

Am Chem Soc. Author manuscript; available in PMC 2009 September 17.

Published in final edited form as:

J Am Chem Soc. 2008 September 17; 130(37): 12228–12229. doi:10.1021/ja8043695.

Total Synthesis of Haterumalides NA and NC via a Chromium-Mediated Macrocyclization

Jennifer M. Schomaker and Babak Borhan*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

The haterumalides are a series of chlorinated macrolides isolated from an Okinawan sea sponge of the species *Ircinia* (Figure 1). ^{1,2} Kigoshi's synthesis of haterumalide NA led to its structural revision. ³ The stereochemistry of the remaining haterumalides is assumed to mimic that of haterumalide NA, and the stereochemistries in Figure 1 have been changed to reflect the corrections made to the initial structure of haterumalide NA.

Figure 1 summarizes previous synthetic approaches to haterumalide NA. Kigoshi and coworkers utilized an intramolecular Reformatsky reaction as a key step to form the macrolide. ³ Snider and Gu used an intermolecular Stille coupling reaction followed by a Yamaguchi macrolactonization. ⁴ Hoye and Wang reported the first total synthesis of the correct enantiomer of haterumalide NA using a Pd-mediated alkyne haloallylation reaction. ⁵ Most recently, Roulland and Kigoshi, in two separate reports, described the use of variants of Suzuki-Miyaura cross-coupling along with macrolactonizations to achieve the synthesis of haterumalide NA. ^{6,7} Our approach entailed the construction of the C8–C9 bond, such that any member of the haterumalide family could be accessed. Critical to this assembly would be the ability to construct a nucleophilic Z-vinyl chloride moiety that would participate in a macrocyclization event with a pendant aldehyde. Thus, we explored the utility of the chlorovinylidene chromium carbenoids developed by Falck and Mioskowski (see Figure 1, box). ^{8,9} To the best of our knowledge, this chemistry has not been utilized in a natural product synthesis and its participation in a macrocyclization has not been reported.

Synthesis of 1c commenced with preparation of the tetrahydrofuran-containing aldehyde for intramolecular $CrCl_2$ -mediated coupling (Scheme 1). 2-Deoxy-D-ribose 2 was converted to the disilylated methyl acetal 3 in high yield. Addition of allyltrimethylsilane to 3 in the presence of tin tetrabromide by the method of Woerpel and co-workers gave the allylated product in excellent diastereoselectivity. 10,11 Desilylation to yield 4 was followed by protection of the primary alcohol as a trityl group, yielding 5 poised for Mitsunobu esterification with carboxylic acid 9c.

Preparation of 9c began with the ring-opening of 6 with the anion of chloroform to yield the corresponding alcohol. DMP oxidation furnished the unstable, reactive, and volatile aldehyde 7, which was immediately subjected to a Still-Gennari olefination to yield the desired Z-acrylate. Reduction of the ester to the allylic alcohol 8 was followed by a rapid oxidation to the unsaturated aldehyde and an immediate asymmetric Mukaiyama aldol reaction to furnish 9a. The secondary alcohol was protected as a TBS ether, and the phenyl ester was hydrolyzed to give the desired 1,1,1-trichloroalkane substrate 9c.

Mitsunobu esterification of alcohol 5 and carboxylic acid 9c yielded 10a without incident. Both TBS-protected and acetylated C3-OH compounds (10a and 10c) were carried forward for comparative studies in later stages. Selective dihydroxylation of the terminal alkene was followed by oxidative cleavage of the diol with sodium periodate in a mixture of dioxane and water, yielding aldehydes 11a and 11c. Presumably, the TBS and acetyl protecting groups provide enough steric hindrance to prevent any undesired oxidation of the trisubstituted olefin.

With the substrates **11a** and **11c** in hand, studies directed toward the intramolecular CrCl₂-mediated coupling were pursued (Scheme 2). Several different concentrations were screened, as studies with an intermolecular approach (Cr-mediated coupling, followed by intramolecular Mitsunobu lactonization, not shown) proved that higher reaction concentrations gave much better yields, presumably due to an increased rate in the desired reaction compared to the competing side reaction caused by quenching of the vinylidene chromium carbenoid with water or other proton sources present in the reaction (despite precautions taken to dry all reagents and solvents carefully).

Gratifyingly, treatment of the substrates shown in Scheme 2 with 4.0 equiv of CrCl₂ at the indicated concentrations gave the desired C–C bond formation, with 0.025 M leading to the highest yields. Most importantly, the macrocyclization products **12a** and **12c** were obtained as one major diastereomer (9:1 for **12a**, 4:1 for **12c**), with minor side products **13a** and **13c** resulting from proto-demetalation. The stereochemistry of the newly generated C9 center matched the stereochemistry of the natural product, haterumalide NC, according to the chemical shift data obtained via ¹H NMR.² This was further verified through modified Mosher ester analysis of the products (Supporting Information).

The final piece for installation of the side chain of haterumalide NC was prepared as illustrated in Scheme 3 in a fashion similar to that reported in prior syntheses for haterumalide NA. Treatment of 3-butyn-1-ol (**16**) under Negishi's conditions gave the desired *E*-iodoalkene **17**. ¹⁵ Conversion of the alcohol to aldehyde with DMP in the presence of excess NaHCO₃ was immediately followed by further oxidation to the *n*-butyl ester **18**. The macrocycle **12c** was prepared for the upcoming NHK coupling by protection of the C9 alcohol with TBSOTf, removal of the trityl group, and oxidation of the primary alcohol to the aldehyde with DMP. The crude aldehyde **15** was immediately subjected to NHK coupling with the vinyl iodide **18** to give the alcohol **19** as a 9:1 mixture of diastereomers at C15. ³⁻⁵ Deprotection of the C9 TBS group with HF/py in THF provided haterumalide NC (**1c**).

Next, we turned our attention toward the deoxygenation of the C9-OH, which would lead to haterumalide NA. Xanthates 20a and 20c were synthesized as illustrated in Scheme $4.^{16}$ Radical-induced fragmentation of 20a with AIBN in refluxing toluene led to a low yield of 21a, along with several unidentifiable byproducts (Scheme 4). Lowering the reaction temperature to $80\,^{\circ}$ C improved the yield substantially; however, no further gains were observed at $60\,^{\circ}$ C. Compounds 21a and 21c were obtained as the major product of the deoxygenation, along with olefin-isomerized 22a or 22c as side products. Compound 21a constitutes a formal synthesis of haterumalide NA.

In summary, the first total synthesis of haterumalide NC was accomplished in 16 linear steps (longest route) with an overall yield of 6.2% via an unprecedented macrocyclization of an aldehyde and a chlorovinylidene chromium carbenoid to construct the C8–C9 bond. Deoxygenation of the latter product led to the formal synthesis of haterumalide NA.

Acknowledgements

We are grateful to the NIH (Grant No. R01-GM082961) for support of this research. J.M.S. thanks the ACS Division of Organic Chemistry for a Graduate Fellowship sponsored by Eli Lilly, Michigan State University for a University Distinguished Fellowship, and a graduate fellowship sponsored by the Dow Chemical Company Foundation.

References

- 1. Kigoshi H, Hayakawa I. Chem Rec 2007;7:254–264. [PubMed: 17663448]
- Takada N, Sato H, Suenaga K, Arimoto H, Yamada K, Ueda K, Uemura D. Tetrahedron Lett 1999;40:6309–6312.
- 3. Kigoshi H, Kita M, Ogawa S, Itoh M, Uemura D. Org Lett 2003;5:957–960. [PubMed: 12633115]
- 4. Gu YH, Snider BB. Org Lett 2003;5:4385-4388. [PubMed: 14602006]
- 5. Hoye TR, Wang JZ. J Am Chem Soc 2005;127:6950–6951. [PubMed: 15884928]
- 6. Hayakawa I, Ueda M, Yamaura M, Ikeda Y, Suzuki Y, Yoshizato K, Kigoshi H. Org Lett 2008;10:1859–1862. [PubMed: 18396895]
- 7. Roulland E. Angew Chem, Int Ed 2008;47:3762–3765.
- 8. Baati R, Barma DK, Falck JR, Mioskowski C. J Am Chem Soc 2001;123:9196–9197. [PubMed: 11552842]
- 9. Baati R, Barma DK, Falck JR, Mioskowski C. Tetrahedron Lett 2002;43:2183-2185.
- 10. Larsen CH, Ridgway BH, Shaw JT, Smith DM, Woerpel KA. J Am Chem Soc 2005;127:10879–10884. [PubMed: 16076193]
- 11. Larsen CH, Ridgway BH, Shaw JT, Woerpel KA. J Am Chem Soc 1999;121:12208-12209.
- 12. Imai T, Nishida S, Tsuji T. J Chem Soc-Chem Commun 1994:2353–2354.
- 13. Still WC, Gennari C. Tetrahedron Lett 1983;24:4405-4408.
- 14. Kiyooka S, Kaneko Y, Komura M, Matsuo H, Nakano M. J Org Chem 1991;56:2276–2278.
- 15. Rand CL, Vanhorn DE, Moore MW, Negishi E. J Org Chem 1981;46:4093-4096.
- 16. Barton DHR, McCombie SW. J Chem Soc-Perkin Trans 1 1975:1574-1585.

Figure 1. Structure of the haterumalides.

Scheme 1. Synthesis of 11a and $11c^a$

a (a) MeOH, cat. HCl, quant.; (b) TBSCl, imid, DMF, 98%; (c) allyltrimethylsilane, SnBr₄, CH₂Cl₂, -78 °C, 93%, dr > 95:5; (d) TBAF, THF, 90%; (e) TrCl, py, DMAP, CH₂Cl₂, rt, 87%; (f) nBuLi, CHCl₃, BF₃ · OEt₂, THF, -94 °C, 96%; (g) DMP, NaHCO₃, 0 °C, 86%; (h) (TFEO)₂P(O)CH(CH₃)CO₂Et, KHMDS, 18-crown-6, THF, -78 °C, 91%; (i) DIBAL, THF, -20 °C, 93%; (j) MnO₂, CH₂Cl₂, then add to D-N-Ts-valine, BH₃ · THF, CH₂C(OPh)OTMS, 64%, 80% ee; (k) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 89%; (l) KOH, 'BuOH, H₂O, 90%; (m) DIAD, PPh₃, THF, 74%; (n) TBAF, THF, 0 °C, 88%; (o) Ac₂O, py, DMAP, CH₂Cl₂, 99%; (p) AD-mix α, tBuOH/H₂O, rt, 90% for 10a, 88% for 10c; (q) NaIO₄, dioxane/H₂O, 78% for 11a, 87% for 11c.

CCl₃ OR¹ OR¹
$$\frac{4 \text{ equiv CrCl}_2, \text{ THF, rt}}{O}$$
 OR² O $\frac{4 \text{ equiv CrCl}_2, \text{ THF, rt}}{O}$ OR² O $\frac{4 \text{ equiv CrCl}_2, \text{ THF, rt}}{O}$ OR² O $\frac{CH_3}{O}$ 11a, R¹ = Tr, R² = TBS 11c, R¹ = Tr, R² = Ac 12c, R¹ = Tr, R² = Ac $\frac{desired}{diastereomer}$ 11a 0.0023 26% 11a 0.0025 55% 11a 0.025 55% 11a 0.025 53% 11a 0.05 45% 11c 0.025 54% 11c 0.005 48% 13a, R¹ = Tr, R² = TBS 13c, R¹ = Tr, R² = TBS 13c, R¹ = Tr, R² = Ac

Scheme 2. Chromium Carbenoid-Mediated Macrocyclization

Scheme 3. Synthesis of Haterumalide NC $(1c)^a$

 a (a) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 94%; (b) 80% AcOH, 40 °C, 63%; (c) DMP, NaHCO₃, CH₂Cl₂; (d) CrCl₂, cat. NiCl₂, DMSO, rt, 52%, 9:1 dr; (e) HF/py, THF, 91%; (f) AlMe₃, Cp₂ZrCl₂ (cat.), I₂, 84%; (g) DMP, NaHCO₃, CH₂Cl₂, rt; (h) nBuOH, CrO₃, AcOH/H₂SO₄, 0 °C, 51%.

Scheme 4. Formal Synthesis of Haterumalide NA $(1a)^a$ a (a) NaH, THF, CS₂, then MeI, 98% for 12a, 95% for 12c.