

HHS Public Access

Author manuscript *J Am Chem Soc.* Author manuscript; available in PMC 2015 July 03.

Published in final edited form as:

J Am Chem Soc. 2012 October 3; 134(39): 16131–16134. doi:10.1021/ja306446m.

Cu-catalyzed Recycling of Halogen Activating Groups *via* 1,3-Halogen Migration

R. David Grigg[‡], Ryan Van Hoveln[‡], and Jennifer M. Schomaker^{*}

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States

Abstract

A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp² to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed *via* a Markovnikov hydrocupration of the *o*-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp³ C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

The ability to functionalize aromatic rings is an important tool in the synthetic chemist's repertoire.¹ Typically, aryl halides or pseudohalides are employed to provide reliable regioselectivity (Scheme 1, top). However, use of an activating group imbues these transformations with less-than-ideal atom economy, as only one new bond is formed at the expense of the waste product. Direct C-H functionalization eliminates the need for pre-activation, yet the additives necessary for many of these reactions means it is not a foregone conclusion that this approach is less wasteful.² Important advances have recently been made towards more practical and general directing groups for C-H functionalization,³ but the use of halide or pseudohalide activating groups remains the most convenient and commonly employed route to aryl functionalization. We felt that the use of activating groups might be more attractive if a way to "recycle" the halide could be developed.⁴ In this communication, we report a Cu-catalyzed 1,3-halogen migration/borylation reaction that permits a halogen activating group to be used for the sequential formation of two new carbon-heteroatom bonds.

^{*}Corresponding Author: schomakerj@chem.wisc.edu. *These authors contributed equally.

Associated Content: Experimental procedures and characterization for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Conventional arene functionalization utilizes a range of transition metal catalysts and coupling partners to transform aryl-**X** bonds into new carbon-carbon or carbon-heteroatom bonds, as represented by C-**Y** in Scheme 1. Conceptually, our approach differs in that the catalyst does not interact with the C-**X** bond directly, but rather with a functional group, such as an olefin. Activation of the C-**X** bond then occurs with subsequent transfer of **X** to a new carbon in the molecule, followed by the formation of C-**Y**. The activating group **X** is recycled by the construction of a final C-**Z** bond.

The work described herein arose from our attempts to prepare **3** from **1** using a reported CuCl/dppbz catalyst (Table 1, entry 1).⁵ While none of the desired hydroboration was noted, due mainly to polymerization of the styrene, we observed small amounts of an unexpected by-product **2**. Curious as to whether **2** might be obtained exclusively, we undertook an investigation of several mono- and bidentate ligands for CuCl (Table 1).

These preliminary studies revealed that neither monodentate phosphine ligands (entries 2, 3) or electron-poor bidentate ligands (entries 4-8) were capable of promoting the desired reaction. Phenanthroline (entry 9) gave only recovered starting material. Interestingly, the *trans*-spanning Xantphos ligand (entry 10) gave exclusively the hydroboration product **3** in 72% yield, while a similar DPEphos ligand (entry 11) gave no **2** or **3**. Finally, we found that the electron-rich and bulky bidentate phosphine ligand, bis(dicyclohexylphosphino)-ethane (dCype, entry 12), exclusively promoted the desired 1,3-halogen migration.⁶

Further reaction optimization was undertaken using the dCype ligand (Table 2). THF (entry 1) proved superior to toluene, CH_2Cl_2 , Et_2O , CH_3CN and $CHCl_3$ (entries 3-7), although dioxane (entry 2) gave similar results. Lowering the temperature to 40 °C (entry 8) did not increase the yield compared to entry 1, but improved the mass balance. Finally, scaling the reaction to 5 mmol (entry 9) reproducibly increased the yield to 94% of **2**.

With optimized conditions in hand, the scope of the reaction was explored (Table 3). In general, 1,3-bromine migration was favored with a variety of substrates. However, placing electron-withdrawing halogen groups meta to the olefin (entries 2 and 3) diminished the 1,3halogen migration and resulted in significant hydroboration. Other groups at this position favored transposition. Curiously, if a bromide group (entry 8) was placed *para* to the olefin, the hydrocupration did not occur at all. Neutral and electron-donating substituents F, Ph, ^tBu and OMe (entries 9-12) para to the alkene yielded predominantly the 1,3-halogen migration products. For some of these cases, the benzyl bromide products were sensitive to elimination and were trapped with propargyl alcohol prior to isolation, illustrating the potential of this chemistry in cascade reactions to construct more complex compounds. Consistent with prior observations^{5a}, the 4-methoxy substrate (entry 12) reacted slowly. Finally, substitution on the β carbon of the styrene (entry 13) was tolerated in the 1,3-halogen migration, as *trans*- β methylstyrene 4l gave 5l in 75% yield. Although 2-chlorostyrenes underwent halogen transposition with poor conversions, it was found that 2-iodostyrene 4m did produce the transposed product (entry 14), although only partial conversion was observed. The sensitive benzyl iodide had to be trapped with propargyl alcohol to give **5m** in moderate yield. The reactivity of 2-bromo-3-methylstyrene and 2-bromo-6-methylstyrene was also examined.

While the 1,3-halogen migration was observed, the conversion was low. Less bulky catalysts are being developed for sterically encumbered substrates.

The benzyl boronic esters that result from the typical hydroboration of styrenes are often utilized as synthons for benzylic carbanions.⁷ In contrast, the 1,3-halogen migration observed in our chemistry allows access to intermediates which are electrophilic at the benzylic carbon. Facile recycling of the activating group was demonstrated by transforming **1** into a variety of benzyl-substituted boronic esters (Scheme 2). For example, propargyl and *p*-methoxybenzyl alcohols, aniline and sodium azide were all suitable nucleophiles for reacting with the benzyl bromide to yield **7-9**. These reactions represent formal Cu-catalyzed hydroalkoxylation and hydroaminations that are typically accomplished using more expensive precious metal catalysts including Pd, Rh, or Au.^{8,9}

In addition to functionalization at the benzylic carbon, the boronic ester could also be transformed into either a carbon-heteroatom or carbon-carbon bond. For example, treatment of **1** under Cu catalysis, followed by reaction with 3-phenyl-propan-1-ol and an oxidative work-up using H_2O_2 yielded the phenol **10**.¹⁰ ecycling the bromine activating group also provided a flexible platform for convergent syntheses of heterocycles. Tandem 1,3-halogen migration/functionalization/Suzuki couplings of **1** were accomplished using (*Z*)-3-iodopent-2-en-1-ol and 2-iodobenzyl alcohol to yield the heterocyclic dihydroxepins **11** and **12**.¹¹ Finally, halogen migration followed by reaction with 2-iodoaniline and subsequent Pd-catalyzed coupling/oxidation gave the biologically active phenanthridine core of **13**.¹²

We wanted to ensure that we were not observing direct borylation of the Ar-Br bond, followed by an unexpected bromination of the alkene. Examples of aryl bromides that undergo Cu-catalyzed borylation in the absence of a directing group have been reported, but these reactions are rare.¹³ In our case, when both 1,4-dibromobenzene and **14** were subjected to the reaction conditions (eq 1 and 2), no borylation of either C-Br bond was observed. Subjecting the typical hydroboration product **3** to the reaction conditions also did not lead to **2**, indicating direct borylation of **1** is not a likely reaction pathway.

(2)

We also demonstrated that the 1,3-halogen migration is likely an intramolecular process by performing a crossover experiment using isotopically enriched ⁷⁹Br. The enriched aryl bromide **4f** (Scheme 3) was prepared by reacting the tributylaryl tin **16** with ca. 85% isotopically enriched $NH_4^{79}Br$ (see the Supporting Information for further details).¹⁴ After ensuring that the unlabeled styrenes **1** and **4f** reacted at comparable rates, reaction of **4f** in the presence of non-isotopically enriched **1** showed no additional incorporation of ⁷⁹Br into **2** or degradation of the ^{79/81}Br ratio in the conversion of **4f** to **5f** within statistical error.

One proposed mechanism for the 1,3-halogen migration is illustrated in Scheme 4. Reaction of the pre-catalyst **17** with HBpin generates the active, phosphinesupported Cu-H species **18**.¹⁵ In the absence of an *ortho* C-Br bond, reversible Markovnikov hydrocupration of the styrenic double bond of **1** to **18** would be followed by reaction with HBpin to give the typical hydroboration product **3**.^{16,17} However, the presence of an *ortho* C-Br bond in **19** may promote a subsequent oxidative addition to yield a formal Cu(III) species **20**.^{18,19} Reductive elimination of **19** to **20** could then be followed by a o'-bond metathesis with HBpin to yield **2** and regenerate the active Cu-H catalyst **18**.²⁰ Other possibilities for the mechanism of the 1,3-migration could involve intermediate π -allyl Cu species, single-electron transfer processes, halogen atom transfer or π complexation to the halide.²¹ Computational and further experimental studies are in progress to shed more light on whether a Cu(I)/Cu(III) or a Cu(I)/Cu(II) cycle is more likely and will used to guide our further exploration of this 1,3-halogen migration reaction.

In conclusion, Cu(I) promotes a cascade 1,3-halogen migration/borylation/functionalization that proceeds under mild conditions to recycle the bromine activating group. Future studies will focus on expanding the reaction scope to include other functional groups capable of directing the Cu catalysis and other activating groups that can be transferred. Initial promising results in enantioselective migration are being optimized. The development of other efficient cascade reactions and computational studies to better understand the mechanism of this unusual transformation are underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This paper is dedicated to Professor Robert G. Bergman of the University of California, Berkeley on the occasion of his 70th birthday, as well as for many helpful discussions. Dr. Martha Vestling and Rob Risi of the University of Wisconsin are thanked for mass spec data.

Funding Sources Financial support was provided by start-up funds from the University of Wisconsin, Madison. The NMR facilities at UW-Madison are funded by the NSF (CHE-9208463, CHE-9629688) and NIH (RR08389-01).

References

 a) Negishi, Ei; de Meijere, A., editors. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley; New York: 2002. b) de Meijere, A.; Diederich, F., editors. Metal-Catalyzed Cross-Coupling Reactions. 2nd. Wiley-VCH; Weinheim: 2004.

- Selected reviews of C-H functionalization: Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem Rev. 2010; 110:890. [PubMed: 20028025] Lyons TW, Sanford MS. Chem Rev. 2010; 110:1147. [PubMed: 20078038] Engle KM, Mei TS, Wasa M, Yu JQ. Acc Chem Res. 2012; 45:788. [PubMed: 22166158] Neufeldt SR, Sanford MS. Acc Chem Res. 2012; 45:936. [PubMed: 22554114] Song G, Wang F, Li X. Chem Soc Rev. 2012; 41:3651. [PubMed: 22377832] Ackermann L. Chem Rev. 2011; 111:1315. [PubMed: 21391562] Davies HML, Morton D. Chem Soc Rev. 2011; 40:1857. [PubMed: 21359404] Wendlandt AE, Suess AM, Stahl SS. Angew Chem Int Ed. 2011; 50:11062.
- a) Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew Chem Int Ed. 2003; 42:112.b) Ihara H, Suginome M. J Am Chem Soc. 2009; 131:7502. [PubMed: 19435323] c) Robbins DW, Boebel TA, Hartwig JF. J Am Chem Soc. 2010; 132:4068. [PubMed: 20199022] (d) Dai HX, Stepan AF, Plummer MF, Zhang YH, Yu JQ. J Am Chem Soc. 2011; 133:7222. [PubMed: 21488638] (e) Huang C, Chattopadhyay B, Grevorgyan V. J Am Chem Soc. 2011; 133:12406. [PubMed: 21766826] (f) Gulevich AV, Melkonyan FS, Sarkar D, Gevorgyan V. J Am Chem Soc. 2012; 134:5528. [PubMed: 22414133]
- Recent examples of activating group recycling: Newman SG, Lautens M. J Am Chem Soc. 2011; 133:1778. [PubMed: 21265523] Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J Am Chem Soc. 2012; 134:2906. [PubMed: 22296656]
- a) Noh D, Chea H, Ju J, Yun J. Angew Chem Int Ed. 2009; 48:6062.b) Noh D, Yoon SK, Won J, Lee JY, Yun J. Chem Asian J. 2011; 6:1967. [PubMed: 21523913] c) Won J, Noh D, Yun J, Lee JY. J Phys Chem A. 2010; 114:12112. [PubMed: 20968303]
- Shiroodi RK, Dudnik AS, Gevorgyan V. J Am Chem Soc. 2012; 134:6928. and references therein. [PubMed: 22489740]
- Selected recent examples of C-C and C-X bond formation from boronic esters and related substrates: Grigg RD, Rigoli JW, Van Hoveln R, Neale S, Schomaker JM. Chem Eur J. 2012; 18:9391. [PubMed: 22718528] Vagutski V, Elford TG, Aggarwal VK. Angew Chem Int Ed. 2011; 50:1080.RarocheGauthier R, Elford TG, Aggarwal VK. J Am Chem Soc. 2011; 133:16794. [PubMed: 21939203] Crudden CM, Glasspoole BW, Lata CJ. Chem Commun. 2009:6704.Matteson DS. Pure Appl Chem. 2003; 75:1249.Chen A, Ren L, Crudden CM. J Org Chem. 1999; 64:9704.
- Selected reports of transition metal catalyzed hydroalkoxylation of alkenes: Salah AB, Offenstein C, Zargarian D. Organometallics. 2011; 30:5352.Hirai T, Hamasaki A, Nakamura A, Tokunaga M. Org Lett. 2009; 11:5510. [PubMed: 19899752] Liu C, Bender CF, Han X, Widenhoefer RA. Chem Commun. 2007:3607.Yang CG, He C. J Am Chem Soc. 2005; 127:6966. [PubMed: 15884936] Matsukawa Y, Mizukado J, Quan H, Tamura M, Sekiya A. Angew Chem Int Ed. 2005; 44:1128.Qian H, Han X, Widenhoefer RA. J Am Chem Soc. 2004; 126:9536. [PubMed: 15291546]
- Recent reviews of transition metal catalyzed hydroamination of alkenes: Mueller TE, Hultzsch KC, Yus M. Chem Rev. 2008; 108:3795. [PubMed: 18729420] Hultzsch KC. Adv Synth Catal. 2005; 347:367.Beller M, Seayad J, Tillack A, Jiao H. Angew Chem Int Ed. 2004; 43:3368.Hong S, Marks TJ. Acc Chem Res. 2004; 37:673. [PubMed: 15379583]
- Examples of Pd-catalyzed hydrofunctionalization of *o*-vinyl phenols: Zhang Y, Sigman MS. Org Lett. 2006; 8:5557. [PubMed: 17107071] Pathak TP, Sigman MS. Org Lett. 2011; 13:2774. [PubMed: 21510631]
- Selected examples of Suzuki-coupling strategies for benzoxepines: Colombel V, Joncour A, Thoret S, Dubois J, Bignon J, Wdzieczak-Bakala J, Baudoin O. Tet Lett. 2010; 51:3127.Colombel V, Baudoin O. J Org Chem. 2009; 74:4329. [PubMed: 19422200] Joncour A, Dècor A, Thoret S, Chiaroni A, Baudoin O. Angew Chem Int Ed. 2006; 45:4149.
- Selected examples of Suzuki-coupling strategies for phenanthridine synthesis: Geen GR, Mann IS, Mullane MV, McKillop A. Tetrahedron. 1998; 54:9875.Kim YH, Lee H, Kim YJ, Kim BT, Heo JN. J Org Chem. 2008; 73:495. [PubMed: 18154352] Genès C, Michel S, Tillequin F, Porèe F. Tetrahedron. 2009; 65:10009.
- a) Kleeberg C, Dang L, Lin Z, Marder TB. Angew Chem Int Ed. 2009; 48:5350.b) Zhu W, Ma D. Org Lett. 2006; 8:261. [PubMed: 16408890]
- Zhou D, Zhou H, Jenks CC, Lewis JS, Katzenellenbogen JA, Welch MJ. Bioconjugate Chem. 2009; 20:808.

- 15. Selected examples of *in-situ* generated Cu-H species: Zhao D, Oisaki K, Kanai M, Shibasaki M. J Am Chem Soc. 2006; 128:14440. [PubMed: 17090010] Du Y, Xu LW, Shimizu Y, Oisaki K, Kanai M, Shibasaki M. J Am Chem Soc. 2008; 130:16146. [PubMed: 18998691] Ding J, Hall DG. Tetrahedron. 2012; 68:3428.Kazuhiko S, Tetsuaki F, Jun T. Chem Eur J. 2012; 18:4179. [PubMed: 22389106]
- 16. Dang L, Zhao H, Lin Z, Marder TB. Organometallics. 2007; 26:2824.
- Examples of isolated benzylic organocopper complexes: Yam VWW, Lee WK, Cheung KK, Lee HK, Leung WP. J Chem Soc Dalton Trans. 1996:2889.Laitar DS, Tsui EY, Sadighi JP. Organometallics. 2006; 25:2405.
- For relevant reviews, see: Hickman AJ, Sanford MS. Nature. 2012; 484:177. [PubMed: 22498623] Ribas X, Casitas A. Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life. Pignataro B. Wiley-VCHWeinheim2010:31–57.
- Selected examples aryl of Cu(III) species from C-X oxidative insertion: Maiti D, Sarjeant AAN, Itoh S, Karlin KD. J Am Chem Soc. 2008; 130:5644. [PubMed: 18393421] Casitas A, King AE, Parella T, Costas M, Stahl SS, Ribas X. Chem Sci. 2010; 1:326.
- 20. a) Casitas A, Poater A, Sola M, Stahl SS, Costas M, Ribas X. Dalton Trans. 2010; 39:10458.
 [PubMed: 20886163] b) Casitas A, Canta M, Sola M, Costas M, Ribas X. J Am Chem Soc. 2011; 133:19386. [PubMed: 22026511]
- 21. Sperotto E, van Klink GPM, van Koten G, de Vries JG. Dalton Trans. 2010; 39:10338. [PubMed: 21049595]

Traditional cross-coupling approach vs. a new mode of arene functionalization.

Scheme 2. Recycling of the activating group.

Scheme 3.

Cross-over experiment using isotopically enriched ⁷⁹Br.

Table 1

entry ^a	ligand	1	: 7 :	Э	entry	ligand	1	: 7 :	ŝ
-	dppbz	<10%	<10%	%0	7	dppb	68%	%0	%0
5	PPh_3	50%	%0	0%	8	dppf	%0	%0	%0
ю	PCy_3	%09	%0	29%	6	phen	94%	%0	%0
4	dppm	51%	%0	41%	10	Xantphos	1%	%0	72%
5	dppe	30%	%0	%0	11	DPEphos	42%	0%	0%
9	dddp	19%	0%	0%	12	dCype	%0	70%	%0

internal standard. as NMR yields using 1,1,1,2-tetrachloroemane

, ≻PPh₂

zqddp

PPh₂

Table 2

Reaction optimization.

 a NMR yields using 1,1,1,2-tetrachloroethane as the internal standard.

 b Isolated yield from the reaction on a 5 mmol scale.

Author Manuscript

Table 3

Grigg et al.

1 1 H H H 94% 2 0% 2 $4\mathbf{a}$ \mathbf{B} \mathbf{H} \mathbf{F} \mathbf{H} 57% $5\mathbf{a}$ 31% 3 $4\mathbf{b}$ \mathbf{F} \mathbf{H} 57% $5\mathbf{a}$ 31% 4 \mathbf{H} \mathbf{F} \mathbf{H} 49% $5\mathbf{f}$ 0% 4 \mathbf{H} \mathbf{H} \mathbf{H} 73% $5\mathbf{c}$ 0% 6 $\mathbf{4e}$ \mathbf{H} \mathbf{H} 73% $5\mathbf{c}$ 0% 7 $\mathbf{4f}$ 0 \mathbf{H} 73% $5\mathbf{c}$ 0% 7 $\mathbf{4f}$ 0 \mathbf{H} 73% $5\mathbf{c}$ 0% 8 $\mathbf{4g}$ \mathbf{H} 67% $5\mathbf{f}$ 0% 0% 9 \mathbf{H} \mathbf{H} 67% $5\mathbf{f}$ 0% 10 \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} <th>entry^a</th> <th></th> <th>\mathbf{R}_m</th> <th>\mathbf{R}_p</th> <th></th> <th>% yi</th> <th>eld</th> <th></th>	entry ^a		\mathbf{R}_m	\mathbf{R}_p		% yi	eld	
24aBrH57%5a31%34b F H 7% 5b28%44c Ph H 49% 5b28%54d 1 -NapthH 73% 5c0%64e 1 -NapthH 69% 5db0%74f $0Mc$ H 67% 5f0%74f $0Mc$ H 87% 5f0%94hHBr 0% 5f0%104iHBr 0% 5f0%114jHBr 0% 5fb0%124bHBr 0% 5fb0%134fdH75%5fb0%134fdHH75%5fb0%	-	-	Н	Н	94%	7	%0	e
3 $4\mathbf{b}$ F H 9% 5% 2% 4 $4\mathbf{c}$ Ph H 73% $5\mathbf{c}$ 0% 5 $4\mathbf{d}$ 1 -Napth H 73% $5\mathbf{c}$ 0% 6 $4\mathbf{d}$ 1 -Napth H 6% $5\mathbf{d}$ 0% 6 $4\mathbf{d}$ 1 -Napth H 6% $5\mathbf{d}$ 0% 7 $4\mathbf{f}$ $0Me$ H 6% $5\mathbf{d}$ 0% 7 $4\mathbf{f}$ $0Me$ H 8% $5\mathbf{f}$ 0% 9 $4\mathbf{h}$ H $Br0\%5\mathbf{f}0\%104\mathbf{i}HBr0\%5\mathbf{f}0\%104\mathbf{i}HBr6\%5\mathbf{f}0\%114\mathbf{j}HBr5\%5\mathbf{f}0\%124\mathbf{f}HBr5\%0\%124\mathbf{f}HBr5\%0\%124\mathbf{f}H0Me5\%0\%124\mathbf{f}H0Me5\%0\%124\mathbf{f}H110\%0\%134\mathbf{f}H110\%0\%144\mathbf{f}1110\%0\%134\mathbf{f}1110\%0\%$	7	4a	Br	Η	57%	5a	31%	6a
4PhH73%5c0%54d1-NapthH 69% $5d^b$ 0% 64e1-NapthH 69% $5d^b$ 0% 74f $0.Nee$ H 87% $5f$ 0% 84gH $0.Nee$ H 87% $5f$ 0% 94hH 87% $5f$ 0% 104hH 79% $5f$ 0% 114jH 89% $5j^b$ 0% 124hNH $0Ne$ $5f^b$ 0% 134hHNH 75% $5f^b$ 0%	ю	4b	ц	Η	49%	5b	28%	6 b
2 $4d$ $1-Napth$ H 69% $5d^{1}$ 0% 6 $4e$ $4-MeOC_{6}H_{4}$ H 67% $5f$ 0% 7 $4f$ $0Me$ H 87% $5f$ 0% 8 $4g$ $0Me$ H Br 0% $5f$ 0% 8 $4g$ H Br 0% $5f$ 0% 9 $4h$ H Br 0% $5g$ 0% 10 $4i$ H Br 0% $5f$ 0% 11 $4j$ H Ph $0Me$ $5f$ 0% 12 0% 0% 0% $5f$ 0% 11 $4j$ H $0Me$ $5f$ 0% 12 0% 0% 0% 0% 0% 11 $4j$ H $0Me$ 0% 0% <t< td=""><td>4</td><th>4c</th><td>Ph</td><td>Η</td><td>73%</td><td>5c</td><td>%0</td><td><u></u></td></t<>	4	4c	Ph	Η	73%	5c	%0	<u></u>
6 $4e$ $4-MeOC_6H_4$ H 67% $5e$ 0% 7 $4f$ OMe H 87% $5f$ 0% 8 $4g$ H Br 0% $5g$ 0% 9 $4h$ H F 89% $5f$ 0% 10 $4i$ H F 89% $5f$ 0% 11 $4j$ H Br 66% $5jb$ 0% 12 $4h$ H Bh 66% $5jb$ 0% 13 $4jd$ H H 75% $5jb$ 0%	5	4d	1-Napth	Н	%69	$5\mathbf{d}^b$	%0	6d
7 4f OMe H 87% 5f 0% 8 4g H Br 0% 5g 0% 9 4h H Br 0% 5g 0% 10 4i H F 89% 5h 0% 11 4j H 79 65% 5jb 12% 12 4k H 79u 65% 5jb 0% 12 4k H 78u 65% 5jb 0% 13 4jd H T 75% 5kbcc 0%	9	4e	4-MeOC ₆ H ₄	Η	67%	5e	%0	<u>6</u> e
8 4g H Br 0% 5g 0% 9 4h H F 89% $5h$ 0% 10 4i H F 89% $5ib$ 2% 0% 11 4j H $7Bh$ 66% $5jb$ 2% 0% 12 4k H $7Bh$ 65% $5jb$ 0% 13 4jd H H 75% $5jb$ 0%	7	4f	OMe	Η	87%	Sf	%0	6f
θ H F 89% $5h$ 0% 10 $4i$ H F 6% $5i^{1}b$ 12% 11 $4j$ H F 6% $5j^{1}b$ 12% 12 $4k$ H $7B_{1}$ 6% $5j^{1}b$ 0% 13 $4l^{1}d$ H H 75% $5i^{1}b$ 0%	8	$^{4\mathrm{g}}$	Н	Br	%0	5g	%0	6 g
10 4i H Ph 66% $5\mathbf{i}\mathbf{b}$ 12% 11 4j H 'Bu 65% $5j^{b}$ 0% 12 4k H OMe 36% $5k^{b}c$ 0% 13 4jd H H 75\% $5i$ 0%	6	4h	Н	ц	89%	Sh	%0	6h
11 4j H 'Bu 65% $5\mathbf{j}b$ 0% 12 4k H OMe 36% $5\mathbf{k}b.c$ 0% 13 $4\mathbf{l}d$ H H 75% 51 0%	10	4 i	Н	Ph	%99	$\mathbf{5i}^{b}$	12%	6i
12 4k H OMe 36% 5k <i>b.c</i> 0% 13 4 <i>Id</i> H H 75% 51 0%	11	4j	Н	ng,	65%	5j ^b	%0	6j
13 4 1 <i>d</i> H H 75% 51 0%	12	4k	Н	OMe	36%	$\mathbf{Sk}^{b,c}$	%0	6k
	13	41 d	Н	Η	75%	51	%0	19
14 4m H H 59% 5 m ^b / _e 0%	14	4m	Н	Η	59%	$5\mathbf{m}^{b,e}$	%0	6m
X=Br except for entry 14, where X=l.	X=Br ex	cept for	r entry 14, where	e X=l.				
	Product	was traț	pped with propa	rgyl alco,	hol prio	r to isolati	on.	
Product was trapped with propargyl alcohol prior to isolation.	/00L	noister						

J Am Chem Soc. Author manuscript; available in PMC 2015 July 03.

 d Substrate was 1-bromo-2-((1*E*)-prop-1-en-1-yl)benzene.

e87% conversion.