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ABSTRACT This manuscript describes an enantioselective synthesis of cephalostatin 1. Key steps of 

this synthesis are a unique methyl group selective allylic oxidation, directed C-H hydroxylation of a 

sterol at C12, Au(I)-catalyzed 5-endo-dig cyclization and a kinetic spiroketalization. 
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Introduction 

An important property of modern anti-cancer therapeutics is the selective killing of cancer cells over 

normal cells.  One approach to achieve selectivity is “synthetic lethality,”1 involving combination of a 

mutation, only present in cancer cells, and a small molecule, resulting in selective cell killing of the cells 

bearing the mutation.  Since many genetic mutations have been identified in tumor cells, a challenge is 

to discover small molecules that selectively target cells harboring these mutations. 

We have become interested in the therapeutic potential and cellular target of cephalostatin 1 (1), a 

natural product that may be synthetic lethal with the p16 tumor suppressor gene. In a bioinformatics 

comparison of the cytotoxicity profiles of ~43,000 small molecules with cell lines bearing altered p16, 1 
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emerged as the compound with the highest correlation, suggesting that it may be selectively cytotoxic to 

cells with altered p16.2 The p16 gene encodes cyclin-dependent kinase inhibitor 2A (CDKN2A or 

Ink4a), a tumor suppressor protein that blocks cell proliferation by binding to and inhibiting the kinase 

activity of cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6).2 In cells, both 

CDK4 and CDK6 each form active complexes with cyclin D that phosphorylate Rb (the retinoblastoma 

protein), allowing progression through the G1-S phase of the cell cycle.  If CDKN2A is inactive due to a 

mutation or lack of expression, tumor cells can progress uncontrollably through the G1-S phase of the 

cell cycle.3 Since p16 is among the most frequently mutated genes in human tumor cells, 1 may be a 

uniquely selective anti-cancer therapeutic, and elucidation of its unknown cellular target may reveal new 

ways to achieve synthetic lethality with small molecules. 

Cephalostatin 1 was first reported in 1988 as a potent growth inhibitory marine natural product.4 The 

average GI50 of 1 against the NCI-60, a collection of 60 human cancer cell lines, is 1.8 nM.5 Three other 

molecules, ritterazine B (2),6 OSW-1 (3)7 and schweinfurthin A (4)8 have cytotoxicity patterns 

resembling 1, suggesting that all three compounds share similar mechanisms.9 The cellular target and 

mechanism of 1 (or 2-4) has not been elucidated, although an increasing amount of research is being 

focused on these issues.10  

The unusually large and complex structure of 1 has been the target of many synthesis studies, with 

one synthesis reported by Fuchs.11 Due to the small quantities of 1 available from natural sources, only 

through synthesis will sufficient amounts of 1 (and analogs) be available to address questions 

surrounding its potential synthetic lethality with p16, elucidation of its cellular target and mechanism, 

and determination of its efficacy in vivo.  This manuscript reports our synthesis of 1 (Figure 1), enabling 

us to answer the questions posed above surrounding its biological activity. 
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Figure 1. Cephalostatin 1, ritterazine B, OSW-1.  Three antiproliferative natural products with similar 

cytotoxicity patterns. 

Synthesis of the western half of cephalostatin 1 (5).   

Our synthesis plan involved construction of the eastern and western portions of 1, followed by 

unsymmetrical pyrazine formation following the reactions developed by Heathcock12 and Fuchs.11a,13  

The C22 spiroketal of 5 (Scheme 1) is in a thermodynamically favorable configuration, meaning that its 

stereochemistry can be established by acid-catalyzed equilibration.14 Hecogenin acetate (6), an 

inexpensive plant-derived steroid that is available in kilogram quantities,15 is used as the starting 

material for our synthesis of the western half since it has handles for most of the functionality of 5, 

especially oxygenation at C12.  Compound 6 was also used by others for their synthesis studies on 1.  

With 6 as a starting point for synthesis of 5, we need to rearrange the spiroketal, oxidize C23, 

deoxygenate C16, install a C14-C15 olefin, and most challenging, oxidize the unactivated C18 angular 

methyl group (see Scheme 1).  Our plan was to generate lumihecogenin acetate (7) by photolysis of 6, a 
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reaction first described by Bladon.16 Selective oxidation of C18 of 7 to generate 8 followed by Prins 

cyclization would deliver 9. Compound 9 would then be converted to 5.  We recognized that 7 is the 

only intermediate in our synthesis in which C18 is activated (allylic), and therefore we focused on 

methods to selectively oxidize the allylic methyl group.  This is a significant challenge since the olefin 

of 7 is tetrasubstituted and there are four other allylic hydrogens (see blue H’s), two methines and one 

methylene.  We require an oxidation that is selective for the C18 methyl group and tolerant of highly 

hindered double bonds, boundary conditions that exclude many of the known allylic oxidation reactions. 

 

Scheme 1. Synthesis plan for 5 requiring a C18 methyl group-selective allylic oxidation of 7. 
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The synthesis of 5 begins with the known conversion of 6 to 7 (Scheme 2).16 Attempts to perform 

allylic oxidation of C18 on either aldehyde 7 or the protected alcohol at C18 were unsuccessful.  As 
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expected, SeO2 led to hydroxylation of the C15 methylene.  Radical halogenations were poorly 

regioselective and the hindered double bond was inert to transition metal-catalyzed allylic oxidation 

reactions. 

 

Scheme 2. Selective C18 methyl group-selective allylic oxidation involving ene reaction, [2,3]-

sigmatropic rearrangement, and oxidationa 
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a Conditions: (a) hν, 1,4-dioxane, 25 ºC; (b) 4-phenyl-1,2,4-triazoline-3,5-dione, dichloroethane, 25 
ºC, 61% 2 steps; (c) NaOAc, DMF, 100 ºC, 69%; (d) CH(OMe)3, TsOH•H2O, MeOH, 25 ºC; (e) 
PhI(OAc)2, MeCN/H2O, 0 ºC, 64% 2 steps; (f) NaBH4, MeOH, 0 ºC, 88%; (g) NaH, DMF, 0 ºC; allyl 
bromide, 25 ºC , 93%; (h) PPTS, acetone, 25 ºC ; (i) BF3⋅OEt2, PhMe, 0 ºC, 61% 2 steps; (j) Ac2O, pyr., 
DMAP, 25 ºC. 

Ultimately, an unusual allylic oxidation of C18 was achieved.  It was discovered that treatment of 7 

with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD, 10), a potent eneophile, lead directly to 11 achieving 
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selective functionalization of the C18 methyl group.  Selective activation of the C18 methyl, via an 

apparent ene reaction, combined with formation of a seven-membered aminal. This transformation may 

in fact be directed by the C12 aldehyde since the corresponding C12 dimethyl acetal reacted to form a 

PTAD adduct with abstraction of a C15 proton.  One explanation for the selective activation of C18 in 

this reaction involves initial formation of a zwitterionic adduct (18) between PTAD (10) and aldehyde 7 

(Scheme 3).  This species could participate in an intramolecular aza-Prins reaction via intermediate 19.  

Close proximity between the C12 alkoxide and the C18 methyl group in 19 could explain the selective 

proton abstraction at C18.  Alternatively, PTAD could add to the C12 aldehyde via its carbonyl and 

engage in an ene reaction, although inspection of molecular models appears to preclude this mechanism 

due to lack of required orbital overlap.  Finally, an ene reaction may occur between 10 and 7 followed 

by hemiaminal formation. 

Treatment of 11 with sodium acetate induced opening of the hemiaminal followed by apparent [2,3]-

sigmatropic rearrangement, affording allylic N-Ph urazole 12 (Scheme 3). Protection of the C12 

aldehyde as its dimethyl acetal was followed by oxygenation of C18 by treatment of 13 with PhI(OAc)2, 

affording aldehyde 14.  In this reaction, the N-N bond is oxidized to N=N.  Tautomerization, addition of 

water, and release of the urazole affords 14.  Allylation of the primary hydroxyl group, followed by acid 

catalyzed acetal hydrolysis set the stage for C-ring closure which was accomplished by treatment with 

BF3⋅OEt2 (Scheme 2).  Finally, acetylation of the secondary alcohol provided 17. 
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Scheme 3. Proposed mechanism of the selective aza-Prins reaction, [2,3]-sigmatropic rearrangement, 

and urazole oxidative hydrolysis 
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Starting with compound 17, allyl group-selective oxidative olefin cleavage, aldehyde reduction and 

protection of the resulting primary hydroxyl afforded 20 (Scheme 4).  Next, the atoms comprising the 

spiroketal were removed starting with application of a modified Marker degradation.17 Treatment of 20 

with trifluoroacetyl trifluoromethanesulfonate (TFAT) opened the F-ring, giving E-ring dihydrofuran 

21.  Oxidative cleavage of the cyclic enol ether provided the corresponding ketoester, which was 

subjected to DBU-promoted elimination.  The product, dienone 22 underwent 1,4 reduction under 

platinum-catalyzed hydrosilylation conditions, affording the saturated methyl ketone 23 as a 4:1 mixture 

of β/α-methyl ketone stereoisomers.  After removal of the TBDPS ether, and separation of the 

diastereomers, the undesired C17 α-methyl ketone was equilibrated in favor of the β-diastereomer.  

Oxidation of the C23 primary hydroxyl preceded an intramolecular aldol reaction to afford enal 26. 

 

 

 

 

Scheme 4. Conversion of 17 to cephalostatin 1 western half (5)a 
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a Conditions: (a) OsO4, NaIO4, 2,6-lutidine, 1,4-dioxane/H2O, 25 ºC; (b) NaBH(OAc)3, PhH/AcOH, 0 
ºC; (c) TBDPSCl, Im., DMAP, CH2Cl2, 25 ºC, 74% 4 steps; (d) trifluoroacetyl 
trifluoromethanesulfonate, 2,6-tert-butyl-4-methyl-pyridine, CH2Cl2, -78 ºC, then PPTS, CH2Cl2, 40 ºC; 
(e) PCC, CH2Cl2, 25 ºC; (f) DBU, CH2Cl2, 43% 3 steps; (g) (HMe2Si)2O, H2PtCl6, PhMe, 25 ºC; (h) 
TBAF, AcOH, THF, 25 ºC, 51% 2 steps; (i) DMSO, i-PrNEt2, SO3•pyr, CH2Cl2, 25 ºC; (j) piperidine, 
AcOH, 25 ºC, 75% 2 steps; (k) 1-methoxy-1- tert-butyldimethylsilyloxyethene, LiClO4, CH2Cl2, 27β: 
51%, 27α: 18%; (l) TBAF, THF, 25 ºC, 100%; (m) Ph3P, DIAD, chloroacetic acid, THF, 25 ºC, 69%; 
(n) HDTC, 2,6-lutidine, AcOH, 25 ºC, 80%;  (o) TBDPSCl, Im., DMAP, CH2Cl2, 25 ºC, 93%; (p) 
MeMgBr, Et2O, 25 ºC; (q) TPAP, NMO, CH2Cl2, 25 ºC, 69% 2 steps; (r) PhSeBr, pyridine, CH2Cl2, -78 
ºC to 0 ºC, 92%; (s) AIBN, Bu3SnH, toluene, 100 ºC, 100%; (t) CSA, DCE, 83 ºC, 78%. 

Installation of the C24-C25 fragment of the incipient F-ring was accomplished by way of a 

Mukaiyama aldol reaction.  Thus, treatment of aldehyde 26 with the enolsilane of methyl acetate in the 

presence of lithium perchlorate delivered a 3:1 mixture of diastereomers favoring the undesired 23-(S)-

stereoisomer (27β).  Unfortunately, extensive efforts to override the substrate’s inherent facial 

selectivity for aldol addition were met with failure.  Attempts at Mukaiyama aldol addition with other 

catalysts, including chiral catalysts, afforded product mixtures favoring 23-(S)-configured products.  

Likewise, chiral auxiliary-based acetate equivalents reacted to give predominantly adducts with the 

undesired 23-(S) stereochemistry.  Removal of the TBS group from 27β , Mitsunobu reaction with 

chloroacetic acid, hydrolysis of the chloroacetate, silylation of the C23 secondary carbinol and addition 

of excess MeMgBr afforded 28 after oxidation with TPAP/NMO. 

Since the spiroketal of 5 is known to be under thermodynamic control, we expected mild acid 

treatment of 28 to furnish the F-ring while establishing the desired (S)-stereochemistry at C20.  
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However, in the presence of camphorsulfonic acid, 28 cyclized to give a spiroketal with 20-(R) 

stereochemistry.  Surprisingly, the observed product results from protonation of the more hindered 

concave face of the dihydropyran E-ring.  This result is in contrast to a similar reaction reported by 

Fuchs in which protonation of a compound closely related to 28 (except that the C14-C15 double bond 

was saturated) afforded the desired C20-(S) stereochemistry.14  

This outcome was corrected by a two-step bromoetherification/reductive debromination sequence.  

Bromoetherification of 28 with phenylselenyl bromide afforded 29.  Reductive dehalogenation of 29 

delivered 30 as a single diastereomer with hydrogen atom addition occurring from the convex face.  To 

complete the preparation of the cephalostatin western half 5, C22 was epimerized by treatment of 30 

with camphorsulfonic acid in refluxing dichloroethane. 

Synthesis of the cephalostatin 1 eastern half (31).  

The E and F rings of the eastern half of cephalostatin 1 consist of a 5,5-spiroketal in a 

thermodynamically unfavorable configuration at C22 requiring kinetic control for its formation (Scheme 

5, 31).  The spiroketal in the natural C22-(S) configuration exhibits a single anomeric effect, while the 

unnatural C22-(R) configuration permits additional stabilization due to a second anomeric effect.  To 

form the 5,5-spiroketal, we planned to induce cyclopropane opening on 32 concurrent with irreversible 

attack by the C25 hydroxyl group on the less hindered β–face of the incipient oxonium ion, which 

would simultaneously give rise to the desired configurations of both the C22 spiroketal and the C21 

methyl group.  Rather than starting with hecogenin acetate (6) to make use of its C12 oxygenation as for 

the western half of 1, we thought it more expedient to hydroxylate the C12 position of the steroid trans-

androsterone (34) by a remote C-H oxidation process (see Scheme 5, 34).  To increase convergency of 

the synthesis of 32, the remote oxidation of 34 would be followed by Sonogashira cross coupling with 

alkyne 33, which comprises seven of the eight carbons of the E,F-rings spiroketal. 
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Scheme 5. Synthesis plan for 31 requiring a remote oxidation of 34 and Sonogashira coupling with 33 
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Our synthesis of alkyne 33 began with the known diol 35 (two steps from 3-methyl-3-buten-1-ol, 89% 

yield, 96% ee).18  We protected the primary hydroxyl as a TBDPS ether, removed the PMP group by 

CAN oxidation, and protected both hydroxyl groups of the resulting 1,3-diol as TMS ethers to afford 37 

in 80% yield over three steps (Scheme 6).  The Swern reagent chemoselectively converted the TMS 

ether of the primary carbinol directly into aldehyde 38.  Carreira alkynylation19 with 

ethynyltrimethylsilane favored the desired (4R)-propargyl alcohol by 32:1 and provided it in 57% yield 

from 37.  The secondary carbinol was protected as a TBS ether to deliver 39 and the alkynyl TMS was 

removed with AgNO3 and 2,6-lutidine,20 affording alkyne 33. 

 

Scheme 6. Synthesis of alkyne 33 from known diol 35a 
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a Conditions: (a) TBDPSCl, imidazole, DMF; (b) CAN, CH3CN, H2O, 0 oC; (c) TMSCl, imidazole, 
DMF, 80% 3 steps; (d) oxalyl chloride, DMSO, Et3N, CH2Cl2, -78 oC; (e) Zn(OTf)2, (+)-N-
methylephedrine, Et3N, ethynyltrimethylsilane, toluene, 40 oC, 57% 2 steps; (f) TBSCl, imidazole, 
DMAP, CH2Cl2; (g) AgNO3, THF, H2O, EtOH, 2,6-lutidine, 93% 2 steps. 
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Our synthesis of the steroid-derived Sonogashira coupling partner began with the commercially 

available steroid trans-androsterone 34 (Scheme 7).  Utilizing the procedure of Schönecker for the 

hydroxylation of unactivated C-H bonds,21 we treated the steroid with 2-(aminomethyl)pyridine and 

catalytic TsOH to form imine 40 in 89% yield.  Treatment of 40 with Cu(OTf)2, benzoin, and Et3N in 

acetone to generate Cu(I), followed by the addition of molecular oxygen resulted in hydroxylation at the 

unactivated C12 position.  Hydrolytic workup provided diol 41 as a single diastereomer in 25% yield.  

Acetylation with Ac2O/pyridine and treatment with PhN(Tf)2/KHMDS led to vinyl triflate 43 in 88% 

yield. 

 

Scheme 7. Synthesis of vinyl triflate 43 from commercially-available trans-androsterone 34 by remote 

oxidation at C12a 
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a Conditions: (a) 2-aminomethylpyridine, TsOH, toluene, 110 ºC, 89%; (b) Cu(OTf)2; benzoin, Et3N, 
acetone; O2; HCl; NH4OH, 25%; (c) Ac2O, pyridine, 97%; (d) PhN(Tf)2, KHMDS, THF, -78 oC to 25 
ºC, 91%. 

Pd-catalyzed Sonogashira coupling of vinyl triflate 43 and alkyne 33 provided enyne 44 in 94% yield 

(Scheme 8).  Sharpless dihydroxylation of the enyne proceeded with complete stereocontrol to install 

the α-hydroxyl at C17.  Further oxidation with benzeneseleninic anhydride22 converted the cis-diol into 

unstable α-hydroxy cyclopentenone 45 in fairly low yield despite extensive efforts toward optimization. 
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Scheme 8. Completion of the synthesis of the eastern half of cephalostatin 1a 
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a Conditions: (a) 33, (Ph3P)4Pd, CuI, iPr2EtN, DMF, 94%; (b) (DHQ)2PHAL, K2CO3, K3Fe(CN)6, 
MeSO2NH2 , K2OsO4•2H2O, tBuOH, H2O, 95%; (c) (PhSeO)2O, K2CO3, toluene, 110 ºC; (d) 
NaBH(OAc)3, THF, 65 oC, 36% 2 steps; (e) Ph3PAuCl, AgBF4, THF, 88%; (f) CH2I2, Et2Zn, toluene, 0 
ºC; (g) PPTS, CH2Cl2, MeOH, 73% 2 steps; (h) NBS, THF, -10 ºC; (i) Bu3SnH, AIBN, toluene, 110 ºC; 
(j) TMSOTf, pyridine, 65% 3 steps; (k) KHCO3, MeOH, H2O, 65 oC; (l) HCrO4, Et2O, CH2Cl2, 0 ºC, 
88% 2 steps. 

Treatment of the enone 45 with NaBH(OAc)3 resulted in C17 hydroxyl-directed reduction to trans-

diol 46. Diol 46 underwent Au(I)-catalyzed 5-endo-dig cyclization23 to provide dihydrofuran 47 in 88% 

yield.  It is worth noting the ease with which the Au(I)-catalyzed cyclization takes place on what is a 

highly hindered internal alkyne. Again using the C17 hydroxyl as a directing group, Simmons-Smith 

conditions stereoselectively converted the dihydrofuran 47 to cyclopropane 48 with an α configuration.  

Deprotection of the C25 hydroxyl with PPTS delivered spiroketalization substrate 32 as a single 

diastereomer in 73% yield from 47.  Treatment of 32 with Zeise’s dimer [{(η2-C2H4)PtCl2}2], resulted in 

quantitative spiroketalization;24 however, the undesired C22-(R) spiroketal stereoisomer was favored by 

a 13:1 ratio.  This may be due to HCl generated during the reaction and attempts to buffer the reaction 

with nitrogenous bases inhibited spiroketalization. We later discovered that oxidative spiroketalization 

using NBS in THF furnished a separable mixture of bromomethylene spiroketals favoring the desired 

C22-(S) isomer 49 by a 5:1 ratio.   Lack of equilibration in this reaction is due to the neutral reaction 
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conditions. Debromination of 49 by Bu3SnH/AIBN followed by silylation of the extremely hindered 

C17 hydroxyl using neat pyridine/TMSOTf delivered 50 in 65% yield from 49.  Selective hydrolysis of 

the C3 acetate (the C12 acetate is shielded by the C17 OTMS group) followed by Brown-modified 

Jones oxidation25 provided 31, the eastern half of cephalostatin 1, in 88% yield over two steps. 

Completion of a synthesis of cephalostatin 1.  

To prepare the A rings of western half 5 and eastern half 31 for pyrazine coupling, we used a 

sequence of reactions developed by Fuchs11b (Scheme 9). Bromination α to the C3 ketone and azidation 

with tetramethylguanidinium azide in EtNO2 provided 52 from 5 and 54 from 31.  The C3 ketone of 54 

was converted to methoxime 55, and Staudinger reduction of the azide to an amine gave pyrazine 

coupling partner 56.  52 and 56 were treated with polyvinylpyridine and Bu2SnCl2 in refluxing benzene 

to provide protected cephalostatin 1 (57) along with a trace of recovered 56.  Global deprotection of the 

silyl groups and the C12 acetate was affected by TBAF in refluxing THF to afford cephalostatin 1 in 

47% yield from 52. 

 

 

 

 

 

Scheme 9. Pyrazine coupling and completion of the synthesis of cephalostatin 1a 
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a Conditions: (a) PhMe3NBr3, THF, 0 ºC; (b) tetramethylguanidinium azide, EtNO2, 83% 2 steps; (c) 
PhMe3NBr3, THF, 0 ºC; (d) tetramethylguanidinium azide, EtNO2, 78% 2 steps; (e) NH2OMe•HCl, 
pyridine/CH2Cl2; (f) PPh3, THF/H2O, 0 to 25 oC, 77% 2 steps; (g) polyvinylpyridine, Bu2SnCl2, benzene, 
80 ºC; (h) TBAF, THF, 47% 2 steps. 

In conclusion, an enantioselective synthesis of cephalostatin 1 has been achieved.  In the course of our 

synthesis of the western half, a unique methyl group-selective allylic oxidation was developed. PTAD 

underwent selective functionalization of the C18 methyl group, apparently directed by a proximal 

aldehyde.  Subsequent [2,3]-sigmatropic rearrangement and oxidative hydrolysis of the resulting urazole 

led to a C18 aldehyde that could not be produced using other methods.  This allylic functionalization 

sequence may be useful in other systems where conventional methods fail.  Key steps in the eastern half 

synthesis include a remote C-H hydroxylation of C12, Sonogashira coupling between a steroid-derived 

vinyl triflate and an alkyne containing most of the atoms of the E and F rings, a Au(I)-catalyzed 5-endo-

dig cyclization, and a kinetic spiroketalization by cyclopropane ring opening.  Our goal is to uncover the 

cellular target of cephalostatin 1 and explore its therapeutic potential.  This synthesis is a first step 

toward achieving these goals. 
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