
 

1 

Doped Biomolecules in miniaturized electric junctions  

Elad Mentovich 1,2, Bogdan Belgorodsky2, Michael Gozin2, Shachar Richter 1,3* , Hagai Cohen,4* 

 

1 Center for nanoscience and nanotechnology, School of Chemistry 2 Faculty of exact sciences3, Tel-

Aviv University, P.O. Box 39040, Tel-Aviv 69978, Israel. 

4 Department of Chemical Research Support, Weizmann Institute of  Science, Rehovot, 76100, Israel   . 

Hagai.Cohen@weizmann.ac.il, srichter@post.tau.ac.il 

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) 

ABSTRACT Control over molecular scale electrical properties within nano junctions is demonstrated, 

utilizing site-directed C60 targeting into protein macromolecules as a doping means. The protein 

molecules, self-assembled in a miniaturized transistor device, yield robust and reproducible operation. 

Their device signal is dominated by an active center that inverts affinity upon guest incorporation and 

thus controls the properties of the entire macromolecule. We show how the leading routs of electron 

transport can be drawn, spatially and energetically, on the molecular level and, in particular, how the 

dopant effect is dictated by its 'strategic' binding site. Our findings propose the extension of 

microelectronic methodologies to the nanometer scale and further present a promising platform for ex-

situ studies of biochemical processes. 
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Resolved Electrical Measurements; Self assembly; Electron transport mechanisms. 

  

Extensive efforts are continuously devoted to the understanding and development of soft matter 

electronics 1-4 towards using organic molecules as flexible building blocks in dense architectures. 5, 6 

The need in fine-control over their optical and electrical properties, e.g. via doping, 7, 8 presents a major 

challenge, since statistical dopant distribution is applicable only to components much larger than the 

average distance between neighboring dopants. 9, 10  Alternative approaches are therefore needed, e.g. by 

directing dopant species to pre-selected sites of the host matrix.  

In this respect, macromolecules 11-14 and solid-state biomolecules in particular 15-17 offer useful 

advantages. Upon hosting foreign species, fine changes in the macromolecule properties can potentially 

be achieved with minimal effect on their structural and assembly characteristics. Nature often utilizes 

the binding of small molecules at host sites, e.g. in the transport of hydrophobic molecules through 

lipid-binding protein complexes, 18 and of fatty acids by albumins. 19 Here we exploit this feature for 

electronic applications, aiming at doping of nanoscale electric junctions and transistors. The electrical 

properties of the system are explored utilizing a nm-scale Central Gate Vertical Molecular Transistor 20-

22 (C-Gate MolVeT, Fig. 1, bottom left) and a contactless technique, Chemically Resolved Electrical 

Measurements (CREM, Fig. 1, bottom, right) 23-26 , which can resolve the local potential at selected 

chemical addresses. Intriguing details of the electrical transport across the macromolecule and, 

specifically, the role of the C60 guest in switching the molecule electrical affinity are thus revealed. 
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Figure 1: Top: Schematic illustration of the un-doped (left) and C60-doped (right) BSA. Bottom left: A 
simplified cartoon of the C-Gate MolVet structure. The vertical transistor is formed inside a 
microcavity:  source (Au, I) drain (Pd, II) and gate (Ti-TiO2, III) electrodes that are used to activate the 
protein monolayer (IV). The microcavity is bordered by Si3N4 (V) and the gate electrode is activated by 
highly-doped silicon/Silicon oxide layer (VI). Bottom right: The CREM setup. Input signals are the x-
ray irradiation, the eFG low-energy electrons and the sample bias.  Output signals are the photoelectron 
spectrum and the sample current (see S.I. for details).  

A simple synthetic methodology was used to get site-specific targeting of C60 molecules into self-

assembled monolayers (SAM) of Bovine Serum Albumin (BSA) protein (Figure 1, top).27 BSA-C60 is a 

well-defined complex, with approximately the same size as the original BSA protein. The C60 bucky-

ball has already been shown to bind selectively to an albumin site at subdomain IIA,27 close to the 

Trp214 Tryptophan site.28 Self-assembly on gold resulted in rather uniform BSA monolayers, ~4 nm 

thick, with a slightly more 'open' conformation (less compact organization) of the doped-BSA (see S.I. 

for synthesis, purification and characterization details).    

Direct transport measurements were performed in a C-Gate MolVet device 20(Figure 1, bottom left), 

recording the current/voltage characteristics through the molecular layer, between source and drain 

electrodes, ISD/VSD, while modulating the field via a third, central gate electrode (VG).  This type of 
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devices offers very high sensitivity at relatively low VSD and VG regimes, thus allowing efficient and 

non-destructive scanning of sample's molecular orbitals. 22, 29  Figure 2 top compares representative 

ISD/VSD characteristics of the doped and undoped BSA-based junctions, measured at 77K. In both cases, 

the gate effect under positive VSD is negligible, in contrast to the negative VSD regime. At negative 

polarity of the C60-BSA transistor current values are considerably lower than those of the undoped 

device, while similar current magnitudes are obtained for positive VSD.  

 

Figure 2: Transistor transport data. Top. ISD/VSD of the un-doped (left) and the doped-BSA (right) 
device, as a function of VG. Main panels (insets) show I-V curves recorded under negative (positive) 
VSD. Note how the current magnitude increases (decreases) under negative (positive) polarity as VG is 
increased, pointing at electron (hole) dominated transport mechanisms.  Bottom.  Variation of the 
negative-polarity exponent factor (α) with VG (left) in BSA (squares) and C60-BSA (diamonds), as 
derived from the log-log I-V plots on the right.  

 

As already discussed previously 20 , Fowler-Nordheim tunnelling (FN) dominates the low-field 

negative VSD region. At the high-field regime, the curves obey J Fα
∝ , pointing at charge limited (CL) 
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mechanisms 30 , where αααα is the CL exponent. The critical field, at which CL begins to dominate over 

FN, is higher by ~250 mV in the C60-BSA complex, as compared to the un-doped protein (see also S.I). 

Fig. 2 bottom further shows that αααα is highly gate-dependent in the un-doped BSA, suggesting a 

significant energy distribution of charge trap levels within the layer. 31  On the other hand, the doped 

junction exhibits identical slopes, αααα ≈ 2, which points to the leading role of a dominant trap energy (fig 

2 bottom) 30, 31 , similar to reports on conjugated-polymer devices31. From the ISD/VG dependence one 

learns that under negative polarity the conduction is electron dominated (current increasing with VG), 

while for positive polarity it is dominated by hole transport (current decreasing upon VG increase).  

A complementing view on the studied systems is provided by the element-specific Chemically 

Resolved Electrical Measurement (CREM) curves, Fig. 3a-c, recorded from monolayers on gold 

substrates with no top contacts. The experiment utilizes photoelectrons to read electrostatic potentials 

from selected atomic sites. 23 It is conducted at room temperature, exposing the sample to a flux of slow 

(<3 eV) electrons under fixed source (eFG, see SI) conditions, and varying the bias on the sample (VB) 

in a step-wise manner. For each step, both the sample current (I) and the potential changes (∆V, as 

derived from shifts in the photoelectron kinetic energies, relative to measurement under minimal 

charging conditions) are recorded. 23, 26 
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Figure 3: Element specific CREM data: (a) Surface potential (∆V) vs sample bias (VB) characteristics 
of undoped 40Å thick BSA monolayer on gold. Scan direction is given by the arrows. Two regimes are 
distinguished: (I) positive charging and (II) negative charging; (b) the corresponding current-voltage I-
∆V curves; (c) the C60-BSA ∆V-VB curves; (d) a summary of: potential variations under positive (P) 
and negative (N) charging conditions; the electrostatic irreversibility (D, drift) along the first scan; the 
work-function of the fresh surface, shifted by -4 eV (WF). Note the reduced resistance and increased 
hysteresis in the doped system. The experimental error in ∆V is: 5 mV, 40 mV, 50 mV and 70 mV for 
the Au, C, O and N, respectively.   

 

 

Two regimes are indicated in figures 3a,c: (I) A highly negative VB range, where the eFG electrons 

are totally repelled by the biased sample and the layer tends to accumulate x-ray induced positive 

charge, Q>0 32  . (II) A low negative bias range, where eFG electrons are injected to the sample and 

negative surface charge (Q<0) is accumulated. The crossover between the two regimes, given by an 

inflection point (IP), was shown to define the work-function (WF) of the sample. 33  

Notably, significant ∆V values develop at the bare BSA, tending to saturate at high currents (low 

negative VB) and undergoing hysteresis under decreasing the current back to low values. Differences 

between the elemental curves in Figs. 3a,b reflect affinity variations 34  and, in particular, enhanced 

mean affinity of the N sites to injected electrons and of the O sites to positive charge, to be discussed 

elsewhere. Note that the Au line-shifts determine the full back-contact impedance to be eliminated from 

the overlayer data.   

 

The C60-BSA curves in Fig. 3c manifest a marked doping effect: (1) enhanced positive charging; (2) 

reduced negative charging; and remarkably (3) asymmetric hysteresis: large irreversibility in all 

elemental curves at region I, while in region II all curves are fully reversible (no hysteresis). Thus, the 

C60 molecules, known to be very good electron acceptors 35 , do not tend to capture the injected 

electrons (no hysteresis in II). On the contrary, hole trapping becomes of very long life-time 

characteristics (pronounced hysteresis in I). Average potential variations and the overall irreversibility 

(electrostatic drift) are summarized in Fig. 3d.  

 

To understand this striking result, note first that a ~350 meV difference in work function (WF) is 

extracted from the inflection points (between region I and II) in Figs. 3a,c, yielding WF=4.35 eV and 

4.7 eV for the bare and the doped BSA, respectively. This WF change is associated with extended 

charge redistribution upon C60 complexation (see discussion below), where the C60 site becomes 

electron rich and a good donor, in agreement with the pronounced positive charging in Fig. 3c. Second, 

both WF values are considerably smaller than those of Au and Pd (~5.0 eV); hence, interface dipoles at 
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the electrode contacts must be considered, acting both against electron conduction. In spite of these 

dipoles, dominant electron conduction is measured under negative polarity, which highlights the 

intrinsic medium property: highly favored electron transport. The interface dipoles necessarily differ in 

width (see Fig. 4a), a fact inferred from the rectification in Fig. 2 (see also SI for bare BSA data), such 

that under positive polarity, the thicker barrier at the Pd side leads to hole-dominated transport.   

 

Figure 4: The transport mechanism: (a) A schematic description of energy levels under negative bias 
conditions: hole injection from the top Pd contact and electron injection from the gold substrate are 
indicated. Acceptor trap states in the range T1-T2 dominate the charge transport; their position relative to 
the electrodes' EF is affected by VG, as illustrated at the bottom scheme. Note that the C60 dopant blocks 
T1 levels. (b) A corresponding scheme under the eFG electron injection in CREM. (c) The BSA 
molecular structure with its leading acceptor (Phenylalanine, light blue) and donor (Tyrosine, red) sites. 
The C60 (violet), the Tryptophan sites (green) and the cysteine binding group (yellow) are also indicated. 
A 3D movie presentation of the molecule is provided in the SI section. 

 

The CL transport dynamics in bare BSA likely involves plural trap energies, leading to high exponent 

values α>>2 36 . Fig. 2 shows however that α decreases rapidly (→2) for increased VG, indicating that 

the corresponding energy width is limited, on the scale of 350 meV, as illustrated by T1 and T2 in Fig. 
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4a. Our results further suggest that upon complexation with C60, critical T1 sites transform from 

acceptors to strong donors and, thus, block electron conduction. This process is expressed (see Fig. 2) in 

(1) a drastic current suppression; (2) a strict α≈2 exponent value; and (3) a shift of the crossover voltage 

between the FN and CL regimes. Accordingly, the doping effect becomes negligible under positive 

polarity, when hole transport dominates, which fully agrees with our argument on selective inactivation 

of acceptor-type hopping routes.  

 

The above results can be better understood in light of the 3D molecular structure (see movie, S.I.). 

Fig. 4c shows a 2D projection of the BSA molecule with its leading acceptor (phenyl, light blue) and 

donor (tyrosine, red) groups. 37 Recalling that the empty (no C60) subdomain IIA presents a strong 

acceptor site (tryptophan, Trp214) and that the CL conduction of electrons is carried by acceptors, an 

injected electron can easily complete a continuous hopping path (upward, through phenyl groups, blue) 

in the undoped case. However, as soon as the central Trp site turns to be a donor, the favored electron-

hopping paths are blocked. Notably, it is not just the C60 character but also its critical 'bottle-neck' 

location that dictates the electrical behavior and, indeed, the hole conductance (under positive polarity) 

is negligibly affected by the dopant, as expected from the proposed mechanism.  

 

Identification of the leading conduction routes in the BSA macromolecule is an important outcome of 

this work. Fig. 4c further reveals another interesting feature: a broad spatial distribution of donor groups 

that collectively take part in charge donation to the C60 site during complexation: contribution from 

distant tyrosine groups, including groups located close to the Au substrate, is essential for explaining the 

experimentally observed dipole sign and magnitude. In fact, the magnitude of the molecular dipole 

should be self-limited by the presence of acceptor states that can gain charge as soon as the intra-

molecular potential-drop exceeds T2-T1 (Fig. 4a), which is in good agreement with our measurements 

(~350 meV). This very charge transfer further explains the inefficient discharge of holes from the C60 

site, manifested by Fig. 3c: First, it creates a molecular dipole that acts against hole discharge to the 

gold and, second, the leading candidate sites for hole-hopping are partially blocked ('emptied' from 

electrons). 

 

Our results imply on the potential suitability of biological molecules to future electronic devices, 

exhibiting both stability and useful functionality. The inspected BSA layers are relatively very robust, 

far better than e.g. alkane chain monolayers,10, 25 retaining reproducible and well-behaving appearance 

in the transistor device (up to a year already for VSD < 2 V; see SI for more details) and, to a lesser 

extent, under long x-ray irradiation. This may originate in their dry condensed phase, as opposed to 



 

9 

aqueous environment in biological systems, where degradation is accelerated 11, 12, 38. The recognition 

capabilities of biological molecules present another useful feature: BSA can absorb foreign species with 

minor influence on its assembly characteristics and yet with a marked impact on electrical properties. 

The present usage of recognition is very different from e.g. the self-wiring applications proposed for 

DNA. 39, 40  It is aimed at novel doping-like variability in molecule properties, playing with the host-

guest combination and their associated binding site.  

 

The observed switch in molecule affinity is essentially the function of an active center; here 

responsible for the behavior of a macro molecule. Can one learn from these experiments on biological 

mechanisms involving binding and release of small molecules? 41, 42  The conditions here do not quite 

imitate the aqueous biological environment and, obviously, the C60 molecule is not released here from 

its host. Yet, one does succeed in these experiments to controllably deviate from charge neutrality and 

follow the site-selective charge transfer mechanisms. Thus, the present methodology proposes a unique 

view on molecular level chemical activity, which may be proven useful in studies of biochemical 

mechanisms. 

 

In summary, we have demonstrated a new approach to doping-like electrical control suited for the 

molecular scale and inspected its function by complementing nanoscale-sensitive electrical probes. 

Using biological molecules embedded in a solid-state transistor, we exploited the C60 recognition at a 

specific protein domain for achieving accurate, site-directed modifier of the monolayer dielectric 

properties. We have shown how the manipulated protein site can switch between an acceptor and a 

donor state, obeying external stimuli for charge neutrality violation, and how detailed understanding of 

the leading conduction paths can be gained at the submolecular level. The present approach can be 

exploited for the development of improved sensors and nano-scale devices and, possibly, for studies of 

complex electron transfer mechanisms in biological systems. 

 

Materials and Methods.  

C-Gate MolVet fabrication. A network of gold electrodes was defined on top of a highly doped 

silicon wafer covered with 100 nm thick thermal oxide, followed by the deposition of a 70 nm layer of 

Si3N4 dielectric material. Next, Arrays of microcavities, ranging from 800 nm to 1.5 µm in diameter 

were created by drilling holes via reactive ion etcher (RIE) through the entire layer down to the highly 

doped silicon substrate, followed by mild wet etching of several nanometers of the gold electrode. This 

undercut in the electrode provided space for oxide growth. This step was followed by the evaporation of 

a titanium column, a photolithography shape definition of the larger cavity, and oxidation of the 
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titanium column that formed the gate electrode. Self-assembly of the protein-based monolayer on top of 

the exposed gold ring was then performed, followed by shape definition of the upper electrode and 

indirect or chopper evaporation of palladium on top of the protein layer. Measurements were performed 

using cryogenic probe station equipped by semiconductor parameter analyzer (Keithley 4200 SCS). See 

SI for repeatability and performance characterization.  

Materials: Essential fatty acids and globulin free BSA, fine chemicals, and solvents were purchased 

from Sigma–Aldrich. C60-fullerene was purchased from Sesres, and γ-CD2C60 was synthesized 

according to previously reported methods. 43 

BSA–C60 complex preparation: 50 µM solution of BSA in tris-acetate buffer (20 µM, pH 7.2) was 

incubated with two equivalents of γ-CD2C60 at 10 °C for 24 h. The complexation solution was 

separated and purified on a Sephadex G-25 gel-permeation column (Pharmacia Biotech) with tris-

acetate buffer (20 mM, pH 7.2) or on HPLC TSK-GEL column. An optimized stepwise, removal-

addition procedure included incubating BSA and γ-CD2C60 at 10 °C for 48 h at a 1:2 molar ratio in tris-

acetate buffer (20 mM, pH 7.2), followed by the removal of γ-CD-fullerene clusters and γ-CD by size-

exclusion chromatography (Pharmacia, G25 cartridge, 20 mM tris-acetate buffer, pH 7.2), and 

subsequent addition of 2 equivalents of γ-CD2C60 to a BSA containing fraction. This procedure was 

repeated six times, once every 48 h. The buffer concentration was reduced by reloading the complex-

containing fraction on a second Sephadex G-25 column and eluting the complex with a tris-acetate 

buffer (1.0 mM, pH 7.2). The resulting complex solution was lyophilized for storage and further 

experiments. After reconstitution in water, the complex concentration in solution was determined by 

UV-visible spectroscopy and a BioRad protein assay (Bio-Rad Lab). 

 

CREM (Chemically resolved electrical measurements):  

The XPS-based electrical measurements were performed on a slightly modified Kratos AXIS-HS setup, 

using monochromatic X-ray source, Al kα, at low power, 75 W, and base pressure of 1•10-9 torr. The 

eFG was operated at 1.8 A filament current and -2.5 V grid bias. A Keithley 487 electrometer was 

connected to the sample back contact, providing both current detection and sample biasing. For reliable 

extraction of the layer dielectric response, reversible line-shifts were differentiated from any irreversible 

electrostatic (and chemical) modifications. Detailed follow-up of the beam induced changes was further 

conducted (see SI) such as to extract the degradation information on a broad range of time scales. Rapid 

CREM-based WF measurements were performed initially, before exposure to any irradiation, and later 

on again, both on fresh and on irradiated spots at sequencing stages of the experiment. (Early 

electrostatic changes could frequently be identified, but soon the electrical data stabilized and, also, no 

significant changes in the standard (XPS) chemical analysis were observed, indicating high stability of 
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the system.)  The error in ∆V determination can approach ≤5 mV; but for the noisy signals we achieved 

30-70 mV.  
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Supporting Information Available.  The supporting information incudes: (1) A note regarding 

doping at the nm scale;  (2) Complementing aspects of the present electrical probes; (3) Technical 

comments on the CREM study; (4) Layer characterization; (5) Protein structure calculation method 

(movie included); (6) Information on the device performance. 
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