-9872. [PubMed: 18830991]
22. Metal-catalyzed: Myers JK, Jacobsen EN. J Am Chem Soc. 1999; 121:8959-8960.Taylor MS, Zalatan D, Lerchner AM, Jacobsen EN. J Am Chem Soc. 2005; 127:1313-1317. [PubMed: 15669872] Gandelman M, Jacobsen EN. Angew Chem Int Ed. 2005; 44:2393-2397.Wagner AM, Knezevic CE, Wall JL, Sun VL, Buss JA, Allen LT, Wenzel AG. Tetrahedron Lett. 2012; 53:833836.Hashimoto T, Maeda Y, Omote M, Nakatsu H, Maruoka K. J Am Chem Soc. 2010; 132:4076-4077. [PubMed: 20199072] Zhong, Cheng; Wang, Yi-Kai; Hung, Alvin W.; Schreiber, Stuart L.; Young, Damian W. From Org Lett. 2011; 13:5556-5559.Murru, Siva; Gallo, August A.; Srivastava, Radhey S. J Org Chem. 2012; 77:7119-7123. [PubMed: 22839650] Organocatalyzed: Horstmann TE, Guerin DJ, Miller SJ. Angew Chem Int Ed. 2000; 39:3635-3638.Chen YK, Yoshida M, MacMillan DWC. J Am Chem Soc. 2006; 128:9328-9329. [PubMed: 16848457] Ibrahem I, Rios R, Vesely J, Zhao GL, Córdova A. Chem Commun. 2007:849-851.Vesely J, Ibrahem I, Rios R, Zhao GL, Xu Y, Córdova A. Tetrahedron Lett. 2007; 48:2193-2198.Dinér P, Nielsen M, Marigo M, Jørgensen KA. Angew Chem Int Ed. 2007; 46:1983-1987.Li H, Wang J, Xie H, Zu L, Jiang W, Duesler EN, Wang W. Org Lett. 2007; 9:965-968. [PubMed: 17298072] Wang J, Zu L, Xie H, Wang W. Synthesis. 2007:2576-2580.Vicario JL, Badía D, Carrillo L. Synthesis. 2007:2065-2092. Yoshitomi Y, Arai H, Makino K, Hamada Y. Tetrahedron. 2008; 64:11568-11579.Zhao GL, Rios R, Vesely J, Eriksson L, Cordova A. Angew Chem Int Ed. 2008; 47:8468-8472.Li H, Zu L, Xie H, Wang J, Wang W. Chem Commun. 2008; 43:5636-5638.Arai H, Sugaya N, Sasaki N, Makino K, Lectard S, Hamada Y. Tetrahedron Lett. 2009; 50:33293332.Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, Li M, Galya L, Metcalf B, Yue TY, Liu P, Zhou J. Org Lett. 2009; 11:1999-2002. [PubMed: 19385672] Hong L, Sun W, Liu C, Wang L, Wang R. Chem Eur J. 2010; 16:440-444. [PubMed: 19938023] Deiana L, Zhao GL, Lin S,

Dziedzic P, Zhang Q, Leijonmarck H, Cordova A. Adv Syn Cat. 2010; 352:3201-3207.Albrecht L, Jiang H, Dickmeiss G, Gschwend B, Hansen SG, Jørgensen KA. J Am Chem Soc. 2010; 132:9188-9196. [PubMed: 20550132] Yu X, Du B, Wang K, Zhang J. Org Lett. 2010; 12:18761879. [PubMed: 20334427] Appayee C, Brenner-Moyer SE. Org Lett. 2010; 12:3356-3359. [PubMed: 20575576] Bae JY, Lee HJ, Youn SH, Kwon SH, Cho CW. Org Lett. 2010; 12:43524355. [PubMed: 20795732] Kriis, Kadri; Ausmees, Kerti; Pehk, Tonis; Lopp, Margus; Kanger, Tonis. Org Lett. 2010; 12:2230-2233. [PubMed: 20415465] Volkova YA, Averina EB, Grishin YK, Rybakov VB, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2011; 52:2910-2913.Deiana L, Dziedzic P, Zhao GL, Vesely J, Ibrahem I, Rios R, Sun JL, Cordova A. Chem Eur J. 2011; 17:7904-7917. [PubMed: 21611987] Sun W, Zhu G, Hong L, Wang R. Chem Eur J. 2011; 17:13958-13962. [PubMed: 22095848] Li H, Zhao J, Zeng L, Hu W. J Org Chem. 2011; 76:80648069. [PubMed: 21830809] Yokosaka T, Hamajima A, Nemoto T, Hamada Y. Tetrahedron Lett. 2012; 53:1245-1248.Murru S, Gallo AA, Srivastava RS. J Org Chem. 2012; 77:7119-7123. [PubMed: 22839650] Lin H, Tan Y, Sun XW, Lin GQ. Org Lett. 2012; 14:3818-3821. [PubMed: 22809249]
23. Gerasyuto AI, Hsung RP, Sydorenko N, Slafer B. J Org Chem. 2005; 70:4248-4256. [PubMed: 15903297]
24. Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew Chem, Int Ed. 2005; 44:794-797.
25. 2° Amides have been somewhat explored: Nagao Y, Dai W, Ochiai M, Shiro M. J Org Chem. 1989; 54:5211-5217.Baxendale IR, Ley SV, Piutti C. Angew Chem, Int Ed. 2002; 41:21942197.Baxendale IR, Ley SV, Nessi M, Piutti C. Tetrahedron. 2002; 58:6285-6304.Marino JP, Rubio MB, Cao G, de Dios A. J Am Chem Soc. 2002; 124:13398-13399. [PubMed: 12418888] Nagata T, Nakagawa M, Nishida A. J Am Chem Soc. 2003; 125:7484-7485. [PubMed: 12812466] Marino JP, Cao G. Tetrahedron Lett. 2006; 47:7711-7713.
26. Fonseca de Godoy LA, Pilli RA. Quimica Nova. 2010; 33:2042-2045.
27. Oishi T, Iwakuma T, Hirama M, Ito S. Synlett. 1995:404-406.
28. Dai M, Zhang X, Khim SK, Schultz AG. J Org Chem. 2005; 70:384-387. [PubMed: 15624957]
29. Ban Y, Kimura M, Oishi T. Chem Pharm Bull. 1976; 24:1490-1496.
30. (a) Yang H, Carter RG. Org Lett. 2008; 10:4649-4652. [PubMed: 18808137] (b) Yang H, Carter RG. J Org Chem. 2009; 74:2246-2249. [PubMed: 19193123] (c) Yang H, Carter RG. J Org Chem. 2009; 74:5151-5156. [PubMed: 19743541] (d) Yang H, Carter RG. Tetrahedron. 2010; 66:48544859.(e) Yang H, Carter RG. Org Lett. 2010; 12:3108-3111. [PubMed: 20527905] (f) Yang H, Carter RG. J Org Chem. 2010; 75:4929-4938. [PubMed: 20586477] (g) Yang H, Mahapatra S, Cheong PYH, Carter RG. J Org Chem. 2010; 75:7279-7290. [PubMed: 20932013] (h) Yang H, Carter RG. Synlett. 2010:2827-2838. [PubMed: 21461132] (i) Yang H, Banerjee S, Carter RG. Org Biomol Chem. 2012; 10:4851-4863. [PubMed: 22544220] (j) Pierce M, Johnston RC, Mahapatra S, Yang H, Carter RG, Cheong PHY. J Am Chem Soc. 2012; 134:13624-13631. [PubMed: 22540247]
31. Schaumann E, Mergardt B, Fittkau S. Synthesis. 1990:47-51.
32. Please note that Snider and co-workers do not report a purification procedure for compound 26; however, our spectral data $\left({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right.$ NMR) matched with their reported values. In our hands, the compound did prove to be somewhat unstable to column chromatography.
33. Louie J, Bielawski CW, Grubbs RH. J Am Chem Soc. 2001; 123:11312-11313. [PubMed: 11697983]
34. (a) Ohmura T, Hartwig JF. J Am Chem Soc. 2002; 124:15164-15165. [PubMed: 12487578] (b) Leitner A, Shekhar S, Pouy MJ, Hartwig JF. J Am Chem Soc. 2005; 127:15506-15514. [PubMed: 16262414] (c) Tosatti P, Nelson A, Marsden SP. Org Biomol Chem. 2012; 10:3147-3163. [PubMed: 22407450]
35. (a) Gnamm C, Krauter CM, Brödner K, Helmchen G. Chem Eur J. 2009; 15:2050-2054. [PubMed: 19180605] (b) Gnamm C, Brödner K, Krauter CM, Helmchen G. Chem Eur J. 2009; 15:1051410532. [PubMed: 19731272]
36. For earlier reports on the methodology, see: Liu G, Cogan D, Ellman JA. J Am Chem Soc. 1997; 119:9913-9914.Cogan DA, Ellman JA. J Am Chem Soc. 1999; 121:268-269.Liu G, Cogan DA, Owens TD, Tang TP, Ellman JA. J Org Chem. 1999; 64:1278-1284.For the application of this
method to a closely related system, see: Nielsen L, Lindsay KB, Faber J, Nielsen NC, Skrydstrup T. J Org Chem. 2007; 72:10035-10044. [PubMed: 18001103]
37. Yungui P, Heunging P, Zhengshung X, Tao Y. Letters in Org Chem. 2005; 2:703-706.
38. Evans, DA.; Kim, AS. Handbook of Reagents for Organic Synthesis: Chiral Reagents for Asymmetric Synthesis. Paquette, LA., editor. John Wiley and Sons; 2003. p. 57-68.
39. See supporting information.
40. (a) Watson PS, Jiang B, Scott B. Org Lett. 2000; 2:3679-3681. [PubMed: 11073674] (b) Martin R, Murruzzu C, Pericas MA, Riera A. J Org Chem. 2005; 70:2325-2328. [PubMed: 15760222] (c) Coombs TC, Lushington GH, Douglas J, Aubé J. Angew Chem, Int Ed. 2011; 50:2734-3737.
41. Kitamura M, Nagai K, Hsiao Y, Noyori R. Tetrahedron Lett. 1990; 31:549-552.
42. (a) Baker R, O’Mahony MJ, Swain C. J Chem Soc, Chem Commun. 1985:1326-1328.(b) Baker R, O'Mahony MJ, Swain CJ. J Chem Soc, Perkin Trans 1. 1987:1623-1633.
43. (a) Tseng TC, Wu MJ. Tetrahedron: Asymmetry. 1995; 6:1633-1640.(b) Raghavan S, Tony KA. J Org Chem. 2003; 68:5002-5005. [PubMed: 12790623] (c) Rana NK, Singh VK. Org Lett. 2011; 13:6520-6523. [PubMed: 22097882]
44. (a) De Chirico G, Fiandanese V, Marchese G, Naso F, Sciacovelli O. J Chem Soc, Chem Commun. 1981:523-524.(b) Ichikawa Y, Isobe M, Masaki H, Kawai T, Goto T. Tetrahedron. 1987; 43:4759-4766.(c) Dominguez E, Carretero JC. Tetrahedron Lett. 1993; 34:5803-5806.
45. Bos PH, Macía B, Ibáñez Fernández, Minnard AJ, Feringa BL. Org Biomol Chem. 2010; 8:47-49. [PubMed: 20024129]
46. Truchot C, Wang Q, Sasaki A. Eur J Org Chem. 2005:1765-1776.
47. Alonso DA, Nájera C. Organic Reactions. 2008; 72:367-656.
48. Liu Y, Jacobs HK, Gopalan AS. Tetrahedron. 2011; 67:2206-2214. [PubMed: 21499514]
49. Zhang J, Zhang Y, Zhang Y, Herndon JW. Tetrahedron. 2003; 59:5609-5616.
50. Michel P, Rassat A. J Org Chem. 2000; 65:8908-8918. [PubMed: 11149832]
51. Kulkarni SJ, Pedduri Y, Chittiboyina AG, Avery MA. J Org Chem. 2010; 75:3113-3116. [PubMed: 20356061]
52. Jin Y, Liu Y, Wang Z, Kwong S, Xu Z, Ye T. Org Lett. 2010; 12:1100-1103. [PubMed: 20148573]
53. Rosser EM, Morton S, Ashton KS, Cohen P, Hulme AN. Org Biomol Chem. 2004; 2:142-149. [PubMed: 14737674]
54. Procedure to make $\mathrm{PhSCH}_{2} \mathrm{I}$: To a solution of $\mathrm{PhSCH}_{2} \mathrm{Cl}(500 \mathrm{mg}, 0.42 \mathrm{~mL}, 3.2 \mathrm{mmol})$ in acetone $(2.7 \mathrm{~mL})$ was added $\mathrm{NaI}(465 \mathrm{mg}, 3.1 \mathrm{mmol})$ and the reaction was covered with aluminum foil. After 12 h , the reaction mixture was poured into ether (10 mL), washed with sat. aq. sodium thiosulfate solution (15 mL), sat. aq. NaHCO_{3} solution (15 mL), brine (15 mL). The dried $\left(\mathrm{MgSO}_{4}\right)$ extract was concentrated in vacuo and used immediately as the compound was highly unstable. Trost BM, King SA. J Am Chem Soc. 1990; 112:408-422.
55. Procedure to make LDA: To a solution of diisopropylamine ($607 \mathrm{mg}, 0.848 \mathrm{~mL}, 6.0 \mathrm{mmol}$) in THF $(2.75 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(2.4 \mathrm{~mL}, 6.0 \mathrm{mmol}, 2.5 \mathrm{M}$ solution in Hexanes). After 5 min , the white slurry was warmed to $-10^{\circ} \mathrm{C}$. After 15 min , the LDA solution (1.0 M in THF/ Hexanes) was used for the reaction.

cermizine $D(7)$

cernuine (8)

Figure 1.
Piperidine and Quinolizidine-based Natural Products.

Scheme 1.
Organocatalyzed Intramolecular Heteroatom Michael Addition and Total Synthesis of Pelletierine.

Scheme 2.
Retrosynthetic Analysis of Cermizine C and Senepodine G.

15

Scheme 3.
Synthesis of the Amide Cyclization Precursor.

Scheme 4.

Formal Synthesis of C_{5}-epi-senepodine G and C_{5}-epi-cermizine C .

32

Scheme 5.
Retrosynthetic Analysis of Cermizine D.

Scheme 6.
Synthesis of Major Subunits through Common Intermediate.

Scheme 7.
Attempted Hartwig Coupling of Major Subunits.

Scheme 8.
Revised Retrosynthetic Approach.

Scheme 9.
Synthesis of 1° Amine and Enone Subunits.

Scheme 10.
Successful Retrosynthetic Approach to Cermizine D.

Scheme 11.
Synthesis of the Evans Oxazolidinones.

Scheme 12.
Synthesis of the Sulfone Moiety.

Scheme 13.
Attempted Approaches to Improve Stereoselectivity.
Baker

79

Scheme 14.
Prior Work in Diastereoselective (and Enantioselective) Construction of β-Thio Carbonyl Compounds.

82

1) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{EtOH}, 94 \%$
2) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{I}_{2}$, Imid.

84\%

Scheme 15.
Second Generation Synthesis of Sulfone Subunit.

Scheme 16.
Second Generation Synthesis of Sulfone Subunit.

Scheme 17.
Coupling of Major Subunits and Formal Synthesis of Senepodine G and Cermizine C.

Scheme 18.
Total Synthesis of Cermizine D.

Table 1
Exploration of Intramolecular Heteroatom Michael Addition with Amide.

Entry	Catalyst	Conditions	Time	Yield (14:C $\mathrm{C}_{\mathbf{5}}$-epi-14)
$\mathbf{1}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}$	1 d	$40 \%(1: 1.3)$
$\mathbf{2}$	$\mathbf{1 0}$	DCE/MeOH (1:1), rt	5 d	$\mathrm{n} / \mathrm{d}(1: 1)$
$\mathbf{3}$	ent- $\mathbf{1 0}$	DCE/MeOH (1:1), rt	6 d	$50 \%(1: 10)$
$\mathbf{4}$	$\mathbf{2 0}$	DCE/MeOH (1:1), rt	4 d	$45 \%(1: 1)$
$\mathbf{5}$	$\mathbf{2 1}$	DCE/MeOH (1:1), rt	3 d	$45 \%(1: 2)$
$\mathbf{6}$	$\mathbf{2 2}$	DCE/MeOH (1:1), rt	14 h	$70 \%(1: 4)$
$\mathbf{7}$	$\mathbf{2 2}$	DCE/MeOH (9:1), rt	19 h	$69 \%(1: 4)$
$\mathbf{8}$	$\mathbf{2 2}$	DCE, rt	1 d	$60 \%(1: 4)$
$\mathbf{9}$	$\mathbf{2 2}$	DCE, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{equiv}), \mathrm{rt}$	19 h	$67 \%(1: 4)$

Table 2
Exploration of Evans Alkylation.

Entry	Conditions $^{\boldsymbol{a}}$	Yield	$\mathbf{d r}$
1	$\mathbf{6 0}$, LiHMDS (1.1 equiv.)	29%	$1: 1(\mathbf{6 6 : 6 4})$
2	$\mathbf{6 0}$, NaHMDS (1.6 equiv.)	92%	$1.5: 1(\mathbf{6 6 : 6 4})$
3	$\mathbf{6 0}$, KHMDS (2.0 equiv.)	87%	$1: 1.4(\mathbf{6 6 : 6 4})$
4	$\mathbf{6 1}$, NaHMDS (2.0 equiv.)	77%	$1: 20(\mathbf{6 7 : 6 5})$

${ }^{a}{ }_{10}$ equivalents of MeI was used in each case.

Table 3
Exploration of Conjugate Addition to Vinyl Silyl Sulfones.

Entry	Electrophile	Conditions	Result (yield, dr)
$\mathbf{1}$	$\mathbf{9 2}$	$\mathrm{MeLi}(1.5$ equiv. $), \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$	$\mathbf{9 5}(85 \%)$
$\mathbf{2}$	$\mathbf{9 2}$	$\mathrm{CuI}\left(3\right.$ equiv.), $\mathrm{MeLi}(5.9$ equiv. $), \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to rt	Decomposition
$\mathbf{3}$	$\mathbf{9 2}$	$\mathrm{CuI}\left(10\right.$ equiv.), $\mathrm{MeLi}(19.6$ equiv. $), \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$\mathbf{9 4}(60 \%, 10: 1 \mathrm{dr})$
$\mathbf{4}$	$\mathbf{9 2}$	$\mathrm{CuI}\left(6\right.$ equiv.), MeLi (11.8 equiv.), $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$	$\mathbf{9 4}(93 \%, 8: 1 \mathrm{dr})$
$\mathbf{5}$	$\mathbf{9 3}$	$\mathrm{CuI}\left(10\right.$ equiv.), $\mathrm{MeLi}\left(19.7\right.$ equiv.) $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to rt	$\mathbf{9 4}(55 \%, 1.9: 1 \mathrm{dr})$

Table 4

Exploration of Conjugate Addition to Vinyl Sulfones.

Entry	Sulfone	Conditions	Result (yield, dr)
$\mathbf{1}$	$\mathbf{8 6}$	$\operatorname{MeLi}\left(1.5\right.$ equiv.), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$	Decomposition
$\mathbf{2}$	$\mathbf{8 6}$	CuCN (3 equiv.), MeLi (5.9 equiv.), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$ to rt	Decomposition
$\mathbf{3}$	$\mathbf{8 6}$	$\mathrm{CuI}\left(3\right.$ equiv.), $\mathrm{MeLi}\left(5.9\right.$ equiv.), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$	$\mathbf{5 6 : 9 4}(55 \%, 1: 1.2 \mathrm{dr})$
$\mathbf{4}$	$\mathbf{8 7}$	$\mathrm{CuI}\left(3\right.$ equiv.), $\mathrm{MeLi}\left(5.9\right.$ equiv.), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$	Decomposition

[^0]: Correspondence to: Rich G. Carter, rich. carter@oregonstate. edu.
 SUPPORTING INFORMATION. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for all new compounds are provided. X-ray crystallographic data (CIF) for compound $\mathbf{6 6}$ is also provided. This material is available free of charge via the Internet at http://pubs.acs.org.

