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Abstract

A new family of organometallic compounds, organozirconium reagents, are shown to serve as
suitable partners in cross-coupling reactions of (activated) secondary alkyl electrophiles. Thus, the
first catalytic method for coupling secondary α-bromoketones with alkenylmetal reagents has been
developed, specifically a mild, versatile, and stereoconvergent carbon–carbon bond-forming
process that generates potentially labile β,γ-unsaturated ketones with good enantioselectivity.

Because olefin-containing molecules are ubiquitous targets,1 the development of effective
methods for incorporating this functional group is an important goal. If absolute
stereochemistry can also be defined during the bond construction, the utility of a new
process is further enhanced. The reaction of secondary alkyl electrophiles with alkenylmetal
reagents is an attractive approach to the introduction of olefins, but there are relatively few
reports of such cross-couplings.2,3 Furthermore, there has been only one investigation of an
enantioselective variant of this type of process (three examples of cross-couplings of α-
haloesters with alkenyltrimethoxysilanes).3b

Alkenylzirconium compounds are appealing alkenylmetals for cross-couplings,4 in part
because they are readily accessible by reacting commercially available Schwartz’s reagent
(Cp2ZrHCl) with alkynes. Although secondary alkyl electrophiles have now been coupled
with many different families of organometallic partners (e.g., boron, zinc, magnesium,
silicon, tin, and indium compounds),5 to the best of our knowledge, they have not been
cross-coupled with organozirconium reagents.6 In this report, we describe a mild and
versatile method for coupling organozirconium compounds with secondary alkyl halides,
specifically alkenylzirconium reagents with racemic α-bromoketones; in addition, we
establish that this stereoconvergent carbon–carbon bond-forming process can be
accomplished with good enantioselectivity to generate potentially labile β,γ-unsaturated
ketones (eq 1).7,8,9
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(1)

In initial studies, we attempted to apply previously described methods for nickel-catalyzed
asymmetric cross-couplings8,9 to the alkenylation of 2-bromo-1-phenylpropan-1-one;
unfortunately, we did not obtain the desired product in satisfactory yield or ee. We therefore
decided to explore the potential utility of a new family of coupling partners,
alkenylzirconium reagents. In addition to their ready availability, we anticipated that they
could provide another crucial attribute: carbon–carbon bond formation might be achieved
under sufficiently mild, non-basic conditions that racemization of the α stereocenter and
isomerization to the α,β-unsaturated isomer would be avoided. Such complications have thus
far precluded a Buchwald-Hartwig-type approach to the catalytic asymmetric alkenylation
of carbonyl compounds to generate α tertiary stereocenters.10

We have determined that, under the appropriate conditions, a nickel/bis(oxazoline) catalyst
can achieve the stereoconvergent cross-coupling of racemic α-bromoketones with
alkenylzirconium compounds to generate β,γ-unsaturated ketones in good yield and ee
(Table 1).11 Carbon–carbon bond formation occurs below ambient temperature (10 °C) and
without the need for any additives (e.g., Brønsted bases) that might erode the
enantioselectivity. As illustrated in Table 1, a broad array of alkenylzirconium reagents are
suitable cross-coupling partners. Thus, the R2 group can range in steric demand from
hydrogen to t-butyl (entries 1–5). Furthermore, functional groups such as aromatic rings,
oxygen substituents, and alkenes are compatible with the reaction conditions (entries 3 and
6–9).

We have also examined the scope of this new cross-coupling process with respect to the α-
bromoketone. As illustrated in Table 2, a diverse set of aryl alkyl ketones are suitable
electrophiles. A variety of different types of substituents can be present on the aromatic ring
(electron-donating or electron-withdrawing: entries 4–7; ortho, meta, or para: entries 4–9),
and the aromatic group can be a heterocycle (e.g., a thiophene in entry 10). In addition, an
array of alkyl groups on the ketone and R2 substituents on the alkenylzirconium reagent are
tolerated.

The same method can be applied directly to enantioselective cross-couplings of dialkyl
ketones with alkenylzirconium reagents (Table 3). This contrasts with our study of
asymmetric Kumada reactions of ketones with aryl Grignard reagents, wherein different
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coupling conditions (ligand and temperature) were necessary for aryl alkyl ketones versus
dialkyl ketones.9c

The chiral nickel/bis(oxazoline) catalyst can dictate the stereochemical outcome of a cross-
coupling of an α-bromoketone that bears another stereocenter (i.e., catalyst-controlled
stereoselectivity: eq 2 and eq 3). Furthermore, stereoselective functionalizations of the cross-
coupling product can be achieved (eq 4).

(2), (3)

(4)

In summary, we have demonstrated that a new family of organometallic compounds,
organozirconium reagents, can serve as suitable partners in cross-coupling reactions of
(activated) secondary alkyl electrophiles. Thus, we have developed the first catalytic method
for coupling secondary α-haloketones with alkenylmetal reagents, specifically a mild,
versatile, and stereoconvergent carbon–carbon bond-forming process that generates
potentially labile β,γ-unsaturated ketones with good enantioselectivity. Additional efforts to
expand the scope of cross-couplings of alkyl electrophiles are underway.
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Table 1

Catalytic Asymmetric Alkenylations with Organozirconium Reagents: Scope with Respect to the Nucleophile

entry R2 yield (%)a ee (%)

1 H 92 90

2 n-Bu 92 92

3 CH2Ph 91 93

4 Cy 75 81

5b t-Bu 86 84

6 Ph 89 91

7 CH2OTBS 81 90

8 CH2CH2OTHP 76 95

9 82 93

All data are the average of two experiments.

a
Yield of purified product.

b
Catalyst loading: 10% NiCl2 • glyme/12% (−)-1.
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Table 3

Catalytic Asymmetric Alkenylations with Organozirconium Reagents: Scope with Respect to the Dialkyl
Ketone (for the reaction conditions, see eq 1)

entry ketone R2 yield (%)a ee (%)

1 CH2Ph 86 90

J Am Chem Soc. Author manuscript; available in PMC 2011 April 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lou and Fu Page 9

entry ketone R2 yield (%)a ee (%)

2 CH2Ph 82 80

3 CH2Ph 82 98

4 CH2Ph 87 91

5b p-CF3-C6H4 84 90

All data are the average of two experiments.

a
Yield of purified product.

b
The reaction was run at 40 °C.
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