
Supporting Information:

Methyl 1-(4-formyl-2-nitrophenyl)-2,3,4-tri-*O*-acetyl-β-D-glucopyronuronate (6):¹ Methyl 1-bromo-2,3,4-tri-O-acetyl- α -D-glucopyronuronate² (10.75 g, 27.1 mmol) was dissolved in 250 ml anhydrous MeCN. 4-hydroxy-3-nitrobenzaldehyde (7.64 g, 45.7 mmol) was then added followed by 28.5 g (123 mmol) of Ag₂O. The resulting slurry was stirred in the dark under N₂ for 4h. The solution was filtered through Celite to remove solids and the filtrate concentrated in vacuo. The residue was brought up in EtOAc (400 ml) and washed with saturated NaHCO₃ ($6 \times 200 \text{ ml}$), water and brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The beige solid was triturated with hexanes yielding 6 (12.52 g, 96%). ¹H NMR (500 MHz, DMSO- d_6) δ 2.01, 2.02, 2.03 (3s, 3 x 3H, OAc), 3.64 (s, 3H, COOCH₃), 4.80 (d, 1H, H-5, J=10 Hz), 5.15 (m, 2H, H-2, H-4), 5.74 (m, 1H, H-3), 5.94 (d, 1H, H-1 J=8 Hz), 7.64 (d, 1H, ArH, J=9 Hz), 8.22 (dd, 1H, ArH, J=9 Hz, J'=1.5 Hz), 8.44 (d, 1H, ArH, J=1.5 Hz), 9.98 (s, 1H, CHO); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 20.17, 20.22, 20.26, 52.65, 68.49, 69.67, 70.43, 71.18, 97.25, 117.58, 126.23, 131.07, 134.74, 140.25, 152.10, 166.85, 168.72, 169.34, 169.49, 190.48; IR (KBr plate) v 2956, 1756, 1700, 1612, 1538, 1368, 1235, 1074, 1039 cm⁻¹; ESI-MS m/z (M + Na)⁺ 506.1; Anal. Calcd for C₂₀H₂₁NO₁₃: C 49.69, H 4.38, N 2.90; Found C 49.92, H 4.55, N 2.80.

Methyl 1-(4-hydroxymethyl-2-nitrophenyl)-2,3,4-tri-O-acetyl-β-D-

glucopyronuronate (7):^{1,3} 1.41 g (37.3 mmol) NaBH₄ were added to a stirring solution of 12.03 g (24.9 mmol) **6** and 5 g silica gel at 0°C in 300 ml 1:5 IPA:CHCl₃. After 45 min, the solution was poured into 300 ml ice water and filtered through Celite. The layers were separated and the organic fraction washed with brine, dried (MgSO₄), concentrated *in vacuo*, and triturated with Et₂O, yielding 7 as a white solid (11.65 g, 96 %). ¹H NMR (500 MHz, DMSO-*d*₆) δ 1.99 (s, 3H, OAc), 2.02 (s, 6H, OAc), 3.33 (br

OH), 3.64 (s, 3H, COOCH₃), 4.51 (d, 2H, CH₂OH, J=5.5 Hz), 4.73 (d, 1H, H-5, J=10 Hz), 5.10 (m, 2H, H-2, H-4), 5.44 (m, 1H, H-3), 5.71 (d, 1H, H-1 J=8 Hz), 7.38 (d, 1H, ArH, J=8 Hz), 7.62 (d, 1H, ArH, J=8 Hz), 7.80 (s, 1H, ArH); ¹³C NMR (126 MHz, DMSO- d_6) δ 20.19, 20.22, 20.28, 52.64, 61.32, 68.73, 69.94, 70.75, 71.02, 98.06, 117.70, 122.30, 131.97, 138.54, 140.18, 146.92, 166.92, 168.74, 169.32, 169.51; IR (KBr plate) v 3527, 1756, 1535, 1367, 1232, 1077, 1039 cm⁻¹; ESI-MS *m*/*z* (M + Na)⁺ 508.3; Anal. Calcd for C₂₀H₂₃NO₁₃: C 49.49, H 4.78, N 2.89; Found C 49.50, H 4.90, N 3.12.

Methyl 1-(4-(2-bromo-ethylcarbamoyloxymethyl)-2-nitrophenyl)-2,3,4-tri-O-acetyl**β**-D-glucopyronuronate (9): 3.75 g (7.73 mmol) sugar 7 and 189 mg (1.55 mmol) DMAP in 50 ml dry CH₂Cl₂ under N₂ were subjected to 2.51 g (15.5 mmol) 1,1'carbonyl-diimidazole. When the reaction was complete by TLC (silica, 5% MeOH/CH₂Cl₂) (2.25 h), the solution was washed with water, 5% NaH₂PO₄, sat. NaHCO₃, and brine. The organic layer was dried (MgSO₄) and concentrated in vacuo to yield 4.19 g of the imidazolyl intermediate 8. 8 was dissolved in 65 ml anhydrous CH₂Cl₂ under N₂ and cooled to 0°C. 0.90 ml (7.95 mmol) MeOTf was added over 5 min. After 30 min, the reaction was diluted with 30 ml Et₂O and cooled to -20°C to allow all methylated product to precipitate. The white solid was collected by filtration, washed with Et₂O and dried *in vacuo*. The activated compound was suspended in 50 ml anhydrous CH₂Cl₂ under N₂ and 2.22 g (10.85 mmol) 2-bromoethylamine hydrobromide were added. The slurry was brought to 0°C and 1.51 ml (10.85 mmol) TEA added in one portion. The reaction stirred for 2 h and was then washed with water and brine. The organic layer was dried (MgSO₄), concentrated *in vacuo* and purified by chromatography (silica, 0-55% EtOAc in hexanes) to give 2.99 g (65 %) 9 as a white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 2.00 (s, 3H, OAc), 2.02 (s, 6H, OAc), 3.39 (t, 2H, J=6 Hz), 3.47 (t, 2H, J=6 Hz), 3.64 (s, 3H, COOCH₃), 4.73 (d, 1H, H-5, J=10 Hz), 5.06-5.14 (m, 4H, benzylic CH₂, H-2, H-4), 5.46 (m, 1H, H-3), 5.74 (d, 1H, H-1 J=8 Hz), 7.43 (d, 1H, ArH, J=9 Hz), 7.67 (m, 2H, ArH, NH), 7.89 (s, 1H, ArH); ¹³C NMR (101 MHz, DMSO- d_6) δ 20.22, 20.26, 20.31, 32.44, 42.34, 52.63, 63.81, 68.65, 69.83, 70.66, 71.01, 97.79, 117.72, 123.86, 132.77, 133.51, 139.99, 147.58, 155.70, 166.78, 168.62, 169.21, 169.38; ESI-MS m/z (M + Na)⁺ 657.0, 659.0 (Br isotope pattern); Anal. Calcd for C₂₃H₂₇BrN₂O₁₄: C 43.48. H 4.28. N 4.41: Found C 43.74. H 4.20. N 4.34.

Methyl 1-(4-(2-bromo-ethylcarbamoyloxymethyl)-2-nitrophenyl)-β-D-

glucopyronuronate (10): 2.84 g (4.47 mmol) **9** were suspended in 90 ml dry MeOH under N₂ at 0°C. 650 μ L 30% w/v NaOMe in MeOH were added and the solution stirred for 100 min. The reaction was quenched with 197 μ L acetic acid. Removal of solvent was followed by purification on silica (10% MeOH/CH₂Cl₂). The resulting solid was dissolved in acetone and filtered through a 0.2 μ m PTFE filter to remove any silica. The solution was concentrated *in vacuo* and triturated (Et₂O) to give 1.80 g (79%) **10**. Data for **10** ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.26-3.42 (m, 5H), 3.47 (t, 2H, *J*=6 Hz), 3.65 (s, 3H, COOCH₃), 4.13 (d, 1H, H-5, *J*=10 Hz), 5.04 (s, 2H, benzylic *CH*₂), 5.31 (m, 2H, H-1, O*H*), 5.49 (d, 1H, O*H J*=6 Hz), 5.54 (d, 1H, O*H J*=5 Hz), 7.44 (d, 1H, ArH, *J*=9 Hz), 7.63 (m, 2H, ArH, N*H*), 7.86 (s, 1H, ArH); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 32.44, 42.35, 52.02, 63.94, 71.19, 72.71, 75.17, 75.61, 99.76, 116.86, 124.09, 131.27, 133.54, 139.86, 148.58, 155.88, 169.06; ESI-MS *m*/z (M + Na)⁺ 530.9, 532.9 (Br isotope pattern);

Anal. Calcd for C₁₇H₂₁BrN₂O₁₁: C 40.09, H 4.16, N 5.50; Found C 40.32, H 4.46, N 5.39. The major byproduct of this reaction was α,β-unsaturated compound **11**, resulting from base-catalyzed β-acetate elimination. Data for **11** ¹H NMR (500 MHz, CD₃OD) δ 3.23 (t, 2H, *J*=5 Hz), 3.45 (t, 2H, *J*=5 Hz), 3.77 (s, 3H, COOCH₃), 4.09 (m, 2H), 5.09 (s, 2H, benzylic CH₂), 5.90 (br. s, 1H, H-4), 6.28 (d, 1H, H-1 *J*=2.5 Hz), 7.57 (d, 1H, ArH, *J*=9 Hz), 7.66 (d, 1H, ArH, *J*=9 Hz), 7.92 (s, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD) δ 33.67, 44.41, 53.12, 65.83, 66.77, 70.58, 100.08, 114.14, 120.19, 126.04, 134.37, 135.11, 141.05, 142.02, 150.24, 158.73, 163.96.

Methyl 1-(4-(2-hydroxy-ethylcarbamoyloxymethyl)-2-nitrophenyl)-2,3,4-tri-Oacetyl-B-D-glucopyronuronate (15): 1.05 ml (9.25 mmol) MeOTf were added over 5 min to a solution of 4.87 g (8.41 mmol) 8 in 60 ml anhydrous CH₂Cl₂ under N₂ at 0°C. After 30 min, the reaction was diluted with 30 ml Et₂O and cooled to -20°C to allow all methylated product to precipitate. The white solid was collected by filtration, washed with Et₂O and dried in vacuo. The activated compound was suspended in 60 ml anhydrous CH₂Cl₂ under N₂ and brought to 0°C. 761 µl (12.6 mmol) 2hydroxyethylamine were added and the solution was allowed to warm to room temperature over 2 h and was then washed with water, 5% NaH₂PO₄, sat. bicarbonate and brine. The organic layer was dried (MgSO₄), concentrated in vacuo and purified by chromatography (silica, 0-5% MeOH in CH₂Cl₂) to give 3.68 g (77%) 15 as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 1.99 (s, 3H, OAc), 2.02 (s, 6H, OAc), 3.05 (q, 2H, J=6 Hz), 3.33 (s, 1H, OH), 3.38 (q, 2H, J=6 Hz), 3.64 (s, 3H, COOCH₃), 4.64 (t, 0.5H, NH, J=6 Hz), 4.74 (d, 1H, H-5, J=10 Hz), 5.02 (s, 2H, benzylic CH₂), 5.10 (m, 2H), 5.46 (t, 1H, J=10 Hz), 5.74 (d, 1H, H-1, J=8 Hz), 7.27 (t, 0.5H, NH, J=6 Hz), 7.43 (d, 1H, ArH, J=9 Hz), 7.67 (d, 1H, ArH, J=9Hz), 7.88 (s, 1H, ArH); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 20.20, 20.23, 20.28, 43.09, 52.64, 59.86, 63.59, 68.69, 69.87, 70.71, 71.05, 97.89, 117.80, 123.89, 133.12, 133.55, 140.11, 147.63, 155.93, 166.90, 168.74, 169.33, 169.51; IR (KBr plate) v 3394, 2962, 1756, 1708, 1535, 1366, 1235, 1073, 1039 cm⁻¹; ESI-MS m/z (M + Na)⁺ 595.3; Anal. Calcd for C₂₃H₂₈N₂O₁₅: C 48.25, H 4.93, N 4.89; Found C 47.96, H 5.14, N 4.91.

Methyl 1-(4-(2-hydroxy-ethylcarbamoyloxymethyl)-2-nitrophenyl)-β-D-

glucopyronuronate (16): 3.49 g (6.10 mmol) **15** in 100 ml anhydrous MeOH were cooled to 0°C under N₂. 776 µl (4.27 mmol) 30% NaOMe in MeOH were added and the solution allowed to stir for 1 h. 210 µl acetic acid were added and the volatiles removed *in vacuo*. The resulting solid was purified by chromatography (silica, 10-15% MeOH in CH₂Cl₂) and excess silica removed by filtration of an acetone solution through a 0.2 µm PTFE filter. Trituration of the solid with Et₂O yielded 2.15 g (79%) **16** as a white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.05 (q, 2H, *J*=6 Hz), 3.25-3.44 (m, 6H), 3.66 (s, 3H, COOCH₃), 4.12 (d, 1H, H-5, *J*=10 Hz), 4.63 (t, 0.5H, N*H*, *J*=5.5 Hz), 5.00 (s, 2H, benzylic C*H*₂), 5.31 (d, 2H, H-1, OH), 5.49 (d, 1H, OH, *J*= 5.5 Hz), 5.54 (d, 1H, OH, *J*=4.5 Hz), 7.25 (t, 0.5H, N*H*, *J*=6 Hz), 7.44 (d, 1H, ArH, *J*=9 Hz), 7.63 (d, 1H, ArH, *J*=9Hz), 7.85 (s, 1H, ArH); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 43.10, 52.03, 59.88, 63.70, 71.20, 72.72, 75.17, 75.61, 99.80, 116.86, 124.05, 133.51, 133.51, 139.87, 148.53, 155.99, 169.07; IR (KBr plate) v 3352, 2954, 1737, 1705, 1533, 1354, 1252, 1083, 1060,

1019 cm⁻¹; ESI-MS m/z (M + Na)⁺ 469.2; Anal. Calcd for C₁₇H₂₂N₂O₁₂: C 45.74, H 4.97, N 6.28; Found C 47.92, H 5.06, N 5.98.

Methyl 1-(4-(2-methanesulfonyloxy-ethylcarbamoyloxymethyl)-2-nitrophenyl)- β -Dglucopyronuronate (14): 950 µl (6.81 mmol) NEt₃, 100mg (0.85 mmol) DMAP and 1.90 g (4.26 mmol) 16 were dissolved in 50 ml anhydrous pyridine and cooled to 0°C. $529 \mu l$ (6.81 mmol) methanesulfonyl chloride were added and the reaction checked by TLC (10% MeOH/CH₂Cl₂). After 1 h an additional 0.5 eq (2.13 mmol) of NEt₃ and MsCl were added and the solution was allowed to stir for 1 h more. The volatiles were then removed in vacuo and the resulting oil purified by chromatography (silica, 10% MeOH/CH₂Cl₂). The solid was dissolved in acetone, filtered as in 16, concentrated and triturated with hexanes to give 1.60 g (72%) 14. The compound decomposes upon prolonged storage at ambient temperature even desiccated under N₂. ¹H NMR (500 MHz, CD₃OD) § 3.03 (s, 3H), 3.44 (m, 2H), 3.48-3.66 (m, 3H, H2-4), 3.76 (s, 3H, COOCH₃), 4.09 (d, 1H, H-5, J=10 Hz), 4.25 (m, 2H), 5.09 (s, 2H, benzylic CH₂), 5.19 (d, 1H, H-1), 7.37 (d, 1H, ArH, J=8 Hz), 7.59 (d, 1H, ArH, J=8Hz), 7.83 (s, 1H, ArH); ¹³C NMR (126 MHz, CD₃OD) δ 37.32, 41.37, 53.11, 66.06, 69.95, 72.77, 74.48, 76.89, 77.25, 102.44, 118.94, 125.64, 133.44, 134.52, 142.24, 150.61, 158.62, 170.81; Anal. Calcd for C₁₈H₂₄N₂O₁₄S: C 41.22, H 4.61, N 5.34; Found C 41.52, H 4.55, N 5.24.

References:

21. Caravan, P.; Cloutier, N. J.; Greenfield, M. T.; McDermid, S. A.; Dunham, S. U.; Bulte, J. W. M.; Amedio, J. C., Jr.; Looby, R. J.; Supkowski, R. M.; Horrocks, W. D., Jr.; McMurry, T. J.; Lauffer, R. B. *J. Am. Chem. Soc.* **2002**, *124*, 3152-3162.

34. Florent, J.-C.; Dong, X.; Gaudel, G.; Mitaku, S.; Monneret, C.; Gesson, J.-P.; Jacquesy, J.-C.; Mondon, M.; Renoux, B.; Andrianomenjanahary, S.; Michel, S.; Koch, M.; Tillequin, F.; Gerken, M.; Czech, J.; Straub, R.; Bosslet, K. *J. Med. Chem.* **1998**, *41*, 3572-3581.

44. Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; Parker, D.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M. *J. Am. Chem. Soc.* **2000**, *122*, 9674-9684.

50. Dickins, R. S.; Aime, S.; Batsanov, A. S.; Beeby, A.; Botta, M.; Bruce, J. I.; Howard, J. A. K.; Love, C. S.; Parker, D.; Peacock, R. D.; Puschmann, H. *J. Am. Chem. Soc.* **2002**, *124*, 12697-12705.

(1) Florent, J.-C.; et al. J. Med. Chem. 1998, 41, 3572-3581.

(2) Bollenback, G. N.; Long, J. W.; Benjamin, D. G.; Lindquist, J. A. J. *Am. Chem. Soc.* 1955, 77, 3310-3315.

(3) Leu, Y. L.; Roffler, S. R.; Chern, J. W. *J. Med. Chem.* 1999, *42*, 3623-3628.