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Artificial neural networks, the support vector machine (SVM), and other machine learning methods for the
classification of molecules are often considered as a “black box”, since the molecular features that are most
relevant for a given classifier are usually not presented in a human-interpretable form. We report on an
SVM-based algorithm for the selection of relevant molecular features from a trained classifier that might be
important for an understanding of ligand-receptor interactions. The original SVM approach was extended
to allow for feature selection. The method was applied to characterize focused libraries of enzyme inhibitors.
A comparison with classical Kolmogorov-Smirnov (KS)-based feature selection was performed. In most of
the applications the SVM method showed sustained classification accuracy, thereby relying on a smaller
number of molecular features than KS-based classifiers. In one case both methods produced comparable
results. Limiting the calculation of descriptors to only the most relevant ones for a certain biological activity
can also be used to speed up high-throughput virtual screening.

INTRODUCTION

Feature selection methods can help determine molecular
descriptors that are important for the characterization of
target-family specific classes of drugs and drug-like mol-
ecules by machine learning systems. Currently large numbers
of descriptors are available for molecule characterization.
Traditional feature selection methods such as forward and
backward selection1 or evolutionary algorithms2 are com-
putationally too expensive to be applied to very large
descriptor sets directly. The most time-consuming step is
retraining of the classifier after every modification of the
set of selected features. This step needs to be reiterated
sufficiently often before the process converges to the final
set of features. Parallelizing computations is usually the only
way to speed up the procedure.

An alternative approach is to select the important features
prior to classifier training. In this case, the classifier needs
to be trained only once for the selected features. Several
techniques are known to implement this concept, e.g.
correlation coefficients,3,4 Fisher discriminant analysis,1 and
Kolmogorov-Smirnov (KS) statistics.5 KS statistics was
shown to be well-suited for feature selection in different
fields of research.6,7 Recently several model-dependent
methods for feature selections were developed,8 where the
classifier is trained prior to feature selection, and features
are selected based on a statistical model of the trained
classifier. These methods have been predicted to outperform
model-independent feature selection algorithms.8

For the present study we developed and applied a support
vector machine (SVM)-based feature selection and compared
it with a KS-based algorithm. An advantage of the SVM-
based classification9 in comparison to other methods, e.g.
multilayered feed-forward neural networks,1 is that the

construction of the surface that separates classes of data
depends only on the support vectors.10 Support vectors are
samples that are lying close to the border that separates two
classes. Using only these samples can help increase the
accuracy of the SVM prediction.11 We extended the same
principle to feature selection. Once an SVM classifier has
been trained with all molecular descriptors, feature selection
is based on the identified support vectors only, disregarding
other samples.

The method was applied to feature selection from SVM
classifiers for kinase inhibitors, factor Xa inhibitors, and
thrombin inhibitors. The approach complements related work
on “drug-likeness” prediction12 and extends it to target- and
target-family specific sets of inhibitors.

DATA AND METHODS

Data Sets.For SVM training and feature selection we used
subsets of the COBRA database, version 2.1.13 Three
different splits of the COBRA collection were used for
evaluation of the feature selection algorithms: 226 kinase
inhibitors and 4479 noninhibitors; 227 factor Xa inhibitors
and 4478 noninhibitors; and 227 factor Xa inhibitors and
195 thrombin inhibitors. The subset of kinase inhibitors
represents a diverse set of molecules in that they are specific
to a family of targets that differ significantly from each other.
On the contrary, factor Xa and thrombin inhibitors are drug
molecules which are specific for a single target. We expected
that factor Xa and thrombin inhibitors should share a certain
degree of similarity due to the similarity of the target binding
sites.

Two sets of descriptors were calculated: 182 descriptors
from MOE (Molecular Operating Environment)14 and 225
topological pharmacophore (CATS) descriptors.15 MOE
descriptors include various 2D and 3D descriptors. 2D
descriptors were physical properties, subdivided surface
areas, atom and bonds counts, Kier-Hall connectivity and
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Kappa Shape indices, adjacency and distance matrix descrip-
tors, pharmacophore feature descriptors, and partial charges
descriptors. 3D descriptors were potential energy descriptors;
surface area, volume and shape descriptors; and conforma-
tional dependent charge descriptors. Before calculating MOE
descriptors, single 3D conformers were generated by Co-
rina.16 CATS descriptors were calculated taking into con-
sideration pairs of atom types separated by 0 up to 15 bonds.
All descriptor columns were scaled to have zero mean and
unit standard deviation.

Kolmogorov-Smirnov Statistics.KS-based statistics rep-
resent a model-independent method for feature selection. It
is routinely used for feature selection from different data sets
and features. Its main advantage over other methods is the
independence from the particular statistical model that
generates the data, in contrast to other methods, that perform
well only if the data adopts certain statistics. For instance,
“correlation coefficient”3,4 based feature selection performs
best if the data can be modeled by Gaussian mixtures,1 and
its accuracy drops otherwise. Very often it is impossible to
correctly guess statistical models of the data a priori, which
results in only approximately correct models. If the under-
lying statistics is not known or a Gaussian mixture model is
not appropriate, KS statistics can be a method of choice.

In KS statistics each feature is first tested to have different
statistics for class and nonclass samples. This is done by
merging feature values for class and nonclass and building
two separate cumulative fraction functions, one for class and
one for nonclass. The cumulative fraction function represents
the dependency of the percentage of samples whose feature
values are below a certain threshold, on the position of the
threshold value in the sorted list of feature values. An
example of the cumulative function for the data set{0.08,
0.10, 0.15, 0.17, 0.24, 0.34, 0.38, 0.42, 0.49, 0.50, 0.70, 0.94,
0.95, 1.26, 1.37, 1.55, 1.75, 3.20, 6.98, 50.57} is given in
Figure 1a. The maximum differenceD of two cumulative
functions for class and nonclass is then used as a measure
for the significance of a distinguishing feature. An example
of this measure is given in Figure 1b.

A KS statistics test is performed for all available features,
which are then sorted with respect to the KS test results,
and only the most relevant features are considered for further
training.

SVM-Based Feature Selection.Usually feature selection
algorithms are applied prior to the classifier training: A
feature selection algorithm first selects a set of features and
then a classifier is trained based on the features of this subset.
Recently it was demonstrated that feature selection schemes,

where the feature selection algorithm relies on the model
that is created during training, produce better results.8

Accordingly an alternative scheme for feature selection was
suggested: The classifier is first trained using all available
features. Then, the least important features are deleted. The
drawback of this approach is that the trained classifier usually
assumes a certain statistical model for the data, which might
be only approximately correct. Current algorithms for
nonlinear classifier training like artificial neural networks
or SVM estimate a statistical model for the data sufficiently
well to make this approach an alternative to model-
independent feature selection.

The separating surface generated by SVM is given by

Hereai, b, andxi
svare parameters of the SVM, determined

during training.xi
sv are support vectors, which represent a

subset of the training samples that determine the separating
surface. This surface corresponds to the linear separation in
a very high-dimensional space, where data points are mapped
during SVM training.17 This mapping is determined solely
by the kernel functionK (x,x′).18 In this high-dimensional
space the separating surface is given by

where

is a normal vector of the separating hyperplane. To estimate
the importanceRf of a feature to the accuracy of the SVM
prediction we calculated a projection of the feature change
in the mapped space to the normal of the SVM plane (Figure
2):

Calculating the derivative we obtain:

Figure 1. (a) Cumulative fraction plot.X denotes a molecular
feature. (b) KS-test comparison. Cumulative fraction plots for two
classes of data are shown by solid and dotted lines.D denotes the
maximum difference of featureX values observed for the two
classes.

Figure 2. SVM-based feature selection. The optimal SVM
hyperplane is shown with examples of class and nonclass samples
(filled circles and squares). In the example support vectors are
indicated by open symbols. For an estimation of the feature
relevance the gradient (shown by arrows) of the feature change is
calculated only for support vectors. (a) relevant features have a
gradient perpendicular to the separating hyperplane; (b) irrelevant
features.
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For estimating the relevance of a feature to classification
we should calculateRf only in the vicinity of the separating
hyperplane. To achieve it we will sumRf only over support
vectors, extending the principle of SVM that the position of
the classifying hyperplane depends only on support vectors:

Empirically we observed that data normalization improved
the performance in some cases; therefore, the final formula
that we used to perform feature selection is

Summarizing,Rf was calculated for all features, and those
features with lowRf value were excluded from the features
used for training. It is important to note thatRf depends only
on the support vectors.

For constructing SVM models we used the SVM-light
package.19 A fifth-order polynomial kernel was used in SVM
training:K(x′,x) ) (s(x′‚x) + 1)5. Training parameterssand
C were optimized using a gradient decent-like algorithm to
achieve maximum accuracy of prediction for the validation
set. ParameterC is an internal parameter that is set prior to
SVM training. It defines the tradeoff between the separating
margin and the penalty for incorrect predictions.17

Model Validation. Classification accuracy was evaluated
based on prediction accuracy and the correlation coefficient
according to Matthews20

whereP, N, O, andU are the numbers of true positive, true
negative, false positive, and false negative predictions,
respectively. Active molecules with specific activity were
considered as the “positive set”, and the other molecules
formed the “negative set”. The values for cc can range from
-1 to 1. A perfect prediction gives a correlation coefficient
of 1. Different training and test subset were selected, 80%
of samples for the training and 20% for the test. Ten cross-
validations were performed to estimate average and standard
deviation of the accuracy. Prediction accuracy and average
value of 〈cc〉 were calculated for the test subsets.

RESULTS AND DISCUSSION

We compared two methods for feature selection, KS-based
and SVM-based. Both methods were able to effectively select
sets of the most relevant features. Figure 3 shows the
dependency of the classification accuracy and Matthews
correlation coefficient on the number of selected features
for each subset. In all three sample applications the SVM-
based feature selection method outperformed the KS-based
approach, i.e., the classification accuracy remained at a high
level even for small numbers of remaining features. The

prediction accuracy dropped when the number of features
fell between 100 and 200 for the KS-based method. In
contrast, using the SVM-based method for feature selection
we were able to go down to about 40 features with only a
slight reduction in classification accuracy. This indicates
potential advantages of the SVM-based method. Considering
the error margins in the thrombin vs factor Xa classification,
KS-based feature selection may be regarded as comparable
to the SVM approach. This might have a relatively simple
explanation: A large portion of features might be relatively
easily discarded as “irrelevant” for correct classification. In
this case no significant advantage of an SVM-based versus
a KS-based scheme is observed. Still, when the number of
features was below 100 SVM-based feature selection per-
formed better. We wish to stress that a general statement
about the relative usefulness of the two methods is not
possible based on this single study. Also, we cannot fully
exclude that the difference seen in Figure 3 between SVM
and KS might in part result from different levels of parameter
optimization.

Table 1 contains a list of the features which were selected
being the most relevant for subset classification. Table 2
contains average property values calculated for the sets of
inhibitors used in this study.

Both factor Xa and thrombin inhibitors are relatively large
molecules containing characteristic fragments that are specific
for binding to the S1 pocket of the trypsin-like serine
proteases.21 Typically, these fragments are positively charged.
Most of the known faxtor Xa inhibitors exploit the S4 pocket
and S3 “cation recognition pocket” of factor Xa to gain
binding affinity.22 A difference between the two classes of
the molecules might be noted by observing the most relevant
features in more detail. The distance of a positive charge on
the one side and lipophilic, hydrogen-bond donor and
acceptor groups on the other side was suggested being a key
property for a distinction between factor Xa and thrombin
inhibitors by our SVM-based feature selection. This property
is most easily observed by comparing CATS descriptors for
large distances. As expected, these descriptors are found in
the top listed of the ranked features (Table 1a). These features
can be highlighted in the two-dimensional structures of
selective factor Xa inhibitors (Figure 4). Compound123 and
compound224,25have an approximately 3300-fold selectivity
for factor Xa over thrombin and contain the topological
pharmacophores selected by SVM. Structure2 is a repre-
sentative member of several covalent, peptide-derived bis-
cation factor Xa inhibitors which were used for SVM-
training. It is not surprising, therefore, that the most
“relevant” molecular features according to the SVM classifier
are found in these molecular structures. Structure1 was not
part of the training data, but some of the high-ranking
features are present in this molecule, too.

Our compilation of kinase inhibitors represents a com-
pound collection containing much broader activities than the
collection of factor Xa and thrombin inhibitors. Looking at
their average molecular weight and lipophilicity (clogP) one
can conclude that they are smaller and more lipophilic than
factor Xa and thrombin inhibitors (Table 2). This might
explain the observation that in the list of top-ranking SVM
features the topological descriptors are less prominent, and
various van der Waals based estimations of surface charges
were selected as “relevant” (Table 1b).
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Factor Xa inhibitors represent a relatively diverse set of
molecules. Nonetheless, by examining their structures it is
possible to assume that they have certain topological similar-
ity. This could be a reason, why various topological
descriptors are found within the first 20 most important
descriptors (Table 1c). Surprisingly simple descriptors, like
the number of aromatic atoms and aromatic bonds are also
at the top of the list. Certainly, these simplistic descriptors
cannot explain selectivity of factor Xa inhibitors, rather the
whole list of “relevant” features must be taken into consid-
eration if one tries to make sense out of a classifier system.
This example demonstrates that feature selection does not
necessarily deliver clear answers.

Although similar approaches were applied to perform
SVM-based feature selection by Guyon and co-workers,26

an advantage of our method is that feature selection was
performed only based on the position of support vectors. It
allows us to discard a large portion of data which is irrelevant

for construction of the separating hyperplane. A potential
additional advantage of our implementation is that classifica-
tion of new molecules is quick and straightforward: com-
putation time needed for a single molecule is approximately
comparable to the time for reading its descriptors. Further
information about computational efficiency of SVM can be
found elsewhere.18 Our results demonstrate that a central idea
of SVM, namely the construction of a separating surface
which is based only on support vectors, results in an efficient
algorithm for feature selection when equipped with a feature
selection scheme. We have successfully applied this algo-
rithm to characterize groups of enzyme inhibitors. The
algorithm was able to select crucial molecular features from
a rather loosely defined compound class (kinase inhibitors)
as well as features that might be relevant for inhibition of a
particular target (factor Xa). It is important to mention that
such feature selection methods do not explain why subsets
can be classified or what the chemical explanation for an

Figure 3. Results of feature selection by SVM- and KS-based algorithms. Matthews correlation coefficient and average classification
accuracy are plotted as a function of the number of selected features. Standard deviations are shown as dotted lines. (a, b) Classification
of kinase inhibitors versus the remainder of the COBRA data set. (c, d) Classification of factor Xa inhibitors versus the remainder of the
COBRA data set. (e, f) Classification of factor Xa versus thrombin inhibitors.
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Table 1. (a) Selected Features of Factor Xa Inhibitors versus Thrombin Inhibitors,a (b) Selected Features of Kinase Inhibitors,b and (c) Selected
Features of Factor Xa Inhibitorsc

feature description

(a)
SMR_VSA4 sum ofVi such thatRi is in (0.39,0.44]
CATS_207 correlation for the distance of 13 bonds between positive and lipophilic atoms
CATS_171 correlation for the distance of 11 bonds between acceptor and acceptor atoms
CATS_153 correlation for the distance of 10 bonds between donor and positive atoms
CATS_120 correlation for the distance of 8 bonds between lipophilic and lipophilic atoms
a_nN number of nitrogen atoms
CATS_91 correlation for the distance of 6 bonds between donor and donor atoms
CATS_63 correlation for the distance of 4 bonds between donor and positive atoms
CATS_57 correlation for the distance of 3 bonds between positive and lipophilic atoms
CATS_50 correlation for the distance of 3 bonds between acceptor and acceptor atoms
CATS_47 correlation for the distance of 3 bonds between donor and acceptor atoms
SMR_VSA5 sum ofVi such thatRi is in (0.44,0.485]
PEOE_FPNEG fractional negative polar van der Waals surface area. This is the sum of theVi such

thatqi is less than-0.2 divided by the total surface area. TheVi were
calculated using a connection table approximation.

PEOE_VSA+3 sum ofVi whereqi is in the range [0.15,0.20).
CATS_187 correlation for the distance of 12 bonds between acceptor and positive atoms
CATS_33 correlation for the distance of 2 bonds between donor and positive atoms
Dens mass density: molecular weight divided by van der Waals volume.
PEOE_VSA_PNEG total negative polar van der Waals surface area. This is the sum of theVi such

thatqi is less than-0.2. TheVi were calculated using a
connection table approximation.

PEOE_VSA-1 sum ofVi whereqi is in the range [-0.10,-0.05).

(b)
VDistEq If m is the sum of the distance matrix entries, then VdistEq is defined to be

the sum of log2m-pilog2pi/m wherepi is the number of distance
matrix entries equal toi. 28

diameter largest value in the distance matrix28

CATS_188 correlation for the distance of 12 bonds between acceptor and negative atoms
SMR_VSA4 sum ofVi such thatRi is in (0.39,0.44].
VSA_other approximation to the sum of VDW surface areas of atoms that are not a

donor, acceptor, positive, negative, or hydrophobe
a_nCL number of chlorine atoms
std_dim1 standard dimension 1: the square root of the largest eigenvalue of the covariance

matrix of the atomic coordinates. A standard dimension is equivalent to
the standard deviation along a principal component axis

FASA_H fractional ASA_H calculated as ASA_H/ASA. Here, ASA•H is the water
accessible surface area of all hydrophobic (|qi|<0.2) atoms and
ASA is the water accessible surface area of all atoms.

Q_VSA_FPOS fractional positive van der Waals surface area. This is the sum of theVi such
thatqi is nonnegative divided by the total surface area. TheVi were
calculated using a connection table approximation.

Q_VSA_FHYD fractional hydrophobic van der Waals surface area. This is the sum of theVi such
that|qi| is less than or equal to 0.2 divided by the total surface area.
TheVi were calculated using a connection table approximation.

radius Ifri is the largest matrix entry in rowi of the distance matrixD, then the
radius is defined as the smallest of theri

28

CATS_192 correlation for the distance of 12 between positive and lipophilic atoms
b_ar number of aromatic bonds
a_aro number of aromatic atoms
CATS_147 correlation for the distance of 9 bonds between donor and lipophilic atoms
a_nF number of fluorine atoms
petitjian value of (diameter-radius)/diameter.28 Herediameteris the largest value in the

distance matrix; radius is defined as follows, ifri is the largest matrix
entry in rowi of the distance matrixD, then the radius is defined
as the smallest of theri

petitjianSC Petitjean graph shape coefficient as defined in ref 28
CATS_200 correlation for the distance of 13 bonds between donor and lipophilic atoms
CATS_186 correlation for the distance of 12 bonds between acceptor and acceptor atoms

(c)
PEOE_VSA+1 sum ofVi whereqi is in the range [0.05,0.10).
balabanJ Balaban’s connectivity topological index29

b_ar number of aromatic bonds
a_aro number of aromatic atoms
SLogP_VSA1 sum ofVi such thatLi is in (-0.4,-0.2]
wienerPol Wiener polarity number: half the sum of all the distance matrix entries with a

value of 3 as defined in ref 30
vsa_acid approximation to the sum of VDW surface areas of acidic atoms
a_acc number of hydrogen bond acceptor atoms (not counting acidic atoms but counting

atoms that are both hydrogen bond donors and acceptors such as-OH).

SVM-BASED FEATURE SELECTION J. Chem. Inf. Comput. Sci., Vol. 44, No. 3, 2004997



observed biological activity is. They might be suited for
reducing the number of variables used in QSAR studies. It
should be stressed that different feature selection algorithms
tend to select different sets of “relevant” features. Therefore,
the ranked list of features produced by the SVM-based
method need not necessarily be more meaningful than a
selection obtained by other methods, as one might conclude

from the observation that the selected features resulted in a
sustained high level of classification accuracy. It is possible
that certain feature sets represent approximately the same
chemical information, and as long as we only roughly
describe a chemical agent using molecular descriptors, there
will exist several almost equally suited partial solutions to
the same classification task.
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target MW PSAb/Å2 clogP
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thrombin 503 140 2.6
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a Properties were calculated using MOE.14-32 b PSA: polar surface
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Figure 4. Examples of molecular features selected by SVM.
Compounds 1 and 2 are selective factor Xa inhibitors. Two features
are highlighted which were identified by an SVM classifier for
discrimination between factor Xa and thrombin inhibitors. In
structure1 a positive charge (+) is separated by 10 bonds from a
hydrogen-bond donor (D) site; in structure2 a positive charge is
separated by 13 bonds from a lipophilic point (L). These two-point
pharmacophore features might be relevant for binding to the factor
Xa active site pocket.
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