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Abstract

A new thiourea catalyst is reported for the enantioselective cationic polycyclization of
hydroxylactams. Both the yield and enantioselectivity of this transformation were found to vary
strongly with the identity of a single aromatic residue on a common catalyst framework, with
more expansive and polarizable arenes proving optimal. Evidence is presented for a mechanism in
which stabilizing cation-π interactions are a principal determinant of enantioselectivity.

Advances in cyclase enzymology have provided strong evidence that cation-π interactions
play an essential catalytic role in biosynthetic polyene cyclizations.1,2 Structural, kinetic,
and site-directed mutagenesis studies all suggest that the cationic intermediates and
transition states accessed in these transformations are stabilized through a series of attractive
interactions with aromatic residues that line the cyclase active site.3 This mechanistic insight
suggests the intriguing possibility that analogous stabilizing cation-π interactions might also
be engineered into selective small-molecule catalysts.4

We became interested in developing an asymmetric polycyclization jointly predicated on
this biosynthetic model and our recent work in anion binding thiourea catalysis.5,6 The
ability of arenes to stabilize cations offers a logical complement to the anion binding
properties of thioureas.7 As such, an appropriate bifunctional catalyst would be capable of
electrostatically stabilizing both poles of a reactive ion pair in a spatially resolved manner,
increasing the probability of strong binding to the enantioselectivity-determining transition
state structure (Scheme 1).8 Herein, we report the development of a new thiourea catalyst for
the enantioselective bicyclization of hydroxylactams, together with evidence that stabilizing
cation-π interactions play a principal role in asymmetric induction.

Our efforts focused on developing an enantioselective variant of a polycyclization originally
reported by Speckamp that proceeds through an N-acyliminium ion intermediate (Table 1).9
In evaluating the bicyclization of hydroxylactam 1, a preliminary survey of thioureas,
Brønsted acids and solvents produced a lead result with thiourea 3, with tetracycle 2
generated in 10% yield and 9% ee upon treatment with 0.25 equivalents of HCl in TBME
containing 4Å molecular sieves at −30 °C (Table 1). Catalyst 4, a conformationally
constrained analog of 3 bearing a 2-phenylpyrrolidine ring, afforded a modest increase in
enantioselectivity.10 Modification of the electronic properties of the aromatic group of 4 by
introduction of simple substituents had little effect on catalyst performance. In contrast, 2-
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aryl pyrrolidine catalysts bearing larger aromatic groups proved substantially more reactive
and enantioselective. The naphthyl-substituted catalysts 5 and 6 both provided 2 in greater
than 60% ee, while 9-phenanthryl-derived catalyst 7 furnished product 2 in 52% yield and
87% ee. Spurred by the apparent correlation between the expanse of the pyrrolidine arene
and catalytic performance, we prepared and evaluated 4-pyrenyl-substituted thiourea
derivative 8. This proved to be the optimal catalyst, providing 2 in 78% yield and 95% ee.
Under the action of all the catalysts described in Table 1, tetracycle 2 was formed as a single
detectable diastereomer, the relative stereochemistry of which was secured by X-ray
crystallography (supporting information).11,12 Notably, reactions performed in the absence
of a thiourea catalyst provided none of the desired bicyclization product.13

Having identified a selective catalyst and suitable reaction conditions, we evaluated the
substrate scope of this bicyclization protocol. A variety of aromatic groups were found to be
efficient and selective terminating nucleophiles (Table 2). In addition to the model substrate
1, the unsubstituted phenyl substrate 9 (entry 1), a number of electronically and sterically
diverse para-substituted phenyl derivatives (entries 2–5), an extended naphthyl-containing
substrate 17 (entry 6), as well as a chlorinated thiophene 19 (entry 7) all underwent
cyclization with high enantioselectivity under the action of catalyst 8. Furthermore, in each
case the bicyclization products were formed as single diastereomers, as judged by NMR
analysis. Unfortunately, alteration of the non-aromatic portions of the substrate led to
significant losses in reactivity and enantioselectivity (supporting information).

The fact that the enantioselectivity observed in these polycyclizations is highly dependent
upon the expanse of the catalyst arene, taken together with the cationic nature of the
reaction, raises the intriguing possibility that stabilizing cation-π interactions may play a key
role in asymmetric induction. To evaluate this hypothesis, an Eyring analysis of
enantioselectivity was conducted for catalysts 6, 7, and 8 in the bicyclization of substrate 1.
All three catalysts displayed linear correlations between ln(er) and reciprocal temperature
over a 70 °C range (Table 3). Evaluation of the differential activation parameters derived
from these plots revealed that enantioselectivity was enthalpically-controlled in all cases,
and that the magnitude of the differential enthalpy increased markedly as the catalyst arene
increased in size. In fact, this term roughly doubles in magnitude with the addition of each
new aromatic ring, reaching nearly 4 kcal/mol for the optimal catalyst 8. The effect of this
increase was attenuated slightly by a compensating increase in the differential entropy terms
across the series.

The energetic benefits of increasing the strength of a non-covalent binding interaction are
typically manifested enthalpically.14 As such, the increasing magnitude of the differential
enthalpy in catalysts with more extended arenes is consistent in principle with a
progressively more stabilizing cation-π interaction in the dominant transition state structure
and with the fact polycyclic aromatic hydrocarbons are known to bind cations more strongly
as they increase in size.15 However, these data do not rule out the possibility that increasing
the expanse of the arene energetically destabilizes the minor transition state assembly,
presumably through steric interactions. In order to ascertain whether the extended aromatic
system is stabilizing the transition state leading to the major enantiomer or destabilizing the
minor pathway, we investigated whether correlations existed between the degree of
observed enantioinduction and the physical properties that underlie cation-π interactions.
The strength with which a given arene interacts with a positive charge in a transition state is
primarily a function of electrostatic and dispersion forces.16,17 As such, if the strength of a
cation-π interaction is a determinant in enantioselectivity, there may be a correlation
between the degree of asymmetric induction observed and the quadrupole moment and
polarizability of the arene involved. Conversely, if the effect were largely steric and
repulsive in origin, no significant correlation with these physical properties would be
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expected. The enantioselectivity observed with catalysts 4, 6, 7, and 8 under standard
conditions was found to correlate strongly with both the polarizability and the quadrupole
moment of the arenes found in each catalyst (R2 = 0.99, 0.97 respectively, see supporting
information).18,19 Taken altogether, these data provide compelling evidence for a
mechanism incorporating a selectivity-determining cation-π interaction.

In conclusion, the enantioselective cationic polycyclization reactions catalyzed by 8 appear
to engage stabilizing cation-π interactions as a principal element of enantioselectivity. In this
respect, these findings emulate the particularly striking role cation-π interactions play in the
catalysis of biosynthetic polyene cyclizations and provides clear support for the notion that
these interactions can dictate stereocontrol in small-molecule catalysis contexts as well.
Moreover, this work further advances the view that stabilization of the dominant transition
state structure through non-covalent interactions is a viable means of achieving high levels
of enantioselectivity in counter ion catalysis.

Supplementary Material
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Scheme 1.
Proposal for enantioselective polycyclization
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Table 1

Catalyst optimization

Optimization reactions performed on 0.033 mmol scale.

a)
Yields determined by GC analysis relative to an internal standard.

b)
Enantiomeric excess determined by SFC analysis on commercial chiral columns.
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Table 2

Substrate scope

entry substrate product yield (%)a ee (%)b

1 51 89

2 72 94

3 62 91
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entry substrate product yield (%)a ee (%)b

4c 54 91

5 71 91

6 75 92

7d 77 91

Reactions performed on 0.25 mmol scale.

a)
Isolated yields after chromatography on silica gel.

b)
Enantiomeric excess determined by SFC analysis on commercial chiral columns.

c)
Reaction run with acetoxylactam and 2.0 equivalents of TMSCl.
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d)
The structure and absolute configuration of 20 was established by X-ray crystallography and the stereochemistry of all other products was

assigned by analogy.
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Table 3

Eyring analysis of enantioselectivity

entry catalyst ΔΔH‡ (kcal/mol) ΔS‡ (cal/mol•K)

1 6 1.12 ± 0.07 2.0 ± 0.3

2 7 1.87 ± 0.08 2.8 ± 0.3

3 8 3.95 ± 0.17 8.9 ± 0.7
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