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TpMo(CO)2(5-oxo-η3-pyranyl) and TpMo(CO)2(5-oxo-η3-pyridinyl) complexes 1 and 2
(Scheme 1, Tp = hydridotrispyrazolylborate) and their progeny have been developed as
organometallic enantiomeric scaffolds for the asymmetric construction of a wide variety of
heterocyclic systems.1 Readily available and easily synthesized,2 single enantiomers of these
simple air-stable organometallic π-complexes function as scaffolds from which widely
differing families of complex organic structures can be elaborated in an enantiospecific fashion.
The organometallic nature of these enantiomeric scaffolds provides opportunities to implement
conceptually unique synthetic design strategies. Herein is described one such strategy: a new
molybdenum-mediated semipinacol rearrangement delivering α-quaternary pyranyl and
pyridinyl systems that, when coupled sequentially with a molybdenum-mediated
intramolecular 1,5-“Michael-like” reaction of 5-oxopyridinyl molybdenum complexes,1m can
provide a novel enantiocontrolled entry to heteroatom-bridged [3.3.1]bicyclic systems bearing
quaternary centers3,4,5 adjacent to the ring heteroatom (Scheme 1). The concept is highlighted
via a synthesis of the azabicyclo[3.3.1]nonane natural product, (-)-adaline.6 Adaline possesses
the 9-azabicyclo[3.3.1]nonane skeleton common to several insect- and plant-derived alkaloids,
including pseudopelletierine,7 (+)-euphococcinine,8 and porantherine.9 This structure is a
higher homolog of the medicinally-important tropane skeleton. A number of racemic10 and
enantiospecific syntheses11 of adaline have been reported.

The molybdenum scaffold-based synthesis of heteroatom-bridged [3.3.1]bicyclics bearing ring
junction quaternary centers suggested in Scheme 1 first requires the stereocontrolled
construction of α-quaternary 5-oxopyranyl and 5-oxopyridinyl molybdenum complexes. This
was accomplished through the agency of the molybdenum-mediated semipinacol reaction
shown in Table 1. The requisite semipinacol precursors 5-12 were prepared from 5-oxopyranyl
scaffold 1 and 5-oxopyridinyl scaffold 2 (both readily available in racemic and high
enantiopurity forms on multigram scale in 2-3 isolation steps from furfuryl alcohol and furfuryl
amine, respectively2) by conversion of 1 and 2 into the corresponding 6-alkylidene-5-oxo
complexes 3 and 4 via a Mukaiyama aldol-dehydration reaction sequence.12 Specific data
points for both the pyranyl and pyridinyl series scaffolds are provided in Table 1.
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Selective 1,2-addition of Grignard reagents to the enones 3 and 4 took place anti to the TpMo
(CO)2 moiety in good to excellent yields, except with the more hindered i-Pr and t-Bu reagents.
Treatment of adducts 5-12 with HCl in dioxane induced a rapid and stereospecific semipinacol
reaction for those R2 substituents with good migratory aptitudes such as allyl, phenyl, vinyl,
and t-Bu, but not for R2 = Me or i-Pr. The geometry of the alkylidene residue influenced the
outcome of the semipinacol reaction for the pyridinyl series scaffolds, but not for the pyranyl
scaffolds. For example, in the pyranyl series, both E-5 and Z-5 gave excellent yields of the
same semipinacol product 13, but of the analogous pyridinyl series complexes E-11 and
Z-11, only E-11 rearranged in excellent yield to the expected semipinacol product 20. In stark
contrast, treatment of Z-11 with HCl in dioxane led to decomposition. Presumably, Z-11
experiences destabilizing non-bonded steric interactions between the Cbz protecting group on
nitrogen and the syn R1 substituent of the alkylidene during sp2→sp3 hybridization changes
resident at alkylidene moiety during the semipinacol reaction.

To showcase the utility of the strategic coupling of the molybdenum mediated semipinacol and
the 1,5-“Michael-like” bond forming reaction, a total synthesis of (-)-adaline was undertaken.
Terminal alkene (-)-20 (97.7% ee) was oxidized to the methyl ketone 21 in 93% yield using
the classical Wacker reaction.13 Treatment of 21 with KOSiMe3 induced a 1,5-“Michael-like”
reaction,1m proceeding via attack of the tethered potassium enolate at the neutral η3-
allylmolybdenum. Direct treatment of the crude anionic intermediate 2214 with NOPF6 in
DME provided bicyclic enone 23 in 80% yield over the two steps.

Selective ketalization of the saturated ketone in compound 23 gave 24 in 85% yield. Luche
reduction of enone 24 provided a single diastereoisomeric equatorial alcohol in 98% yield,
resulting from 1,2-hydride addition to the carbonyl from the less-hindered, convex face of the
bicycle.15 Barton-McCombie conditions16 were employed to remove the hydroxyl group,
providing a single alkene 25 in 63% overall yield, whose structure was confirmed by COSY
NMR. Hydrolysis of the ketal protecting group with catalytic Pd(MeCN)2Cl2 in wet acetone
delivered the corresponding ketone (95%), which was subjected to simultaneous hydrogenation
of the alkene and hydrogenolysis of the Cbz protecting group providing (-)-adaline in 90%
yield {[α]D

25 -13 (c 0.73, CHCl3); Lit.6 [α]D -13 (CHCl3)}. The enantiomeric excess of
precursor (+)-25 was determined by HPLC (97.6%); therefore, (-)-adaline produced by this
method is assumed to have a 97.6% ee.

In conclusion, the organometallic enantiomeric scaffold-based semipinacol/1,5-“Michael-
like” sequence represents a new strategy for the stereocontrolled construction of biologically-
relevant heteroatom-bridged [3.3.1]bicyclic ring systems bearing quaternary carbons adjacent
to the heteroatom. The asymmetric total synthesis of (-)-adaline demonstrates one application
of this methodology. Full details pertaining to the scope and application of the metal-mediated
semipinacol rearrangement will be provided in a future disclosure.
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Scheme 1.
Scaffold-based Sequential Semipinacol/1,5-“Michael-like” Approach to Aza[3.3.1]bicyclics
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Scheme 2.
Total Synthesis of (-)-Adaline.
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