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Large scale chemical reaction networks are a ubiquitous phenomenon, from the metabolism
of living cells to processes in planetary atmospheres and chemical technology. At least some
of these networks exhibit distinctive global features such as the “small world” behavior.
The systematic study of such properties, however, suffers from substantial sampling biases
in the few networks that are known in detail. A computational model for generating them
is therefore required.
Here we present a Toy Model that provides a consistent framework in which generic prop-
erties of extensive chemical reaction networks can be explored in detail and that at the
same time preserves the “look-and-feel” of chemistry: Molecules are represented as labeled
graphs, i.e., by their structural formulae; their basic properties are derived by a caricature
version of the Extended Hückel MO theory that operates directly on the graphs; chemical
reaction mechanisms are implemented as graph rewriting rules acting on the structural
formulae; reactivities and selectivities are modeled by a variant of the Frontier Molecular
Orbital Theory based on the Extended Hückel scheme. The approach is illustrated for two
types of reaction networks: Diels-Alder reactions and the formose reaction implicated in
prebiotic sugar synthesis.

1 INTRODUCTION

Extensive chemical reaction networks arise in very differ-
ent situations, from the metabolic networks of living cells
[1] to the chemistry of planetary atmospheres [2] and com-
binatorial chemistry, see e.g. [3]. It is therefore of im-
mediate interest to determine which features are generic
properties of large-scale reaction networks and which prop-
erties are the consequence of a particular chemistry. For
instance, do all large reaction networks exhibit the power-
law degree distribution that is indicative of small world
networks [4, 5], as suggested by data reported in [6]? If this
hypothesis should prove to be true it immediately raises
the question whether there are other significant differences
that imply a natural classification of naturally occurring
reaction networks. Unfortunately, the available data in
most cases suffer from severe sampling biases because re-
actions are typically considered only if they link a rela-
tively small number of chemical species of interest. This
limitation calls for a computational model that allows an
unbiased construction of realistic reaction networks.

In chemistry the changes of molecules upon interac-
tion are not limited to quantitative properties of physical
state, such as free energy or density, because molecular
interactions do not only produce more of what is already
there. Rather, novel molecules can be generated. This
is the principal difficulty for any theoretical treatment of
the situation. Chemical combinatorics makes it impossi-
ble to think of molecules as atomic names whose reactive
relationships are tabulated. A computational approach to
large scale reaction networks thus requires an underlying

model of an artificial chemistry to capture the unlimited
potential of chemical combinatorics. The investigation of
generic properties of chemistries requires the possibility to
vary the chemistry itself; hence a self-consistent albeit sim-
plified combinatorial model seems to be more useful than
a knowledge-based implementation of the real chemistry
which inevitably is subject to sampling biases. The level
of realism required for our purposes furthermore does not
justify the significant financial burden of accessing chemi-
cal reaction databases at a larger scale.

Several approaches to designing such an artificial chem-
istry have been explored in recent years. The spectrum
ranges from chemically accurate quantum mechanical sim-
ulations to abstract computational models. Walter Fon-
tana’s AlChemy [7, 8], for example, represents molecules
as λ-calculus expressions and reactions are defined by the
operations of “application” of one λ-term to its reaction
partner. The result is a new λ-term. Related models
are based on a wide variety of different computational
paradigms from strings and matrices to Turing machines
and graphs [9, 10, 11, 12, 13, 14]. It is worth noting in this
context that chemical reactions can in turn be regarded
as a model of computation, a possibility that is realized
e.g. in the Chemical Abstract Machine [15]. The abstract
computational models are very useful for understanding
algebraic properties of reaction systems; the notion of a
self-maintaining set may serve an example. On the other
hand, these models lack a natural definition of an energy
function and in most cases there is no natural analogue of
conservation of mass and atom types. For a recent review
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of artificial chemistries we refer to [16].
We argue that an energy function is indispensable for

any model that is realistic enough to allow us to consider,
say, the differences between the metabolic network of E.

coli and the reactions of hydrocarbons in Jupiter’s atmo-
sphere. The reason is that energetic considerations impose
constraints that severely limit which ones of the logically
possible molecules actually exist, and how they can re-
act with each other. The energy function also determines
the directionality of the reactions. Unfortunately, detailed
quantum chemical computations are by far too expensive
in terms of computer resources. We therefore propose a
Toy Model of chemistry that is computationally inexpen-
sive and still retains the “look and feel” of the real thing.

Our approach is based on the way how chemical re-
actions are explained in introductory Organic Chemistry
classes: in terms of structural formulae (graphs) and re-
actions mechanisms (rules for modifying graphs). In fact,
graphs are probably the natural and the most familiar rep-
resentation of molecules. Indeed, the description of molec-
ular structures is one of the roots of graph theory [17, 18].
By construction, the graph representation abstracts spa-
tial information to mere adjacency. Thereby we avoid the
most time-consuming computation step: embedding the
atoms in 3D by means of finding the minima on a poten-
tial energy surface [19]. On the other hand, the restriction
to graphs implies that several features of real molecules
cannot even be defined within the model: (1) There is no
distinction between different conformers and, in particu-
lar, between cis and trans isomers at a C = C double bond.
(2) there is no notion of asymmetric atoms and chirality.
In section 2 we show that a caricature version of quantum
chemistry can be used on vertex (atom) and edge (bond)
labeled graphs. A recent model of interstellar hydrocarbon
interconversions [20] follows a similar philosophy.

Once we represent the molecules as (labeled) graphs it
becomes natural to view reactions as graph transforma-
tions. In other words, a reaction is an instruction or a rule
defining how the educt graph must be reshaped by means
of insertion, deletion, and relabeling of edges and vertices
in order to obtain the product graph. A graph rewriting
rule is specified in terms of a graphical pre-condition and
a post-condition. A graph rewrite system [21] interprets
the graph rewrite rule and performs the graph rewriting
step if the graphical pre-condition is matched in a host
graph. This is equivalent to finding a subgraph isomor-
phic to the rule’s pre-condition. The subgraph isomor-
phism problem is in general NP-complete [22]. Following
the strategies described by Dörr [23] it is nevertheless pos-
sible to solve the subgraph isomorphism in linear time for
certain classes of vertex and edge labeled graphs. In sec-
tion 3 we describe the rewriting part of the Toy Model in
some more detail. Reactivities for a particular rewrite can
be computed from the Klopman-Salem formula [24, 25].
In particular, the regioselectivity of reaction mechanisms
(i.e., which subgraph isomorphism is used if there more
than a single one) can therefore be determined within the
framework of the model. A chemical application of graph
rewriting in a different context, namely to enzymatic DNA
processing, is described in [14].

In section 4 we use two well-known examples of chem-
ical reaction networks, the formose reaction and a repet-
itive Diels-Alder network to demonstrate that the Toy
Model is indeed a chemically sensible construction. A
number of possibilities for future extensions and refine-
ments of the toy model are briefly considered at the end
of this presentation.

2 MOLECULES

In the Born-Oppenheimer approximation the properties
of a molecule can at least in principle be derived from
the wave function Ψ of its electrons, which in turn can
be obtained from the atomic coordinates. Consequently,
much of theoretical chemistry is concerned with solving
the time-independent Schrödinger equation

ĤΨα = EαΨα , (1)

where the electronic Schrödinger operator Ĥ contains the
coordinates of the atomic nuclei as parameters. The en-
ergy calculation used in our Toy Model can be viewed as an
extreme simplification of this approach based on the Ex-
tended Hückel Theory (EHT) [26]. In this spirit we start
with a set of atomic orbitals {χi} as a basis and expand
the molecular orbital (MO) in the form

Ψα =
∑

i

cα,iχi (2)

In the Hückel MO theory [27] only one p-orbital per atom
is considered, hence there is a one-to-one correspondence
with the spectral theory of the underlying molecular graph,
see e.g. [28]. In EHT one typically considers all AOs of the
valence shell.

The Hamilton matrix H and the overlap matrix S are
defined in the usual way by means of the matrix elements

Hij =

∫
χiĤχjdτ (3)

Sij =

∫
χiχjdτ. (4)

The Schrödinger equation (1) then takes the form

H~cα = EαS~cα, (5)

where ~cα denotes the vector of coefficients cα,i belonging
to the molecular orbital Ψα with orbital energy Eα. Let
nα be the number of electrons in orbital Ψα. Then the
total electronic energy of the molecule is

E =
∑

α

nαEα . (6)

The electronic population in the atom orbital i is given by

qi =
∑

α

nαc2
α,i (7)

where we assume that the vectors ~ck are normalized. With
the notation i@a for the atom orbital i at atom a we obtain
the charge density at atom a in the form

q(a) = za −
∑

i@a

qi (8)
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where za is the number of valence electrons of atom a. The
charge density q is the natural starting point for modeling
chemical or physical properties of the molecule.

The EHT uses the Wolfsberg-Helmholtz approximation
[29]

Hij = κ(Hii + Hjj)Sij/2 . (9)

to parametrize the Hamilton matrix in terms of the overlap
integrals Sij between any two orbitals and the atomic va-

lence state ionization potentials Ii which are the negative
diagonal elements of the Hamiltonian matrix, Hii = −Ii.

a b c d

Figure 1: Overlap along a bond (a), “semi-direct” overlap,
where only one of the orbitals is directed along the bond (b),
and the two possibilities of “indirect” overlaps of two sp2 or-
bitals at adjacent atoms (c,d). In the graph-theoretical model
(c) and (d) are equivalent because the orientation in the plane
is not a property of the molecular graph. In the current imple-
mentation “indirect” overlaps are neglected.

In our implementation we use the 1s orbital for hydro-
gen and the usual Slater-type hybrid AOs (sp3, sp2, and
sp) for carbon, nitrogen, and oxygen. Hybrid orbitals are
used because they allow us to simplify the model further
by assuming that (1) only orbitals that are localized at
neighboring atoms have non-zero overlap and (2) the over-
lap integrals Sij depend only on the type and orientation
of the involved orbitals, see Fig. 1.

Additional rules are added to account for resonance
structures that occur when more than one Lewis struc-
ture can be drawn for a molecule. For example, lone pairs
on one atom can interact with π-systems on the adjacent
atoms. Furthermore we treat the bonds in strained (three-
and four-membered) rings separately. More details on the
parametrization and tables of the parameter values are
given in the appendix. In its current implementation, the
energy calculation is limited to neutral molecules. It seems
straight forward, however, to extend the model to account
for charged species and radicals within the same frame-
work.

A molecule is therefore completely determined by a
vertex labeled graph Γ, Fig. 2, which was introduced by
O. Polanski [30]. The vertices of Γ are the atom orbitals
(labeled by atom type and hybridization); edges denote
overlaps of adjacent orbitals. This orbital graph Γ is ob-
tained in an unambiguous way from the chemical structure
formula by means of the VSEPR rules [31]. It follows that,
in the framework of the Toy Model, the structure formula
already encapsulates the complete information about the
molecule.

Obviously this is a rather crude approximation that,
in particular, disregards the influence of three-dimensional
space by reducing the molecular structure to connectivity
information. Nevertheless, we obtain a qualitatively rea-
sonable behavior of the electronic energies as shown by
the comparisons between computed and experimental en-
ergies, Fig. 3.
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Figure 2: Orbital graph of propenamide H2C = CH − CONH2.
Direct, semi-direct σ-overlaps, and π-overlaps are represented
by solid black, dashed, and solid grey lines.
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Figure 3: Plots of calculated versus experimental Total Atom-
ization Energies (TAE). Left: Homologous series of n-alkanes
from methane to hexane. Right: C4H10 isomers, in order of
increasing experimental TAE those are 1-hexyne, 2- and 3-
hexyne, 3,3-dimethyl-1-butyne, 1,5-hexadiene, Z- and E-1,4-
hexadiene, Z- and E-1,3-hexadiene, Z,Z- and E,Z- and E,E-2,4-
hexadiene, bicyclo[3.1.0]hexane, 4- and 3-methylcyclopentene,
1-methylcyclopentene. Experimental TAE values are taken
from [32].

3 REACTIONS

Graph rewrite systems, also called graph grammars, oper-
ate on edge and vertex labeled graphs [21]. Intramolecular
reactions such as rearrangements and substitution reac-
tions are naturally implemented as rewrite rules that act
on the molecular graphs. A rewrite rule consists of three
parts, a left graph, a right graph and the context. The
context of a rule is the part of the graph which remains
unchanged during a rewriting step. A rewrite rule is appli-
cable to a molecular graph if it contains a subgraph that is
isomorphic to the rule’s left-hand side (which is the union
of left graph and context). In Fig. 4 the rewrite rule for
intermolecular Diels-Alder rearrangement [33] is shown.

The formalism of graph rewriting is a more general
and more versatile framework for specifying chemical re-
actions than e.g. the Dugundji-Ugi theory [34, 35]. This
generality comes at a cost: not every graph rewriting rule
is meaningful as a chemical reaction mechanism. Most
importantly, chemical reactions do not create, annihilate,

3
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Figure 4: Intramolecular Diels Alder rearrangement (iDAR).
Top: rewrite rule; since all bounds change their type during the
rewrite, the context consists of the six C-atoms only. Bottom:
Application of iDAR to the synthesis of a bridged ring system.

or change atoms. Thus chemical rewrite rules must sat-
isfy the principle of conservation of vertex labels. Fur-
thermore, the total number of valence electrons must be
conserved. Currently we consider only single, double, and
triple bonds. Hence we require conservation of total bond

order for any chemical transformation. Since the rewrite
rules are graphs themselves, it is of course easy to verify
these two conservation laws by simply comparing the list
of labels and the total bond order of the left and the right
graph of the rule.

The graph rewrite engine is implemented in Haskell, a
lazy functional programming language [36]. Since it is not
easy to glue together pieces of code written in functional
and imperative programming languages (e.g. C), the engine
is designed as a client/server application. The client sends
a graph to the server, which performs the rewrite step
and sends the transformed graph back to the client. The
rewrite behavior of the server only depends on the set of
rewriting rules which are read from a file at server startup.
This program architecture allows us to easily fit the rewrite
engine to the needs of a particular task by simply changing
the client. The server can be run in two rewriting modes:
random rewrite and priority rewrite. In the former mode a
rewrite rule is picked at random from the set of potentially
applicable rules, while in the latter mode the rule with the
highest “priority value” is chosen.

The graph rewrite framework can be applied to mod-
elling bimolecular reactions. As an example consider the
Aldol condensation [37], Fig. 5, which e.g. forms the core
step of the formose reaction [38]. The idea is to split
the bimolecular reaction mechanism into two half reac-
tion rules, one for each educt molecule, and a joining rule,
that describes how the two educt molecules are joined to-
gether. The half reaction rules describe the local changes
within each of the reacting molecules, whereas the join-
ing rule captures the inter-molecular bond formation. In
reactions such as Cannizzaro’s disproportionation [39] or
Olefin metathesis [40] the joining rule is of course empty.

Let us now consider the rewriting step for a bimolecu-
lar reaction in detail. First the client sends the two educt
graphs to the server. The server then constructs all sub-
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Figure 5: Aldol Reaction. Top: rewrite rule; the two half-
rules describe the locale changes in the reacting molecules dur-
ing Aldol condensation, while the half-rule-join describes only
intermolecular changes; notice the special label Ψ, acting as
anchor for the intrermolecular bond to be formed. Bottom:
Application to the synthesis of β-hydroxy-carbonyls.

graph isomorphisms for the left hand side of both half-rules
for both graphs. If the list of subgraph isomorphisms for
one of the two half-rules is empty for both graphs, the
rule is not applicable and the server sends the two graphs
unaltered back to the client. This case corresponds to an
“elastic collision”.

Otherwise the server picks a half rule at random for
the first graph and then a corresponding half rule for the
second graph. This corresponds to choosing a reaction
channel if there is more than one subgraph isomorphism.
Then the rewriting is performed for both half-rules, then
the join half-rule is applied, and finally the resulting graph
is sent back to the client.

Instead of picking a subgraph isomorphism at random
from the list, it is possible to consider all reaction channels
and to compute a reactivity index for each of them. The
client can then pick the reaction channel (pair of subgraph
isomorphisms for the two half-rules). Consider two “sys-
tems” of atoms A and B. In the case of bimolecular reac-
tions of course A and B are the two molecules. Within the
context of the Toy Model it seems natural to start with
the Klopman-Salem formula [24, 25, 41], eq.(10) below,
that predicts the energy increment incurred by combining
systems A and B in the following form:

∆E =
∑

a∈A,b∈B

Gab +
∑

a∈A,b∈B

q(a)q(b)

εrab

−




occ∑

α∈A

unocc∑

ζ∈B

F α,ζ +

occ∑

α∈B

unocc∑

ζ∈A

F α,ζ




(10)

Here rab is the bond length (which of course is a tabulated
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parameter in our setting) and ε is the dielectric constant
of the reaction medium. The interaction terms have the
following explicit form:

Gab = −
∑

i@a

∑

j@b

(qi + qj)HijSij ,

F α,ζ =
2

Eζ − Eα




∑

a∈A

∑

i@a

∑

b∈B

∑

j@b

cα,icζ,jHij




2

,

(11)

where α ∈ A and ζ ∈ B is an occupied and an unoccupied
MO, respectively. With the abbreviation

W αζ
ab =

∑

i@a

∑

j@b

cα,icζ,jHij (12)

we obtain a four-point term

Fab;a′b′ = 2
occ∑

α∈A

unocc∑

ζ∈B

W αζ
ab W αζ

a′b′

Eζ − Eα

+ 2
occ∑

α∈B

unocc∑

ζ∈A

W αζ
ba W αζ

b′a′

Eζ − Eα

(13)
that allows us to write ∆E as an expansion of atom pairs
and quadruples. Within the approximation of the Toy
Model all contributions (with the exception of the Coulomb
term) that do not belong to new bonds (or bonds with in-
creasing bond order) vanish because their overlap integrals
are zero. Thus

∆E =
∑

(a,b)

(
Gab +

q(a)q(b)

εrab

− Fab;ab

)

−
∑

(a,b)6=(a′,b′)

Fab;a′b′

(14)

where the sums run only over newly formed bonds (a, b).
The situation can be simplified further by considering only
the frontier orbitals [42], i.e. the HOMO of one system
and the LUMO of the other one. In this case the sums
in equ.(13) reduce to a single term. Often this is approxi-
mated by ∆E = ξ/(Eζ − Eα) with an empirical constant
ξ that depends only on the reaction mechanism [41]. We
have used this simplification for generating the two exam-
ples in section 4, Figs. 7 and 8. The same formalism can
be applied to intra-molecular reactions by setting A = B;
in eq.(13) we then retain only one of the two double sums
(which become identical in this case).

The reactivity ∆E allows us to model regio-selectivity.
If more than one subgraph isomorphism, i.e., more than
one possible reaction channel, has been found one sim-
ply has to evaluate ∆E for all of them. Then the rewrite
with the smallest ∆E value is chosen. Of course, the re-
action scheme could then be modified to select a reaction
channel with a probability proportional to its Boltzmann
weight exp(−∆E/RT ), i.e., according to Arrhenius’ law.
This would be the natural starting point for the stochas-
tic simulation of a reaction network e.g. using Gillespie’s
approach [43].

4 NETWORKS

A chemical reaction

aA + bB + · · · → vV + wW + . . . (15)

3O

NO2

O2

NO3

3O

NO2

O2

NO3

Figure 6: Representation of a chemical reaction
NO2 + O3 → NO3 + O2 as a directed hypergraph H(V, E).
The chemical species are the vertices X ∈ V . Each reaction
is represented by a single directed hyperedge connecting
educts with products. Directed hypergraphs are conveniently
displayed as bipartite directed graphs. Here the reactions
are represented as a second type of vertices. Directed edges
connect educts with the reaction vertex and the reaction
vertex with products of the reaction.

can be described as a directed hypergraph H(V, E) in
which chemical species are the vertices [44]. Each reac-
tion forms a hyperedge ρ ∈ E that connects educts with
products. Alternatively, the reactions are represented as a
second class of vertices. Directed edges then connect the
educts with the reaction vertex and the reaction vertex
with the products, Fig. 6.

The algebraic representation of H is the stoichiomet-

ric matrix S. Its entries are the stoichiometric coefficients

sXρ, i.e., the numbers of molecules of species X that are
produced (sX,ρ > 0) or consumed (sX,ρ < 0) in reaction ρ.
Reversible reactions are considered as two separate reac-
tions. We remark that S is the starting point for quanti-
tative approaches to analyzing large networks such as flux
analysis [45, 1] and control analysis [46].

Suppose we are given a list of reaction mechanisms and
an initial list L0. The reaction network can be built up
systematically by means of “orderly generation” [47, 48].
Performing all unimolecular reactions on each molecule
M ∈ L0 and all bimolecular reactions with each pair of
molecules (M1, M2) ∈ L0 ×L0 we obtain a new list L

′
1 and

a list of new molecules L1 = L
′
1 \ L0. The recursion then

proceeds in the obvious way:

L
′
k+1 =




k−1⋃

j=0

Lj


 × Lk ∪ (Lk × Lk) (16)

and Lk+1 = L
′
k+1 \

⋃
Lk.

In order to check whether a newly generated molecule
m is already contained in a previous list a comparison of
the structural formulae must be performed. This amounts
to a test of graph isomorphism, for which neither an ef-
ficient algorithm nor proof of NP-completeness is known
in general [49]. The chemically relevant problem of test-
ing graph isomorphism with bounded vertex degree (i.e.,
bounded valency of the atoms) can be solved in polynomial
time [50]. We transform the molecular graphs into their
canonical SMILES representation [51]. The isomorphism
test then reduces to simple string comparison.

Diels-Alder Reaction

The Diels-Alder reaction has been studied extensively both
because of its importance in natural products synthesis
and because it can be understood in detail by means of
simple semi-empirical methods. It involves the reaction

5
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Figure 7: Network of Diels-Alder reaction constructed with 3 iterations of the orderly generation algorithm. The initial mixture
consists of cyclobutadiene, ethenol, phtalic anhydride, methylbutadiene, and cyclohexa-1,3-diene. Each rectangle represents one
reaction, its label indicates the reaction rate using the proportionality constant ξ from [52].

between two linear π-systems of length 2 and 4, respec-
tively [52]. The product is again a π-system and thus may
react again in a Diels-Alder reaction. Recently, it has been
used to synthetize particular classes of polymers [53].

Fig. 7 displays the reaction network obtained by repet-
itive Diels-Alder reactions of a simple initial mixture.

Formose Reaction

The synthesis of sugars from formaldehyde under alkaline
conditions (“formose reaction”) was discovered more than
a century ago [54]. It is one of the earliest examples of a
reaction network that is collectively autocatalytic in the
sense that the reaction products catalyze their own for-
mation. The condensation of formaldehyde proceeds by
means of repeated aldol condensations and subsequent dis-
mutations [55, 38].

The formose reaction has been studied in much detail
because of its importance as a potential prebiotic pathway
[56]. More than 40 different sugars have been identified in
the reaction mixture [57]. The network produced by the
Toy Model is shown in Fig. 8.

5 DISCUSSION

We have described here a Toy Model that is at least close
to a minimal implementation of an artificial chemistry ex-
hibiting what we consider the defining features of “real”
chemistry. We represent molecules explicitly as arrange-
ments of atoms (labeled graphs) and define an energy func-
tion along the lines of quantum chemistry. This energy
model forms the basis of full-fledged chemical thermody-
namics and kinetics. Chemical reactions are implemented
as graph rewriting rules that have to obey the principle of
conservation of matter. These features distinguish our Toy
Model from artificial chemistries that are defined on ab-
stract algebraic structures such as lambda calculus, Turing
machines, or term rewriting.

A number of extensions of the present Toy Model are
desirable. For instance, the current implementation of the
model considers only neutral molecules composed of C, H,
O, and N. An extension to an expanded set of chemical
elements, most importantly S, P, Si, and the halogenes
is straightforward. The inclusion of charged particles and
radicals also does not seem to pose problems in the current
framework. Additional types of chemical bonds, in partic-
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Figure 8: Formaldehyde condensation reaction network. The initial mixture consists of formaldehyde H2CO and glycol aldehyde
CH2OH − CHO and reacts via aldol condensations and dismutations. The aldol condensation was simulated by the condensation
of a keto with an enole group. In order to account for cyclisation, which limits the network, we do not permit carbon chains with
more than four members to undergo further aldol condensations. The network generation algorithm thus converges already after
two iterations. Reaction rates are computed using the proportionality constant ξ for nucleophilic substitution from [24].

ular hydrogen bonds and the “three center bonds” that
are common in boron compounds can be approximated by
the orbital graph formalism.

The interaction of a molecule with a more complex
environment, in particular a solvent, is easily incorporated
into the Toy Model using an implicit solvation model [58]
such as Kirkwood’s equation

∆Gsolv = −
ε − 1

2ε + 1

µ
2

a3
(17)

Here a is the radius of the molecule and µ is its dipole mo-
ment and ε is the dielectric constant of the medium. Both
a and µ have to be replaced by appropriate graph descrip-
tors. For example a could be replaced by the Wiener index

[59, 60] (with a proper normalization). A topological in-
dex for vertex weighted graphs that could serve as a “graph
theoretical dipole moment” will be discussed elsewhere.

The reactivities from equ.(10) can be translated into
reaction rate contants e.g. using Arrhenius’ law. An alter-
native approach to determining rate constants is QSPR,
see e.g. [48]. This class of models is, however, of limited
interest for our purposes because it is restricted to reaction
mechanism for which a sufficient amount of experimental
data is available.

It is straightforward to derive the kinetic differential
equations for a given network of reactions using the rules
of mass action kinetics. Simulations of this type will pro-
vide a very detailed insight into the structure of reaction
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networks and form the basis for more sophisticated ap-
proaches to network analysis [61].

The Toy model implements chemical reactions as ex-
plicit rewrite rules. In principle it is possible to simulate
the collision of two molecules by assigning a collection of
potential new bonds between them. Since the correspond-
ing reactivity ∆E and the over-all reaction energy can
be computed, one could in principle simulate reactions at
this level. The computational cost would be immense,
however. Nevertheless, one could use collision simulations
to search for new reaction mechanism. This might be of
particular interest when the Toy Model is used to explore
“exotic chemistries”.

The reaction networks generated by the Toy Model are
themselves graphs that can be characterized by a variety
of standard measures such as diameter, center, scaling be-
haviour and small-world classification. The comparison
of different networks will reveal generic properties of net-
works as well as specific features of different classes of re-
actions. Furthermore, the Toy Model includes parameters
(see appendix) that can be varied. The dependency of
properties on these parameters could provide a measure
for the stability and robustness of the network.
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APPENDIX A: PARAMETERS

The energy calculation in the Toy Model is parametrized
in terms of ionization energies Ij and overlap integrals Sij

of the usual Slater-type hybrid orbitals. The overlap inte-
grals Sij depend only on the type and orientation of the
involved orbitals. The values listed in Tab. 1 apply to σ
overlaps of hybridized orbitals that are oriented toward
each other along a bond (upper left scheme in Fig. 1) and
to π overlaps between p orbitals.

At this stage, the parameters for the “direct” overlaps
in Tab. 1 are used to calculate the Sij values for the “semi-
direct” and “indirect” by means of the simple scaling fac-
tors compiled in Tab. 1. A more sophisticated model for
the “semi-direct” and “indirect” overlaps could easily be
used in a future implementation of the toy model.

Hyperconjugation [62, 63] denotes the overlap between
a p orbital and a sp3 orbital at an adjacent atom this is not
oriented along the bond. The hyperconjugation overlap is
included with only one of the three sp3 orbitals, which
is chosen arbitrarily. An alternative way of incorporating
the coupling of the σ and the π system is to consider a
fictitious overlap of the p orbital with the adjacent sp3

orbital that is directed along the bond. In the current
implementation the fictitious p-sp3 overlap is set to 0.

The overlaps corresponding to bonds that lie in three-
or four-membered rings are scaled by a factor that reflects

the fact that the banana-bonds in constrained rings are
weaker, see Tab. 1.

APPENDIX B: REWRITE RULES

The graph rewrite rules are conveniently specified using
the Graph Meta Language (GML) [64]. As an example we
include here the specifucation of the Diels Alder reaction:

# Diels Alder

rule [

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "C" ]

node [ id 4 label "C" ]

node [ id 5 label "C" ]

node [ id 6 label "C" ]

]

left [

edge [ source 1 target 2 label "=" ]

edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "=" ]

edge [ source 5 target 6 label "=" ]

]

right [

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "=" ]

edge [ source 3 target 4 label "-" ]

edge [ source 4 target 5 label "-" ]

edge [ source 5 target 6 label "-" ]

edge [ source 6 target 1 label "-" ]

]

]
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zolproblem. I. Die Elektronenkonfiguration des Ben-
zols und verwandter Verbindungen. Z. Physik 1931,
70 , 204–286.
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