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ABSTRACT 

A molecular triad comprised of a triarylamine donor, a triarylborane acceptor, and a photoisomerizable 

dithienylethene bridge has been synthesized and explored by cyclic voltammetry, UV-vis and 

luminescence spectroscopy. The effects of irradiation with UV light and fluoride addition on the 

electrochemical and optical spectroscopic properties of the donor-bridge-acceptor molecule were 

investigated. Photoisomerization of the dithienylethene bridge affects the triarylboron reduction 

potential but not the triarylamine oxidation potential. UV-vis experiments reveal that the association 

constant for fluoride binding at the triarylborane site is independent of the isomerization state of the 
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bridge. Irradiation of a THF solution of our donor-bridge-acceptor molecule with UV light followed by 

F
-
 addition leads to a different color of the sample than UV irradiation alone or F

-
 addition alone. 

 

INTRODUCTION 

 

Triarylboranes have received much attention in the context of fluoride sensing in recent years,
1-12

 but 

also their possible application as light-emitting materials or as electron-deficient π-conjugated units of 

conducting polymers has stimulated much work.
13-22

 One branch of research in this multi-faceted area 

deals with intramolecular charge transfer between electron-rich triarylamine groups and electron-poor 

triarylborane moieties.
23-29

 In systems with π-conjugated bridges amine-to-borane charge transfer 

commonly manifests as an absorption band in the electronic (UV-vis) spectrum.
1, 24-26, 28-34

 There have 

been recent studies of triarylborane-containing dithienylethenes,
35-36

 but we are unaware of prior 

investigations of triarylamine-triarylborane donor-acceptor systems with photochromic bridges. 

In this work, we aimed to explore to what extent the isomerization state of a photochromic bridge 

affects intramolecular charge transfer between amine and borane groups. The issue of controlling π-

conjugation pathways for electron transfer in photochromic systems is of long-standing interest.
37-44

 

However, it is not trivial to investigate photoinduced electron transfer in photochromic donor-bridge-

acceptor molecules because the light energy which is used to trigger electron transfer in many cases also 

induces photoisomerization.
38, 40, 42, 44

 Recent studies on photoswitchable mixed valence systems 

demonstrated that the extent of charge delocalization between two redox-active centers can be controlled 

by light when the two redox moieties are connected covalently via a photoisomerizable unit. 
45-52

 In our 

own work we had explored the monocationic forms of the dithienylethene-bridged bis(triarylamine) 

molecules shown on the left of Scheme 1 (n = 0, 1),
53

 and we found that by using UV and visible light it 

is possible to switch between class I, class II, and class III mixed valence behavior,
54

 i. e., from complete 

charge localization to either partial or full charge delocalization. In the present study we synthesized and 
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3

investigated the chemically related triarylamine-dithienylethene-triarylborane molecule shown in the 

right half of Scheme 1 (molecule 1), and we explored the effects of photoisomerization and fluoride 

addition on the electrochemical, optical absorption, and luminescence properties of this compound. 

The design principle of the investigated molecule is simple. The triarylamine with two p-anisyl 

substituents is a popular electron donor because of its comparatively high chemical stability and 

relatively low oxidation potential,
55-56

 dimesitylborane is a suitable acceptor because the electron-

deficient boron atom is sterically protected from its environment and therefore relatively stable, yet at 

the same time a reasonably good electron acceptor.
1
 The photoisomerization reactions of 

dithienylethenes are highly reversible in many systems hence this particular photochromic unit appeared 

as an attractive choice,
57-63

 also in light of a recent study of fluoride and mercuric(II) cation sensing by a  

photochromic organoboron compound.
36

 

 

Scheme 1. (a) Open and photocyclized form of two dithienylethene-bridged bis(triarylamines) (n = 0, 1; 

R = C6H4OCH3) the one-electron oxidized forms of which were previously investigated in the context of 

photoswitchable organic mixed valence.
45, 53

 (b) Open and closed form of the donor-bridge-acceptor 

molecule of central interest in this study. 
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RESULTS AND DISCUSSION 

 

Synthesis. The photochromic backbone of donor-bridge-acceptor molecule 1 is built into the overall 

system using dithienylperfluorocyclopentene building block 2 which has been previously described in 

the literature (Scheme 2).
37, 53

 Trimethylsilyl-halogen exchange on molecule 2 yields diiodo-compound 3 

which can subsequently be used for Suzuki-type C-C couplings with suitable reagents. The first 

coupling partner was molecule 5, which is a boronic acid pinacol ester of the triarylamine unit, prepared 

in one step from di-p-anisyl-p-bromophenylamine (4).
64

 The resulting coupling product is molecule 6. A 

boronic acid pinacol ester of the triarylborane unit (8), prepared from previously known (4-

bromophenyl)dimesitylborane (7),
65-66

 was subsequently coupled to molecule 6, yielding the target 

molecule 1. Detailed synthetic protocols and product characterization data of all new compounds are 

given in the Experimental Section. In addition, selected NMR and ESI-TOF-HRMS spectra are shown 

in the Supporting Information. 

 

Scheme 2. Synthetic steps leading to the donor-bridge-acceptor molecule 1. (a) ICl, CH2Cl2, -5°C; (b) 

bis(pinacolato)diboron, Pd(PPh3)Cl2, NaOAc, PEG600, 90°C; (c) Pd(PPh3)4, THF, Na2CO3 (aq), 80°C. 

 

 

Page 4 of 23

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

5

Electrochemistry. Figure 1 shows cyclic voltammograms of the donor-bridge-acceptor molecule 1. 

We have found that triarylamine oxidation is best monitored in CH2Cl2 or CH3CN, while triarylborane 

reduction is much more cleanly detectable in dry THF solution. The upper half of Figure 1 shows 

oxidative voltage sweeps recorded from a 5·10
-4

 M solution of molecule 1 in dry and deoxygenated 

CH2Cl2 in presence of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) while the lower half 

of Figure 1 shows reductive voltage sweeps obtained from a 10
-3

 M solution of molecule 1 in dry and 

deoxygenated THF in presence of 0.1 M TBAPF6 electrolyte. Trace amounts of decamethylferrocene 

were added for internal voltage calibration, and this causes the reversible redox waves at -0.51 V vs. 

Fc
+
/Fc in all four voltammograms (dashed vertical line). 

 

 

Figure 1. Cyclic voltammograms of the open (blue traces) and closed (red traces) forms of 1. (a) 

Oxidative sweeps with 100 mV/s in dry CH2Cl2; (b) reductive sweeps with 100 mV/s in dry THF. 0.1 M 

TBAPF6 was used as an electrolyte in both cases; the waves at -0.51 V vs. Fc
+
/Fc are due to the 

decamethylferrocene internal reference. The waves marked by the asterisks are assumed to be due to 

electrochemical decomposition products.
67
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The blue traces in Figure 1 are voltammograms obtained from the open form of molecule 1, whereas 

the red traces are voltammograms of the photocyclized (closed) form. For photoisomerization the 

samples were irradiated with a hand-held 8 W UV lamp. According to 
1
H NMR experiments this leads 

to a photostationary state comprised of 15% open and 85% closed isomer.
68

 The voltammograms in the 

upper half of Figure 1 are virtually identical to each other. Triarylamine oxidation occurs in a reversible 

fashion at 0.27 V vs. Fc
+
/Fc in both the open and closed isomer of 1, in agreement with previously 

reported oxidation potentials for this particular redox-active unit.
69-70

 Thiophene oxidations in 

dithienylcyclopentenes are known to occur at significantly higher potentials and are outside the potential 

range considered here,
44, 53, 71-72

 electrocyclization is not observed.
71-74

 The reductive sweeps in the 

lower half of Figure 1 are significantly different from each other. While the weak currents between -1.5 

and -2.0 V vs. Fc
+
/Fc are probably caused by impurities, the strong irreversible waves below -2.5 V vs. 

Fc
+
/Fc are attributed to triarylborane reduction, in agreement with literature values for comparable 

systems.
75-77

 It is obvious from Figure 1 that triarylborane reduction occurs at somewhat less negative 

potentials for the closed form of 1 than for its open isomer: The peak currents are at -2.6 V vs. Fc
+
/Fc 

for the closed form and at -2.7 V vs. Fc
+
/Fc for the open isomer. Addition of TBAF (as a fluoride 

source) has led to very low quality voltammograms which do not permit any meaningful conclusions 

except that triarylborane reduction cannot be detected any more (data not shown). 

Reverse photoisomerization from the closed to the open form is possible when using a 610-nm cut-off 

filter in front of an incandescent lamp as an irradiation source. However, this process is extremely slow 

for solutions with mM concentrations (> hours), presumably due to the relatively low photon flux and 

the low quantum yield for closed-to-open isomerization, which is not an uncommon phenomenon for 

dithienylethenes.
41,42

 What is more, the sample suffers from photodegradation, and therefore it has not 

been possible to demonstrate that the photoinduced changes in the voltammogram of Figure 1b are 

indeed reversible. 
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UV-vis spectroscopy. The blue trace in Figure 2a is the optical absorption spectrum of a 3.2·10
-5

 M 

solution of the open form of molecule 1 in THF. This sample is essentially colorless because there are 

no absorptions in the visible spectral range. Upon irradiation with UV light the sample turns blue 

because of increasing absorptions at 643 nm, 452 nm, and 398 nm (dotted black traces and upward 

arrows in Figure 2a); at the same time the absorbance at 352 nm is decreasing. Ultimately, a 

photostationary state (with 85% closed and 15% open form, see above) is reached (red trace). Figure 2b 

illustrates the effect of fluoride addition on the optical absorption spectrum of the photocyclized 

solution; the red trace in Figure 2b is the same spectrum as the red trace in Figure 2a. When adding 

tetrabutylammonium fluoride (TBAF), the maximum of the longest-wavelength absorption shifts from 

643 nm to 620 nm resulting in a color change from blue to blue-green. In addition, there are spectral 

changes between 500 nm and 250 nm with clean isosbestic points at 514 nm, 465 nm, and 373 nm. After 

1 equivalent of F
-
 has been added, no further spectral changes are observed and the green trace in Figure 

2b is obtained. 

 

 

Figure 2. UV-vis spectra of 1 in THF. (a) Photoisomerization of the open form (blue trace) to the closed 

form (red trace) upon UV irradiation; (b) effect of fluoride addition to the closed form. (c) Titration of 
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the open form (blue trace) with TBAF; (d) Photoisomerization of the open fluoride adduct (orange trace) 

to the closed fluoride adduct (green trace). Note that the green traces in (b) and (d) are identical. 

 

When reversing the sequence of light irradiation and F
-
 addition, one ultimately arrives at exactly the 

same spectrum, a fact which is illustrated by the lower half of Figure 2: The blue trace in Figure 2c is the 

same spectrum as the blue trace in Figure 2a, i. e., the spectral signature of the open form of molecule 1 

in THF. When adding F
-
 to this solution the absorbance at 353 nm decreases whereas a band at 302 nm 

gains intensity. After addition of 1 equivalent of TBAF the spectrum represented by the orange trace in 

Figure 2c is obtained. The spectrum of this sample is shown again in Figure 2d (orange trace), and when 

irradiated subsequently with UV light it undergoes the spectral changes shown in Figure 2d. The green 

trace in Figure 2d is the spectrum of the final photostationary state and corresponds precisely to the 

green spectrum of Figure 2b, i. e., the solution which has been irradiated prior to fluoride addition. We 

note that in Figure 2c the band of the closed form at 642 nm is already detectable because part of the 

sample unavoidably photoisomerizes in the absorption spectrometer. 

 

 

Figure 3. Photograph showing (a) the open form of 1, (b) the open fluoride adduct of 1, (c) the closed 

form of 1, (d) the closed fluoride adduct of 1. 

 

The photograph in Figure 3 illustrates the color changes which are associated with UV irradiation and 

fluoride addition to a THF solution of molecule 1: Adding F
-
 to the open isomer has essentially no 
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influence on the color of the solution, the light yellowish appearance of the solution (Figure 3b) is 

mostly due to TBAF itself. Photoisomerization alone will produce a blue solution (Figure 3c), 

photoisomerization combined with fluoride addition leads to a blue-green color (Figure 3d).  

From the F
-
 titrations in Figure 2b and 2c it is possible to determine fluoride binding constants for the 

closed and open forms of molecule 1. Figure 4a plots the absorbance of a 3.2·10
-5

 M THF solution of the 

open isomer at 353 nm as a function of the total (free and bound) F
-
 concentration. An analogous 

fluoride titration curve monitoring the absorbance at 335 nm of an equally dilute THF solution of the 

closed form of 1 is shown in Figure 4b. The solid lines in Figure 4 are the results of least-squares fits to 

the experimental data with equation 1 which is appropriate for determination of binding constants (Ks) 

of 1:1 adducts.
12, 78

 

 

A = A0 + [(Alim – A0)/2·c0]·[c0 + cF + Ks
-1

 – [(c0 + cF + Ks)
2
 – 4·c0·cF]

1/2
]   eq. 1 

 

In equation 1, A0 is the absorbance of the sample at a selected wavelength in absence of any titrant, A 

is the absorbance at the same wavelength in presence of titrant, and Alim is the limiting absorbance value 

obtained once the solution has been saturated with titrant. c0 is the concentration of molecule 1 (3.2·10
-5

 

M), cF is the concentration of added F
-
 (see x-axes in Figure 4). Fits to the two data sets in Figure 4 yield 

Ks values of (1.6±0.8)·10
7
 M

-1
 (Figure 4a) and (2.3±1.0)·10

7
 M

-1
 (Figure 4b). Thus, the fluoride binding 

constants of the open and closed forms of molecule 1 are identical within experimental accuracy. The 

magnitude of our Ks values (10
7
 M

-1
) is similar to that reported previously for comparable triarylborane 

systems.
1
 We note that fluoride binding constants may be strongly susceptible to trace water impurities 

in the solvent. 
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Figure 4. Absorbance changes at (a) 353 nm and (b) 335 nm in the course of TBAF addition to 3.2·10
-5

 

M solutions of the open (a) and closed (b) form of 1 in THF. The solid lines are least-squares fits to the 

experimental data with equation 1.
12, 78

 

 

19
F and 

11
B NMR spectroscopy. The 

19
F NMR spectrum of the closed form of molecule 1 in CHCl3 

exhibits resonances at -110 ppm and -131 ppm due to the fluorine atoms on the perfluorocyclopentene 

backbone (see Supporting Information). Upon addition of TBAF an additional resonance shows up at -

172 ppm which is typical for F
-
 bound to a triarylamine group.

1, 29
 In the 

11
B NMR spectrum of the same 

sample there is a broad resonance at -74 ppm which is typical for triarylborane (see Supporting 

Information).
1, 29

 Upon fluoride addition this resonance shifts to 4 ppm, in agreement with previously 

reported chemical shifts for fluorinated dimesitylboryl groups.
1, 29

 No attempts to determine fluoride 

binding constants from NMR experiments were made; in light of the high Ks values found above this 

did not appear to be meaningful. 

 

Discussion of charge transfer properties. We now turn our attention back to the UV-vis data in 

Figure 2. The fluoride titration experiment in Figure 2c suggests that the absorbance at 353 nm of the 

open isomer is caused at least in part by an electronic transition involving the boron center. Indeed, in 

aromatic nitrogen-boron systems there are frequently N → B charge transfer transitions in this spectral 

range.
1, 25-26, 28

 The difference in triarylamine oxidation and triarylborane reduction potentials found 

above amounts to ∼3 V. On this basis one might expect the N → B charge transfer transition at ∼24000 

cm
-1

 or ∼410 nm, but this represents obviously a crude estimate at best. Nevertheless it appears 

reasonable to conclude that the absorption band at 353 nm (open isomer) has significant N → B charge 

transfer character.
79

 

As outlined in the introduction, we anticipated that photocyclization of the dithienylethene bridge 

would affect N → B charge transfer. However, it is not straightforward to identify the respective 
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electronic transition in the closed isomer. One would expect N → B charge transfer to be suppressed 

when F
-
 is added, and consequently we are searching for spectral regions in the UV-vis data of Figure 2b 

in which the absorbance is decreasing upon fluoride addition. This turns out to be the case between 514 

nm and 466 nm, as well as between 372 nm and 273 nm; the spectral changes beyond 514 nm are not 

considered here because the longest-wavelength absorption is quite clearly caused by 

dithienylperfluorocyclopentene-localized π-π* transitions that may be perturbed by F
-
 complexation.

40, 

44, 57, 61-62, 71-72
 From the electrochemical data in Figure 1 we learn that triarylborane reduction is ∼0.1 V 

easier in the closed form of molecule 1 than in its open isomer. One might thus expect a red-shift of the 

N → B charge transfer transition by ∼800 cm
-1

 following photoisomerization, but this cannot be 

reconciled with the UV-vis data in Figure 2b. The strongly F
-
 sensitive bands between 372 nm and 273 

nm are at higher energy than the N → B transition in the open form, while the weakly F
-
 sensitive 

absorbance between 514 nm and 466 nm seems too weak and too red-shifted in order to be assigned to 

the N → B transition of the closed isomer. Given the more extensive π-conjugation of the photocyclized 

bridge we would have expected the oscillator strength of the N → B transition to be even higher in the 

closed form than in the open isomer. Thus, contrary to what we originally hoped, it appears that in-depth 

computational studies are necessary to gain insight into N → B charge transfer in the two isomers of 

molecule 1, but this is beyond the scope of our experimental investigations. 

 

 

Figure 5. Luminescence of molecule 1 in THF solution measured after different time intervals following 

irradiation at 355 nm in the fluorimeter. The initial spectrum (solid trace) is from a solution containing 
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mostly the open isomer. Subsequent spectra (dotted traces) contain an increasing proportion of non-

emissive closed isomer. Intensities are normalized arbitrarily to the first spectrum. 

 

Luminescence spectroscopy. The open form of molecule 1 is emissive when irradiated with UV 

light. Figure 5 shows a series of luminescence spectra which were obtained from a THF solution of the 

open form of 1. With increasing irradiation time the emission intensity decreases, which is a 

manifestation of photocyclization. The closed form of 1 is non-emissive because of energetically low-

lying π-π* transitions on the dithienylperfluorocyclopentene bridge (Figure 2a).
41

 At long irradiation 

times a photostationary state is reached (see above), and the remaining percentage (∼15%) of open 

isomer accounts for the residual emission intensity. Compared to the initial luminescence intensity 

detected from a freshly prepared solution of the open form of 1 the emission intensity decreases only by 

a factor of ∼3, but it should be kept in mind that our samples are highly sensitive to UV light and 

photoisomerize to a significant extent already in the course of recording the very first luminescence 

spectrum. This difficulty precludes verification of the F
-
 binding constants from above by 

complementary luminescence titration experiments. Samples to which F
-
 has been added are non-

emissive, and it appears plausible to assign the luminescence of the open (and un-fluorinated) form of 

molecule 1 to a charge transfer transition involving the triarylamine and triarylborane moieties. 

 

SUMMARY AND CONCLUSIONS 

 

The N → B charge transfer transition can easily identified in the open form of molecule 1, but for its 

closed isomer this seems impossible with experimental means alone. Thus we conclude that 

photoisomerizable organic mixed valence systems such as those shown on the left of Scheme 1 
45, 53

 

represent more attractive models for investigating charge transfer across photoswitchable bridges than 

our triarylamine-triarylborane donor-acceptor system. In molecule 1 there is a small influence of 
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photoisomerization on the triarylborane reduction potential but virtually none on the triarylamine 

oxidation. We anticipate that this influence would be significantly greater in a molecule in which the N 

and B atoms of the respective redox-active groups would be attached directly to the two different 

thiophene units of the photoisomerizable bridge. However, in our hands such a molecule turned out to 

be synthetically much less easily accessible than molecule 1, despite a prior report of an analogous 

compound with an organoboron unit attached directly to a thiophene of a dithienylethene bridge.
36

 

An interesting finding from our study is that addition of F
-
 to a solution of molecule 1 induces no 

significant color change, while photoisomerization alone produces a blue solution. Only the combined 

input of UV light and F
-
 ions leads to a blue-green color. 

 

EXPERIMENTAL SECTION 

 

Dithienylperfluorocyclopentene building block 2 was synthesized following previously published 

protocols.
37, 53

 Briefly, 2-methylthiophene was brominated,
80

 and the resulting 3,5-dibromo-2-

methylthiophene molecule was reacted with n-butyllithium and trimethylsilane to produce 3-bromo-2-

methyl-5-trimethylsilylthiophene.
81

 Subsequent treatment with n-butyllithium and 

perfluorocyclopentene yielded molecule 2 (4.93g/9.6 mmol, 17% yield; starting from 13.9 g/56.1 mmol 

3-bromo-2-methyl-5-trimethylsilylthiophene and  4.51 ml/33.6 mmol perfluorocyclopentene).
37

 
1
H 

NMR (300 MHz, CDCl3): δ (ppm) = 0.37 (s, 18 H), 2.49 (s, 6 H), 7.11 (s, 2 H). Deprotection of the 

trimethylsilyl-groups occurred with iodine monochloride following standard protocols,
82-83

 and this gave 

molecule 3 in 72% yield (650 mg/1.05 mmol, starting from 750 mg/1.46 mmol of compound 2).
53, 82, 84

 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 1.91 (s, 6 H), 7.20 (s, 2 H). 

For the synthesis of molecule 4, 4-bromoaniline (5.00 g, 29.2 mmol) and 4-iodoanisole (14.4 g, 61.3 

mmol) were reacted in toluene (30 mL) in presence of CuI (0.28 g, 1.46 mmol), KOH (12.8 g, 228 

mmol), and 1,10-phenanthroline (0.26 g, 1.46 mmol). After heating to 90°C for 3 days, the reaction 

mixture was cooled to room temperature, diluted with CH2Cl2 (200 mL) and washed four times with 150 
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mL portions of water. The combined organic phases were dried over anhydrous MgSO4 and the solvent 

evaporated subsequently. Purification of the raw product occurred by column chromatography on silica 

gel using an eluent mixture comprised of CH2Cl2 and pentane (1:1). This procedure afforded molecule 4 

in 57% yield (6.35 g, 16.6 mmol).
64

 
1
H NMR (300 MHz, CDCl3): δ (ppm) = 3.82 (s, 6 H), 6.83 (m, 2 

H), 6.85 (m, 4 H), 7.06 (m, 4 H), 7.26 (m, 2 H). 

Compound 4 (1.77 g, 4.60 mmol) was dissolved in PEG600 (23 ml) along with bis(pinacolato)diboron 

(1.75 g, 6.90 mmol), bis(triphenylphosphine)palladium(II) chloride (0.16 g, 0.23 mmol) and sodium 

acetate (1.77 g, 18.4 mmol). After stirring the reaction mixture at 85°C overnight water was added (50 

ml), and the cooled solution was extracted with diethyl ether (50 ml). The resulting organic phase was 

washed 3 times with 75 ml portions of water, and the aqueous phases were re-extracted subsequently 

with diethyl ether (3 × 100 ml). The combined ether phases were dried over anhydrous MgSO4, and the 

solvent was removed on a rotary evaporator. The raw product was purified by column chromatography 

on silica gel using a 1:1 (v:v) mixture of CH2Cl2 and pentane as an eluent. Subsequent washing of the 

dry product with pentane gave pure compound 5 in 32% yield (0.63 g, 1.46 mmol).
66

 . 
1
H NMR (300 

MHz, CDCl3): δ (ppm) = 1.34 (s, 12 H), 3.82 (s, 6 H), 6.85 (d, J = 8.9 Hz, 4 H), 6.89 (d, J = 8.6 Hz, 2 

H), 7.09 (d, J = 8.9 Hz, 4 H), 7.62 (d, J = 8.6 Hz, 2 H). 

Dithienylethene compound 3 (893 mg, 1.44 mmol) and triarylamine unit 5 (388 mg, 0.90 mmol) were 

dissolved in a mixture of THF (6 ml) and 1 M aqueous sodium carbonate solution (10 ml). After 

bubbling with N2 during 20 minutes tetrakis(triphenylphosphine)palladium(0) (160 mg, 0.14 mmol) was 

added, and the reaction mixture was heated to 80°C under N2 overnight. Diethyl ether (25 ml) was added 

after cooling to room temperature, and the reaction mixture was washed with water (3 × 25 ml). The 

organic phase was dried over anhydrous MgSO4 prior to evaporating the solvent under reduced pressure. 

Purification of the raw product occurred using column chromatography on silica gel using a 9:1 (v:v) 

mixture of pentane and diethyl ether. Molecule 6 was obtained in 32% yield (370 mg, 0.46 mmol) as an 

amorphous solid. 
1
H NMR (300 MHz, CDCl3): δ (ppm) = 1.90 (s, 3 H), 1.92 (s, 3 H), 3.80 (s, 6 H), 6.84 

(d, J = 9.0 Hz, 3 H), 6.90 (d, J = 8.7 Hz, 2 H), 7.06 (d, J  = 9.0 Hz, 4 H), 7.09 (s, 1 H), 7.22 (s, 1 H), 
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7.31 (d, J = 8.7 Hz, 2 H). 
13

C-NMR: (300 MHz, CDCl3): δ (ppm) = 14.3, 14.5, 29.7, 55.5, 114.8, 119.5, 

120.3, 120.6, 126.8, 128.5, 128.7, 133.6, 133.9, 136.2, 140.5, 148.7, 156.1. HRMS (ESI-TOF) m/z: 

[M
+
] Calcd for C35H26NO2F6IS2= 797.0354; Found 797.0347. 

For the synthesis of triarylborane unit 7 p-dibromobenzene (1.75 g, 7.57 mmol) was dissolved in dry 

diethyl ether (20 ml). After cooling to -78°C 1.6 M solution of n-butyllithium in hexane was added 

dropwise (3.4 ml, 6.6 mmol) and the reaction mixture was stirred for 3 hours at this temperature. Then, 

trimesitylboron fluoride was added slowly (1.56 g, 5.5 mmol).  After stirring the mixture at room 

temperature overnight it was washed with aqueous NH4Cl solution (100 ml) and water (100 ml). The 

organic phase was dried over anhydrous MgSO4 and the solvent was removed on a rotary evaporator. 

After recrystallization from pentane molecule 7 was obtained in 67% yield (2.05 g, 5.1 mmol).
65

 
1
H 

NMR (300 MHz, CDCl3): δ (ppm) = 2.00 (s, 12 H), 2.31 (s, 6 H), 6.83 (s, 4 H), 7.37 (d, J = 8.2 Hz, 2 

H), 7.49 (d, J = 8.2 Hz, 2 H). 

Molecule 7 (1.35 g, 3.3 mmol) was dissolved in PEG600 (60 ml) along with bis(pinacolato)diboron 

(1.26 g, 4.95 mmol), bis(triphenylphosphine)palladium(II) chloride (0.20 g, 0.28 mmol), and sodium 

acetate (10.8 g, 130 mmol). After heating to 90°C for 4 hours the reaction mixture was cooled to room 

temperature, diluted with water (300 ml) and extracted with diethyl ether (3 × 200 ml). The combined 

organic phases were dried over anhydrous MgSO4 and the solvent was removed subsequently on a rotary 

evaporator. Column chromatography on silica gel using a 9:1 (v:v) mixture of pentane and diethyl ether  

afforded pure product 8 in 90% yield (1.36 g, 3.0 mmol).
66

 
1
H NMR (300 MHz, CDCl3): δ (ppm) = 1.36 

(s, 12 H), 1.98 (s, 12 H), 2.31 (s, 6 H), 6.82 (s, 4 H), 7.50 (d, J = 8.0 Hz, 2 H), 7.77 (d, J = 8.0 Hz, 2 H). 

Compound 8 (259 mg, 0.57 mmol) and dithienylethene unit 6 (370 mg, 0.46 mmol) were dissolved 

together in THF (4 ml) and 1 M aqueous Na2CO3 solution (3 ml). Prior to adding 

tetrakis(triphenylphosphine)palladium(0) (120 mg, 0.10 mmol) the reaction mixture was bubbled with 

N2 during 20 minutes. After heating to 80°C under N2 overnight the mixture was cooled to room 

temperature and diethyl ether (50 ml) was added. Then the mixture was washed with water (3 × 50 ml), 

and the combined aqueous phases were re-extracted with diethyl ether (2 × 50 ml). The combined 
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organic phases were dried over anhydrous MgSO4 before evaporating the solvent under reduced 

pressure. Column chromatography on silica gel using a 9:1 (v:v) mixture of pentane and diethyl ether 

afforded the open form of molecule 1 in 57% yield (262 mg, 0.26 mmol). 
1
H NMR (300 MHz, CDCl3): 

δ (ppm) = 1.96 (s, 3 H), 1.97 (s, 3 H), 2.00 (s, 12 H), 2.34 (s, 6 H), 3.82 (s, 6 H), 6.81-6.91 (m, 8 H), 

6.93 (d, J = 8.7 Hz, 2 H), 7.09 (d, J = 8.9 Hz, 2 H), 7.16 (s, 1 H), 7.35 (d, J = 8.7 Hz, 2 H), 7.41 (s, 1 H), 

7.54 (s, 4 H). 
11

B NMR (160 MHz, CDCl3): δ (ppm) = 73.9 (s, 1 B). 
19

F NMR (282 MHz, CDCl3): δ 

(ppm) = -110.0 (m, 4 F), -131.9 (m, 2 F). HRMS (ESI-TOF-MS) m/z: [M
+
] Calcd for C59H52NO2BF6S2 

= 995.3437; Found 995.3451). Anal. calc. for C59H52NO2BF6S2 ⋅ 0.2 C4H8O (%): C: 71.07, H: 5.37, N: 

1.38, S: 6.32; found: C: 71.27, H: 5.67, N: 1.21, S: 6.58. Closed isomer: 
1
H NMR (300 MHz, CDCl3): δ 

(ppm) = 2.03 (s, 12 H), 2.15 (s, 6 H), 2.33 (s, 6 H), 3.83 (s, 6 H), 6.74-6.93 (m, 12 H), 7.11 (d, J = 8.7 

Hz, 4 H), 7.36 (d, J = 8.9 Hz, 2 H), 7.50-7.58 (m, 4 H). 
13

C NMR (300 MHz, CDCl3): δ (ppm) = 14.2, 

15.8, 19.8, 20.4, 21.1, 23.5, 24.9, 55.5, 60.4, 115.0, 118.2, 122.8, 127.4, 127.7, 128.1, 128.3, 129.1, 

129.3, 136.4, 139.0, 140.8, 141.5, 149.9, 156.9. Melting point: (78±4) °C. 

Cyclic voltammetry was performed using a glassy carbon working electrode, a silver counter 

electrode, and a silver wire served as a quasi-reference electrode. The supporting electrolyte was 0.1 M 

tetrabutylammonium hexafluorophosphate (TBAPF6), decamethylferrocene was added in small 

quantities for internal voltage calibration. Nitrogen was bubbled through the dried solvents before 

initiating voltage sweeps at 100 mV/s. UV-vis spectra were recorded on a diode array 

spectrophotometer, luminescence was measured on a commercial fluorimeter equipped with a double 

monochromator. Quartz cuvettes were used for all optical spectroscopic experiments. 
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SUPPORTING INFORMATION 

 

1
H and 

13
C NMR spectra of all new compounds, 

11
B and 

19
F NMR spectra of molecule 1, ESI-TOF-

MS spectra of the new compounds 1and 6. This material is available free of charge via the Internet at 

http://pubs.acs.org.  
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