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Abstract

The first asymmetric Kumada reactions of alkyl electrophiles are described, specifically, cross-
couplings of racemic α-bromoketones with aryl Grignard reagents. Several features of this
investigation are of interest. First, the couplings proceed at remarkably low temperature (−40 °C or
−60 °C), which enables the asymmetric synthesis of racemization-prone α-arylketones. Second,
dialkyl ketones undergo enantioselective coupling in good ee and yield. Third, readily available bis
(oxazolines) are shown for the first time to be effective ligands for cross-couplings of alkyl
electrophiles, thereby opening the door to new opportunities in asymmetric catalysis.

Transition metal-catalyzed couplings of organic electrophiles with Grignard reagents
(“Kumada reactions”) were among the first cross-coupling processes that were discovered.1,
2 Like other families of cross-couplings, this versatile method for the synthesis of carbon–
carbon bonds has been applied primarily to reactions of aryl and vinyl electrophiles.3 It is
nevertheless noteworthy that the earliest successes in cross-coupling alkyl electrophiles were
Kumada-type reactions with Grignard reagents.4,5,6 Despite that initial progress, to date there
have been no examples of enantioselective Kumada couplings of alkyl electrophiles.7,8,9 In
this report, we begin to address this challenge, establishing that a Ni/bis(oxazoline) catalyst
achieves asymmetric cross-couplings of α-bromoketones with aryl Grignard reagents (eq 1).
10,11

With respect to enantioselective cross-coupling reactions of alkyl electrophiles, pybox ligands
have proved to be useful for an array of nickel-catalyzed Negishi reactions, whereas 1,2-
diamine ligands have found application in Hiyama and Suzuki reactions.8 Unfortunately, none
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of the previously described methods achieves the asymmetric Kumada coupling illustrated in
entry 1 of Table 1 in good ee and yield.

Although bis(oxazoline) ligands have been widely applied in metal-catalyzed processes,12 to
the best of our knowledge they have not been employed in cross-coupling reactions of alkyl
electrophiles. We have determined that, in the presence of an appropriate C2-symmetric bis
(oxazoline), the desired Kumada coupling proceeds both in good yield and with high
enantioselectivity (entry 1 of Table 1; NiCl2·glyme and ligand 1 are commercially available).

Several features of this asymmetric Kumada reaction are noteworthy. First, the cross-coupling
is stereoconvergent: both enantiomers of the electrophile are converted efficiently into the same
enantiomer of the product.8 Second, the reaction occurs at −60 °C, the lowest temperature that
has been employed to date for a cross-coupling of an alkyl electrophile (activated or
unactivated).13 Third, as a consequence of the low temperature, the potentially labile α-
arylketone product is not racemized under the Brønsted-basic conditions.14

Exploiting a procedure developed by Knochel for the synthesis of functionalized Grignard
reagents,15 we have demonstrated that a wide array of aryl Grignards can be employed in our
enantioselective Kumada cross-couplings (Table 1).16,17 The method is compatible with a
diverse spectrum of functional groups, including esters, halides (no aryl–aryl coupling),
nitriles, ethers, and heteroaromatic rings (e.g., benzofurans and indoles).18 Regardless of the
electron-withdrawing or electron-donating nature of the substituent on the aromatic ring,
consistently good ee’s and yields are obtained.

A variety of α-bromoketones are suitable electrophilic partners in this catalytic asymmetric
Kumada cross-coupling process. In the case of aryl alkyl ketones (Table 2), the aromatic group
can be electron-rich or electron poor, and it can bear a variety of substitution patterns (entries
1-6). Furthermore, the coupling proceeds smoothly with a heteroaromatic substituent (entry
7), as well as with an array of functionalized alkyl groups (entries 9-11). The cross-coupling
products can be derivatized with good diastereoselectivity without racemization (eq 2 and 3).
19

When the same conditions are applied to asymmetric Kumada reactions of dialkyl ketones,
more modest enantioselectivities are observed (for entry 1 of Table 3, 23% ee and 24% yield).
However, by modifying the structure of the bis(oxazoline) and raising the reaction temperature,
we have obtained promising ee’s for a variety of reaction partners (Table 3). To the best of our
knowledge, with a single exception,20 there had been no previous progress in such catalytic
asymmetric cross-couplings of dialkyl ketones.
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Some preliminary observations may be useful in contemplating the mechanism for this process.
A kinetic study of the cross-coupling of 2-bromo-1-phenylpropan-1-one with PhMgBr (entry
1 of Table 1) revealed that the rate law for the reaction is first order in nickel, first order in
PhMgBr, and zero order in the electrophile.21 In addition, the unreacted electrophile is
essentially racemic throughout the course of the reaction (<5% ee; no evidence for kinetic
resolution). Finally, the ee of the product correlates linearly with the ee of the ligand (no non-
linear effect).

In summary, we have described the first asymmetric Kumada reactions of alkyl electrophiles,
specifically, couplings of racemic α-bromoketones with aryl Grignard reagents. This adds to
the small but growing list of cross-couplings of alkyl electrophiles that can be achieved with
useful enantioselectivity. Several features of this investigation are noteworthy. First, the
couplings proceed at remarkably low temperature (−40 °C or −60 °C), which enables the
asymmetric synthesis of racemization-prone α-arylketones. Second, dialkyl ketones undergo
enantioselective coupling in good ee and yield. Third, readily available bis(oxazolines) have
been shown for the first time to be effective ligands for cross-couplings of alkyl electrophiles,
thereby opening the door to exciting new opportunities in asymmetric catalysis.
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Table 1

Asymmetric Kumada Reactions of α-Bromoketones: Variation of the Nucleophile

entry Ar ee (%) yield (%)a

1 Ph 92 81

2 80 79

3 93 76

4 95 91

5 92 76

6 94 84

7 95 91

8 94 83

9 91 82
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entry Ar ee (%) yield (%)a

10 95 76
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entry Ar ee (%) yield (%)a

11 92 75

12 91 87
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entry Ar ee (%) yield (%)a

13 90 73

All data are the average of two experiments.

a
Yield of purified product.
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Table 2

Asymmetric Kumada Reactions of Aryl Alkyl Ketones

entry Ar R ee (%) yield (%)a

1 Me 72 89
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entry Ar R ee (%) yield (%)a

2 Me 80 72

3 Me 92 81

4 Me 80 80

5 Me 90 80

6 Me 90 76
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entry Ar R ee (%) yield (%)a

7 Me 87 91

8 Ph Et 90 77

9 Ph 86 73
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entry Ar R ee (%) yield (%)a

10 Ph 80 72

11 Ph 85 74

All data are the average of two experiments.

a
Yield of purified product.
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Table 3

Asymmetric Kumada Reactions of Dialkyl Ketones

entry ketone Ar ee (%) yield (%)a

1 Ph 73 90

2 Ph 85 74

3 4-CI-C6H4 90 82

4 4-CO2Et-C6H4 81 79

5 4-OMe-C6H4 90 73
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entry ketone Ar ee (%) yield (%)a

6 Ph 85 73
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entry ketone Ar ee (%) yield (%)a

7 3-Br-C6H4 78 70
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entry ketone Ar ee (%) yield (%)a

8 Ph 84 83

9 3,4-OCH2O-C6H3 83 75
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entry ketone Ar ee (%) yield (%)a

10 4-CO2Et-C6H4 80 78

All data are the average of two experiments.

a
Yield of purified product.
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