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Abstract

The direct asymmetric copper hydride (CuH)-catalyzed coupling of α,β-unsaturated carboxylic 

acids to aryl alkenes is reported to access chiral α-aryl dialkyl ketones. A variety of substrate 

substitution patterns, sensitive functional groups and heterocycles are tolerated in this reaction, 

which significantly expands the range of accessible products compared to existing hydroacylation 

methodology. Although mechanistic studies are ongoing, we propose that CuH-catalyzed silylation 

of unsaturated acids occurs to access a uniquely effective acyl electrophilic coupling partner.

Graphical Abstract

Chiral α-aryl ketones represent an important functional group due to their synthetic utility 

and common occurrence in molecules of broad interest.1 While a number of catalytic 

methods exist for preparing enantioenriched quaternary α-aryl ketones2, catalytic assembly 

of acyclic tertiary variants via C–C bond formation is made challenging by the acidic nature 

of the stereocenter.3,4 This has recently been addressed via transition metal-catalyzed 

asymmetric coupling reactions of α-bromo ketones to aryl organometallic reagents5a,b, 

benzylic bromides to acyl chlorides5c, and benzylic zinc reagents to thioesters5d; 

additionally, chiral Lewis acid-catalyzed insertion of aryldiazoalkanes into aldehyde C–H 

bonds has also been described.5e Despite this progress, complementary catalytic methods for 

preparing chiral tertiary α-aryl dialkyl ketones from abundant and stable functional groups 

remain in high demand.

*Corresponding Author. sbuchwal@mit.edu. 

ASSOCIATED CONTENT
Supporting Information. The Supporting Information is available free of charge on the ACS Publications website. Experimental 
procedures and characterization data for all compounds (PDF).

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2017 September 06.

Published in final edited form as:
J Am Chem Soc. 2017 June 21; 139(24): 8126–8129. doi:10.1021/jacs.7b04937.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hydroacylation, typically achieved by the addition of an aldehyde C–H bond across an 

alkene π-bond, is a streamlined approach for the construction of ketones from readily 

available functional groups.6 While numerous enantioselective intramolecular 

hydroacylation processes have been reported, intermolecular variants remain less 

developed.7 The primary challenge associated with this transformation is suppressing 

aldehyde decarbonylation, which often occurs readily for substrates without a coordinating 

substituent.8 Nonetheless, impressive examples of enantioselective intermolecular 

hydroacylation have been reported using substrates of broad value that feature a coordinating 

substituent (e.g. salicylaldehydes, 2-(methylthio)benzaldehydes and α-substituted 

acrylamides).9 Meanwhile, the branch-selective addition of simple aliphatic aldehydes to 

styrenes provides direct access to dialkyl ketones bearing an α-aryl stereocenter, although 

only racemic methods for this transformation have been reported (Scheme 1a).10 To avoid 

the problems associated with aldehyde decarbonylation and stereocenter epimerization, we 

reasoned that a complementary approach toward hydroacylation could potentially provide 

rapid access to enantioenriched tertiary α-aryl dialkyl ketones.

As part of a broader program using chiral copper hydride (CuH) species as catalysts for 

enantioselective hydrofunctionalization reactions11, we sought to utilize acyl electrophiles as 

surrogates for aldehydes in order to address limitations of existing hydroacylation 

methodology. Inspired by prior work by Miura12a and Krische12b, we recently reported a 

CuH-catalyzed method for coupling styrenes to symmetrical aryl anhydrides to afford chiral 

α-aryl ketones or, after concomitant 1,2-reduction, chiral alcohols (Scheme 1b).13 In order 

to expand the synthetic utility of this hydroacylation strategy, we recognized the need to 

develop an improved method that avoids use of symmetrical anhydrides and, importantly, 

employs aliphatic aldehyde surrogates. We herein report the use of α,β-unsaturated 

carboxylic acids as direct coupling partners in a CuH-catalyzed dual hydroacylation and 

reduction process that provides access to highly enantioenriched tertiary α-aryl dialkyl 

ketones (Scheme 1c).

In CuH-catalyzed hydrofunctionalization reactions, chemoselective hydrocupration of an 

olefin in the presence of an electrophilic coupling partner is required in order to obtain high 

product yields.14 This requisite is realized when using aryl anhydride coupling partners 

(Scheme 1b); however, no hydroacylation of 4-fluorostyrene was seen when butyric 

anhydride, an aliphatic anhydride (1a), was subjected to the previously reported reaction 

conditions (Scheme 2a). Instead, only direct reduction of butyric anhydride to n-butanol was 

observed. We hypothesized that reactions of α,β-unsaturated anhydrides may display similar 

chemoselectivity as with aryl anhydrides to allow for styrenyl hydroacylation, and with 

concomitant 1,4-reduction of the unsaturated carbonyl, would produce chiral α-aryl dialkyl 

ketones. This hypothesis was validated when crotonic anhydride (1b) was subjected to the 

reaction conditions, which provided chiral ketone 3a in 70% yield and 94% ee after 

treatment with NH4F. In the course of searching for acyl electrophile alternatives to 

anhydrides, we discovered that α,β-unsaturated carboxylic acids directly engage in this 

hydroacylation process. Thus, the use of crotonic acid (1c) and 8 equiv of silane provided 

ketone 3a in 85% yield and 88% ee.
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This finding prompted a structure-activity relationship (SAR) study of the electrophilic acyl 

species (Scheme 2b). First, no coupling was observed when butanoic acid (1d) or its silyl 

ester 1e were used, clearly indicating the requirement for α,β-unsaturation in this process. 

Crotonaldehyde (1f) also provided no product, which suggests reduction of the acid to an 

aldehyde does not occur prior to hydroacylation. Additionally, other crotonoyl-based 

electrophiles, such as crotonoyl chloride (1g) or alkyl crotonates (1h and 1i), provided no 

hydroacylation product. On the other hand, the use of methyl(dimethoxy)silyl crotonate (1j) 
led to 20% yield of ketone 3a in 80% ee, suggesting silylated crotonic acid may be an active 

intermediate in the direct coupling of acids.

Based on the above observations and previous studies on CuH chemistry, we are currently 

able to propose the reaction pathway outlined in Scheme 3.15 First, carboxylic acid 

deprotonation and silylation is catalyzed by CuH in the presence of a hydrosilane, 

generating activated acyl electrophile 4 (Step A).16 Additionally, enantioselective 

hydrocupration of a styrene generates a chiral copper(I) benzylic intermediate (5, Step B), 

which represents the active nucleophilic partner. The reaction ultimately produces silyl enol 

ether 6, which is observed in high yield as judged by 1H NMR spectroscopy of the crude 

reaction mixture and allows access to chiral ketone 3 upon treatment with NH4F.17 At this 

time, the mechanism by which chiral benzyl copper 5 and the silylated acid 4 couple (Step 

C), and if other reaction intermediates are involved, is unknown and is the subject of 

ongoing investigations.18,19

The current scope of accessible chiral α-aryl ketones through the CuH-catalyzed coupling of 

α,β-unsaturated acids to aryl alkenes is shown in Table 1.20a First, the vinyl arene scope was 

explored using simple unsaturated carboxylic acid coupling partners (Table 1a). Electron 

deficient and electron rich, as well as ortho-substituted styrenes, provide chiral ketones in 

excellent yield and enantioselectivity (3a–c). A variety of alkenes containing coordinating 

atoms or consisting of heterocycles, such as a piperizine, pyrimidine, pyrazole, pyridine, 

benzofuran and carbazole, engage in this hydroacylation process delivering ketones in high 

enantiopurity (3d–i). In contrast to our previous hydroacylation method utilizing aryl 

anhydride reagents, we found that β-substituted styrenes couple to unsaturated acids in both 

high yield and enantioselectivity (Table 1b).20b β-substituted styrenes containing functional 

groups that could potentially be reduced by reactive CuH intermediates, such as a t-butyl 

ester (3j) and methyl ester (3k), are well tolerated, as is a PMB-protected alcohol (3l). 
Carboxylic acid substrates containing ethers (3m and 3n), a thioether (3o) and potentially-

reducible functional groups, such as a nitro group (3p) and a cis-alkene (3q), couple to 

styrenes in excellent yield and stereoselectivity (Table 1c).

The substrates shown in Table 1 demonstrate that β-alkyl- and symmetrical β,β-dialkyl-

substituted unsaturated carboxylic acids are competent hydroacylation coupling partners for 

a variety of styrene types.20c α-Alkyl substituted unsaturated acids, such as tiglic or angelic 

acid, do not engage in hydroacylation under the current reaction conditions. Similarly, 

acrylic acid, an unsubstituted unsaturated carboxylic acid that would provide access to ethyl 

ketones, does not participate in this transformation (Scheme 4a). To address this limitation, 

we found that β-ethoxyacrylic acid (9) acts as an acrylic acid surrogate to deliver chiral ethyl 

ketones in good yield and enantiopurity (Scheme 4b). This approach, which we propose 
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proceeds via a 1,4-reduction/β-ethoxy elimination pathway, is general as shown for ortho-

substituted substrate 10a and β-substituted styrene-derived ketone 10b.

To demonstrate the scalability of this methodology, a 10 mmol scale reaction using just 1 

mol% catalyst loading is shown in Eq 1 to provide 1.5 g of chiral ketone 3a with 92% ee. 

Given the ready accessibility of α,β-unsaturated acids and aryl alkenes, this method 

represents a highly practical approach to chiral α-aryl dialkyl ketones containing a range of 

functional groups and substitution patterns.21 Furthermore, by utilizing in situ activated acyl 

electrophiles as surrogates for aldehydes, this work addresses current substrate limitations of 

existing hydroacylation methodogy. The mechanism of this unprecedented coupling reaction 

is currently under investigation, as are additional CuH-catalyzed transformations involving 

unsaturated carboxylic acid substrates.
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Scheme 1. 
Previous work in hydroacylation using (a) aldehydes, (b) aryl anhydrides, and (c, this work) 

α,β-unsaturated carboxylic acids to access chiral α-aryl ketones.
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Scheme 2. 
(a) Discovery and (b) SAR of CuH-catalyzed tandem hydroacylation and 1,4-reduction with 

unsaturated acyl electrophiles.a

a yields determined by 1H NMR analysis of crude reaction mixture, (S,S)-Ph-BPE = 1,2-

Bis((2S,5S)-2,5-diphenylphospholano)ethane.
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Scheme 3. 
Currently proposed pathway for hydroacylation.
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Scheme 4. 
The use of (a) acrylic acid and (b) β-ethoxyacrylic acid to access chiral ethyl ketones.a

a Yields represent average isolated yields of two runs, performed with 1 mmol of alkene.
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Table 1

Ketone substrate scope for the direct coupling of aryl alkenes to α,β-unsaturated carboxylic acids.a

a
All yields represent average isolated yields of two runs, performed with 1 mmol of alkene.
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