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Abstract
Peptides and proteins, evolved by nature to perform vital biological functions, would constitute
ideal candidates for therapeutic intervention were it not for their generally poor pharmacokinetic
profiles. Nonpeptide peptidomimetics have thus been pursued because they might overcome these
limitations while maintaining both the potency and selectivity of the parent peptide or protein.
Since the late 1980s, we have sought to design, synthesize, and evaluate a novel, proteolytically
stable nonpeptide peptidomimetic scaffold consisting of a repeating structural unit amenable to
iterative construction; a primary concern is maintaining both the appropriate peptide-like side-
chains and requisite hydrogen bonding. In this Account, we detail how efforts in the Smith–
Hirschmann laboratories culminated in the identification of the 3,5-linked polypyrrolinone
scaffold.

We developed effective synthetic protocols, both in solution and on solid supports, for iterative
construction of diverse polypyrrolinones that present functionalized peptide-like side-chains. As a
result of the rigid nature of the pyrrolinone scaffold, control over the backbone conformation
could be exerted by modulation of the stereogenicity of the constituent monomers and the network
of intramolecular hydrogen bonding. The extended conformation of the homochiral 3,5-linked
polypyrrolinone scaffold proved to be an excellent mimic for β-strands and β-sheets. Application
to enzyme inhibitor design and synthesis led not only to modest inhibitors of the aspartic acid
protease renin and the matrix metalloprotease class of enzymes, but importantly to bioavailable
HIV-1 protease inhibitors with subnanomolar binding constants.

The design and synthesis of a competent peptide–pyrrolinone hybrid ligand for the class II major
histocompatibility complex (MHC) antigen protein HLA-DR1 further demonstrated the utility of
the 3,5-polypyrrolinone motif as a mimic for the extended polyproline type II peptide backbone.
Equally important, we sought to define, by synthesis, the additional conformational space
accessible to the polypyrrolinone structural motif, with the ultimate goal of accessing pyrrolinone-
based turn and helix mimetics. Towards this end, a mono-N-methylated bispyrrolinone was found
to adopt an extended helical array in the solid state. Subsequent synthesis of D,L-alternating
(heterochiral) tetrapyrrolinones both validated the expected turn conformations in solution and led
to a functionally active mimetic of a peptidal β-turn (similar to somatostatin). Finally, the design,
synthesis, and structural evaluation of both acyclic and cyclic heterochiral (that is, D,L-alternating)
hexapyrrolinones yielded nanotube-like assemblies in the solid state. Taken together, these results
illustrate the remarkable potential of the 3,5-linked polypyrrolinone scaffold as β-strand, β-sheet,
β-turn, and potentially helical peptidomimetics.
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Introduction
In the late 1980’s Hirschmann, Nicolaou and Smith initiated collaborative research
programs at the University of Pennsylvania to develop novel nonpeptide peptidomimetic
scaffolds with improved pharmacokinetic properties.1 This collaboration was based on the
Hirschmann hypothesis that secondary amide-bonds of peptides and proteins were primarily
responsible for their poor pharmacokinetic properties.2 Two conceptually different
programs were initiated, one directed at the design of nonpeptide peptidomimetic receptor
angonists/antagonists,3 the second focused on the development of protease enzyme
inhibitors.4 For the receptor angonists/antagonists program, the concept – innovative at the
time – entailed peptide backbone replacement with a scaffold that would display the
requisite peptide-like side-chains with trajectories similar to those found in turned peptide
ligands, without regard for ligand backbone to receptor hydrogen bonding. For the protease
inhibitor program, scaffolds were sought to mimic the well known extended β-strand
conformation of native peptide substrates, including both side-chain trajectories and
importantly substrate-enzyme hydrogen bonding. This review will focus on the evolution of
pyrrolinone-based nonpeptide peptidomimetic program, highlighting the design, synthesis
and biological validation of pyrrolinone based scaffolds.

Initial Design
Proteolytic enzymes (cf. aspartic acid and serine proteases) bind substrates in an extended β-
strand conformation via an extensive array of backbone-to-backbone hydrogen bonds, in
conjunction with side-chain interactions (Figure 1A),5,6 Thus, in contrast to the design of β-
turn mimics that bind receptors, β-strand peptidomimetics for use as protease inhibitors
require not only appropriate side-chain trajectories, but also optimal hydrogen-bond
registration with the enzyme backbone.

Early on, a decision was made to devise a β-strand mimetic that would incorporate a
repeating structural unit, thus facilitating general application to a spectrum of problems by
structural unit modification. The requirements of a repeating unit, that would appropriately
project peptide-like side-chains, maintain the requisite hydrogen bonds, and prove
proteolytically stable, led to the design of a vinylogous amide7 based repeating core,
attractive for the following reasons: (1) the amide and vinylogous amide NH possess similar
pKa values;8 (2) the nitrogen and carbonyl of amides and vinylogous amides display similar
hydrogen bonding potential; (3) vinylogous amides are proteolytic stable; and (4) the
vinylogous amide moiety provides backbone rigidity with an element of preorganization. To
optimize side-chain and hydrogen bond registration, vis-à-vis a native peptide sequence, the
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vinylogous amide was incorporated into a five-membered pyrrolinone ring (Figure 1B). For
translation of a peptide chain into a “nitrogen-displaced” polypyrrolinone mimic see Figure
1C. A conceptually similar exercise, involving displacement of the carbonyl groups,
provides an alternate peptidomimetic backbone, termed 2,5-linked “carbonyl displaced”
polypyrrolinones. Compared to a peptide β-strand, the pyrrolinone rings occupy somewhat
different registrations relative to the pleates of β-strands (Figure 1D). Thus unique chemical,
structural and biological characteristics for each scaffold could be envisioned (vide infra).

Monte Carlo conformational searches for model nitrogen and carbonyl displaced
tetrapyrrolinones (1 and 2) were employed to determine the most favorable conformation.
For the 3,5-linked nitrogen displaced tetrapyrrolinone (1), three low energy conformational
classes were observed (Figure 2A). In contrast, only a single low energy class, possessing an
extended backbone conformation (2a), was observed for the 2,5-linked carbonyl displaced
tetrapyrrolinone 2 (Figure 2B). Importantly, both extended low energy conformations (1a
and 2a) incorporate repeating intramolecular hydrogen bonds between the carbonyl of the
pyrrolinone ring and the adjacent pyrrolinone NH hydrogen (Figure 2C), anticipated to
stabilize the extended conformation of polypyrrolinone scaffolds. Somewhat worrisome;
however, was the potential for decomposition of 2,5-linked polypyrrolinone scaffold upon
attack of a nucleophile (Figure 2D). We thus decided to focus initially (and principally) on
the 3,5-linked scaffold.9

Construction of 3,5-Linked Polypyrrolinones
The Hiroi retron10 (Scheme 1A), involving condensation of aminoesters with preestablished
α-stereogenicity and aldehyde building blocks, was selected as the foundation for our
pyrrolinone synthetic program. Application and extension of this sequence to iterative
construction of polypyrrolinones was substantially validated in our laboratory (Scheme 1B).
11

To construct the requisite amino acid ester building blocks, we adopted a modification of the
Seebach12/Karady13 chemistry for the self-regeneration of stereogenic centers (Scheme
2A), initially exploiting a tert-butyl carbamate (Boc) protecting group for the amines and an
olefin (i.e., prenyl group) for the masked aldehydes (cf. 12). To expedite iterative
polypyrrolinone construction, a second protecting group strategy was introduced that
employed a Cbz-carbamate and an acetal (cf. 13).14 Use of acetals both eliminated the need
for oxidative cleavage of the olefin for subsequent iterations, a transformation that proved
incompatible with some amino acid-like side chains, and provided flexibility vis-à-vis
deprotection.15

Validation of the polypyrrolinone scaffold as a β-strand mimetic (vide infra) prompted
extension of the second-generation pyrrolinone synthetic protocol to solid support to permit
construction of potential polypyrrolinone libraries. Here a third-generation strategy was
required,16 employing amino lactones (cf. 14). The sequence retained the earlier two-step
imine/metalloenamine cyclization (Scheme 1B), which when applied to the lactone, releases
an alcohol requiring only mild oxidation to generate the aldehyde for iterative chain
extension (Scheme 3A). Importantly, the requisite α-aminolactone building blocks proved
readily available,17 thus facilitating the synthesis of polypyrrolinones on solid-support
(Scheme 3B). Equally important for library construction, we developed a cross-coupling
protocol to access diverse C-terminal peptidomimetics from a common precursor (Scheme
3C).18
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Validation of the Extended 3,5-Polypyrrolinone Conformation as a β –
Strand Mimic

Prior to the development of prospective pyrrolinone-based enzyme inhibitors, experimental
support for the proposed extended β-strand/β-sheet like conformation was sought.
Trispyrrolinone (−)-27, a potential mimic of the Precigoux equinine tetrapeptide methyl
ester, H-Leu-Leu-Val-Tyr-OMe,19 was designed and synthesized. Single crystal X-ray
analysis revealed the anticipated extended β-strand-like conformation in the solid state
(Figure 3A), with both the side-chain trajectories and carbonyl orientations overlaying
remarkably well with the corresponding tetrapeptide (Figure 3B).4 Analysis of the unit cell
further revealed interstrand hydrogen bonding with head-to-tail molecule stacking, similar to
that found in antiparallel β-sheets (Figure 3C)

Single crystal X-ray analysis of the des-Boc trispyrrolinone [cf. amine (−)-28] also revealed
an extended β-strand-like conformation; however, now stacking in the solid state in a
parallel β-sheet like arrangement, as observed for the equinine tetrapeptide (Figure 4).4 That
the nitrogen displaced pyrrolinone scaffold forms interstrand hydrogen bonds, stabilizing
respectively antiparallel and parallel sheet formation was also evident in the crystallographic
packing of 27 and 28.

In similar fashion, solution FT-IR studies demonstrated that the NH and the carbonyl of
adjacent pyrrolinone rings, as predicted, participate in a six-membered ring intramolecular
hydrogen bond (Figure 5).21 Variable temperature 1H NMR studies were also informative.
The N-terminal pyrrolinone NH proton in (−)-29, which cannot form an intramolecular H-
bond, exhibits a large temperature chemical shift dependence, whereas the C-terminal
pyrrolinone NH proton displays only a small chemical shift temperature dependence due to
intramolecular H-bonding. From the outset however, we recognized that a more definitive
test demonstrating the extended conformation would be the successful application of the
polypyrroline structural motif to a relevant biological problem, or as Professor Hirschmann
often stated: “Let the enzyme or receptor be the judge!”

Enzyme Inhibition Employing the 3,5-Linked Pyrrolinone Scaffold
As a first test of the 3,5-linked polypyrrolinone scaffold, we sought to design inhibitors of
renin, a critical target in the late 1980s for intervention in the renin-angiotensinogen cascade
regulating blood pressure.22 Elements of several known renin inhibitors23 were employed
in our initial design. Ultimately, monopyrrolinone 32 and bispyrrolinone 33 were selected
based on modeling studies, and constructed via our first generation synthetic protocol
(Figure 6). Pleasingly in vitro assays of (+)-32 and (−)-33 revealed IC50 values of 18 μM
and 0.6 μM, respectively.24 Observation of activity, albeit modest, was taken as the first
evidence that the 3,5-pyrrolinonone scaffold in fact held promise as a β-strand mimic.

Design, Synthesis and Biological Evaluation of HIV-1 Protease Inhibitors
In 1988, the identification that the HIV-1 protease was an aspartic acid protease proved
seminal in the search for effective interventions in the HIV pandemic.25 Not surprisingly,
we turned to the design and synthesis of pyrrolinone-based HIV-1 protease inhibitors.
Initially, we employed the early Merck peptidal protease inhibitor L-682,679 (Figure 7)26 as
a design template. Replacement of the P1’-P2’ dipeptide with a bispyrrolinone, possessing
both the appropriate side-chains and the P2-P1 and P3’ units, led to a series of prospective
bispyrrolinone HIV-1 protease inhibitors (cf. 38-40).24,27
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When tested for activity both in enzyme inhibitory (IC50) and cellular (CIC95) assays,
furanyl carbamates (−)-39 and (−)-40 proved potent at the low nanomolar range (Table 1).
That in purified enzyme assays (IC50), (−)-39 and (−)-40 proved less active than L-682,679,
while in cellular assays (CIC95) more active [i.e., lower CIC95 to IC50 (C/I) ratios],
suggested that the inhibitors were more cell-permeable than the analogous peptides.28 The
improved transport properties were attributed to the presence of the intramolecular hydrogen
bonds between the adjacent pyrrolinone rings, that decreased the desolvation energy
required for passage from the extracellular aqueous phase into and through the cellular
membrane.

Monopyrrolinone HIV-1 Protease Inhibitors
While translation of a peptidyl protease inhibitor into bispyrrolinone congeners proved
successful, the bispyrrolone inhibitors were not orally bioavailable in dogs, presumably due,
at least in part, to their high molecular weight (ca. 730). A series of lower molecular weight
monopyrrolinone inhibitors typified by (−)-43 (MW = 583), based on L-685,807 and
Indinavir,29 were therefore designed and synthesized (Figure 8).30

Biological evaluation of (−)-43 and related (P2/P1’) congeners revealed that the inhibitors
exploiting the monopyrrolinone scaffold were indeed quite potent against the wild-type
HIV-1 protease (Table 2), displaying lower C/I ratios than either the peptide or
bispyrrolinones based inhibitors, and thus were anticipated to have improved cell membrane
transport properties. Administration of (−)-43 in two dogs revealed oral bioavailability of ca.
13%.

Equally important, X-ray analysis of (−)-43 co-crystallized with the HIV-1 protease30a
provided the foundation for an extended Penn/Merck program to design additional modified
monopyrrolinone-based inhibitors with improved binding affinity. From 1994-2005,
repeated rounds of design and synthesis, employing molecular modeling and X-ray analysis
of co-crystal structures, culminated in the discovery of (−)-48,31 the most potent (in vitro)
monopyrrolinone-based HIV-1 protease inhibitor prepared to date in our laboratory (Figure
9). Thus our early hypothesis that the pyrrolinone scaffold holds considerable potential as a
β-strand mimetic had been validated.

Major Histocompatibility Complex Hybrid Ligands and Matrix
Metalloproteases Inhibitors

Building on the success of the aspartic acid protease program, we turned to other proteins
and enzymes of biomedical significance, known to prefer binding extended β-strand
conformations. The class II major histocompatibility complex (MHC) comprises a series of
extracellular membrane-bound proteins found on specialized antigen-presenting T-cells,
with the MHC protein HLA-DR1 specifically linked to increased susceptibility towards
rheumatoid arthritis.32 In 1994 the late Don Wiley and colleagues, established that class II
MHC molecules bind antigenic peptides in an extended, polyproline type II conformation.33
In collaboration with Olsen at Hoffmann La Roche, we initiated a program to design a
pyrrolinone-peptide hybrid ligand for HLA-DR1.34 The design was based on an analog of
the potent peptide HA 306-318 (Figure 10).35 We sought to mimic the peptide with
pyrrolinone-peptide hybrid 50 (Figure 10). The bispyrrolinone segment was constructed via
our second-generation protocol to provide Fmoc-protected bispyrrolinone amino acid
(−)-51, that was incorporated into peptide 50 via Fmoc-based solid-phase synthesis.

Affinity-binding experiments revealed that the pyrrolinone-peptide hybrid (50) was a
competent ligand for HLA-DR1 (IC50 137 nM), compared both to HA 306-318 (89 nM) and
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the control peptide 49 (176 nM).34 Equally exciting, the X-ray structure of co-crystallized
50 and HLA-DR1 obtained by the Wiley group34b mimicked closely the polyproline type II
conformation of peptide HA-306-318, a result that demonstrates that the pyrrolinone
scaffold can serve as a direct replacement of an amino acid sequence in a bioactive peptide,
involving an extended conformation.

We also explored the design of inhibitors for matrix metalloproteases (MMPs), a family of
zinc-containing enzymes known to bind substrates in extended conformations, which have
been implicated in a variety of disease states.36 Employing peptidyl inhibitor Ro-31-4724
(IC50 = 9 nM for MMP-1)37 as the design template, bispyrrolinones (−)-55 and (−)-56 were
synthesized (Figure 11).38 Although the bispyrrolinone MMP inhibitors displayed only
modest activity (ca. low μM), conformation of the pyrrolinone scaffold as β-strand mimics
had again been achieved.

Alternative Conformations for the 3,5-Linked Polypyrrolinone Scaffold
An evolving interest of the Smith/Hirschmann collaboration was the accessibility of
alternative conformational space for 3,5-linked polypyrrolinones. Towards this end, early
molecular modeling calculations (Figure 1a-e) had suggested that the 3,5-linked backbone
could not only adopt the extended β-strand conformation, stabilized by an intramolecular
hydrogen bond, but also turn and twisted conformations similar to the other secondary
conformations of peptides and proteins (Figure 2A).4 Tactics to access the broader range of
polypyrroline conformational space were envisioned to include modulation of the α-
stereogenicity, the side-chain structure, and/or the presence of intramolecular hydrogen
bonding.

N-Methylated 3,5-Linked Pyrrolinones: Disruption of Intramolecular
Hydrogen Bonding

To explore the hypothesis that disrupting the intramolecular hydrogen bond between the
pyrrolinone units would lead to additional backbone conformations, structural analysis of a
series of model N-methylated bispyrrolinones such as (−)-31 (Figure 5) was undertaken.39
Crystallographic analysis revealed that (−)-31 had a ϕ angle of 177°, and that the individual
molecules assembled to form a beautiful helical array in the solid-state (Figure 12).39
Although attempts to enforce a helical array by covalent linking the bispyrrolinone units
proved unrewarding,39b observation of a helical array in the solid state of (−)-31 provided
the first evidence of the wider range of conformational diversity available to the 3,5-linked
polypyrrolinone structural motif.

D,L-Alternating Polypyrrolinones: Computational Analysis, Synthesis and
Structural Evaluation

In addition to disrupting intramolecular hydrogen bonding, we targeted modulation of the
stereogenicity α to the pyrrolinone carbonyl to expand the 3,5-polypyrrolinone
conformational space. Based on the established ability of D-amino acids to stabilize β-turns,
41 as well as the demonstrated turn conformations observed with peptides containing D- and
L-amino acids,42 we reasoned that a sequence of alternating D,L-linked pyrrolinones might
preferentially adopt a turn structure.

Computational analysis of heterochiral D,L-alternating 3,5-linked pyrrolinones revealed that
the low energy conformations not only adopt turn conformations (Figure 13),14 but
importantly predicted that the family of turn conformations would again accommodate
intramolecular hydrogen bonding between the adjacent pyrrolinone rings. Moreover, the
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intramolecular hydrogen bonding would enforce the β-turn-like conformation. With this as
background, the synthesis of an initial D,L-alternating tetrapyrrolinone (−)-58 was achieved
exploiting the second generation protocol. A series of variable concentration NMR, 2D-
NMR, and FT-IR experiments revealed that intramolecular hydrogen bonding within
tetrapyrrolinone (−)-58 did in fact lead to a turned conformation in solution (Figure 14).14

Having demonstrated by rational design that a tetrapyrrolinone scaffold can adopted a β-turn
like conformation, we next constructed a D,L-alternating hexapyrrolinone (59, Figure 15A).
43 A series of 2D-NMR experiments again revealed a flat, G-shaped turn conformation of
(−)-59 in CDCl3 (Figure 15B). Pleasingly, X-ray analysis of crystalline (−)-59 confirmed
the flat G-shaped structure (Figure 15C), similar to the low energy conformation observed in
solution. Of equal interest, the unit cell revealed that (−)-59 self-assembles into a nanotube-
like quaternary structure (Figure 15D and E), with the monomers arrayed in an antiparallel
fashion.

A Biologically Relevant β-Turn Peptidomimetic Based on the
Polypyrrolinone Structural Motif

To validate a heterochiral (D,L-alternating) polypyrrolinone turn mimic in a biologically
relevant system, recall the “Hirschmann motto”, we turned to somatostatin (Somatotropin
Release Inhibiting Factor, SRIF-14), the endogenous, cyclic tetradecapeptide hormone that
regulates endocrine and exocrine secretion. Somatostatin was of course well known to
Hirschmann and colleagues, having demonstrated at Merck that a β-turn is both necessary
and sufficient for somatostatin receptor binding and signal transduction.44 A series of D,L-
mixed tetrapyrrolinones, incorporating the turn side-chain sequence of L-363,301 (cf, Phe7,
Trp8, Lys9, Thr10)44 were envisioned as prospective pyrrolinone-based SRIF mimetics
(Figure 16).

Although the synthesis of tetrapyrrolinone 60 possessing an i+1 indole side-chain mimic
proved elusive, three D,L-alternating tetrapyrrolinone SRIF mimetics (−)-61, (+)-62 and
(+)-63 displaying aromatic indole surrogates were constructed.45 Binding affinities were
determined at two somatostatin receptors (hsst 4 and 5, Table 3). Despite the modest
affinities relative to SRIF, the potential utility of the pyrrolinone scaffold as a β-turn
peptidomimetic had been validated.

Macrocyclic D,L-Alternating Hexapyrrolinones: Design, Synthesis and
Structure Evaluation

The nanotube-like architecture of (−)-59 in the solid-state, suggested ring closure to achieve
macrocyclic hexapyrrolinones 64 and 65. Importantly, Monte Carlo conformational searches
for 64 predicted a flat conformation for the monomers with the potential for an antiparallel
stacking arrangement, in agreement with the observed stacking in the crystalline open-chain
hexapyrrolinone (−)-59.43

Macrocyclic hexapyrrolinone 64 was subsequently prepared,46 although the yield for the
macrocyclization step proved quite modest (ca. 12%). Importantly, the propensity of
macrocycle (+)-64 to self-assemble in solution was demonstrated via a series of 1H NMR
studies. Unfortunately, crystals of (+)-64 suitable for X-ray analysis were not forthcoming.
Lacking a crystal structure of (+)-64, an alternate hexapyrrolinone 65 was designed and
synthesized (Scheme 4), with the expectation that the reduced flexibility of the isopropyl
side-chains would facilitate crystal growth.
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Pleasingly, crystals suitable for X-ray analysis of (+)-65 were obtained (Figure 18);46
however, unlike the open chain hexapyrrolinones (−)-59, (+)-65 was found to assemble into
an infinite, staggered, nanotube-like array, with four pyrrolinone rings participating in
intermolecular hydrogen bonding. The first steps toward the design, synthesis and structural
characterization of novel pyrrolinone-based nanostructures had thus been achieved with the
synthesis and structural characterization of (+)-64 and (+)-65.

Summary
The polypyrrolinone scaffold, designed as a non-peptide peptidomimetic incorporating both
hydrogen bond capacity and side-chain diversity, lead to the development of a robust
metalloenamine-based synthesis, followed by expansion to include diverse amino-acid-like
side-chains, flexible protecting-group strategies, and importantly translation to solid-support
for the eventual construction of polypyrroline libraries. Homochiral 3,5-linked
polypyrrolinones adopt extended β-strand/sheet-like conformations, while heterochiral (D,L-
alternating) polypyrrolinones lead to turned structures. Importantly homochiral mono and
bispolypyrrolinones were validated as inhibitors of renin, matrix metalloproteases and potent
bioavailable HIV-1 protease inhibitors, as well as a competent peptide-pyrrolinone hybrid
ligand for the class II MHC HLA-DR1. Finally, the turned conformations of heterochiral
pyrrolinones were shown to be both biologically relevant as β-turn mimics and capable of
producing novel nanotube-like structures. Taken together, the results of the Hirschmann-
Smith pyrrolinone program illustrate the remarkable potential of the pyrrolinone structural
motif as a privileged scaffold for molecular mimicry, capable of generating β-strand/β-sheet,
β-turn and potential helical peptidomimetics.
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Figure 1.
(A) Typical Aspartic Acid Protease Active Site, (B) Comparison of Amide. and Pyrrolinone
Units, (C) Design of 3,5- and 2,5-Pyrrolinones, (D) Registrations of 3,5- and 2,5-Linked
Pyrrolinone Scaffolds.
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Figure 2.
Monte Carlo Generated Backbone Conformations for Model Tetrapyrrolinones 1 (A) and 2
(B); (C) Predicted Intramolecular Hydrogen Bond Between Adjacent Pyrrolinone Rings; (D)
Potential Susceptibility of the 2,5-linked Pyrrolinone Scaffold to Nucleophilic
Decomposition.
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Figure 3.
(A) ORTEP Plot of Trispyrrolinone (−)-27; (B) Overlay with the Crystal Structure of the
Corresponding Tetrapeptide (Stereoview); (C) Unit Cell Illustration Highlighting the
Antiparallel Packing of (−)-27 (C).20
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Figure 4.
ORTEP Plot (A) and Unit Cell (B) for Trispyrrolinone Amine (−) 28.20
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Figure 5.
Pyrrolinones Used in Solution Phase Structural Studies.
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Figure 6.
Design and Synthesis of Pyrrolinone-Based Renin Inhibitors.
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Figure 7.
Design and Synthesis of Prospective Bispyrrolinone-Based HIV-1 Protease Inhibitors.
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Figure 8.
Design of Monopyrrolinone HIV-1 Protease Inhibitors.
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Figure 9.
Development of Monopyrrolinone-Based HIV-1 Protease Inhibitors.
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Figure 10.
A Pyrrolinone-Peptide Hybrid Ligand for the Class II MHC HLA-DR1.
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Figure 11.
Pyrrolinone-Based MMP Inhibitors.
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Figure 12.
Stereoview of the X-ray Structure of (−)-31.40
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Figure 13.
D,L,D,L-Tetrapyrrolinone 57 and the Low Energy Structures from a Monte Carlo
Conformational Search.
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Figure 14.
The Solution Structure of (−)-58.
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Figure 15.
(A) D,L-alternating Hexapyrrolinone (−)-59; (B) The Predicted Solution Structure of
(−)-59; (C) ORTEP Diagram of (−)-59; Stereoviews Illustrating a Nanotube-Like Assembly
of (−)-59 in the Solid State; (D) Side View with Intermolecular Hydrogen Bonds Illustrated;
and (E) With Side-Chains Removed.
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Figure 16.
Prospective Pyrrolinone-Based SRIF Mimetics.
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Figure 17.
Designed Macrocyclic Hexapyrrolinones.
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Figure 18.
(A) X-ray Structure of (+)-65; The Nanotube-like Assembly of (+)-65 in the Solid-State
(Side Chains Omitted); Stereoview from the Top (B) and Side View (C).
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Scheme 1.
(A) Retrosynthetic Analysis of the 3,5-Pyrrolinone Unit. (B) Iterative 3,5-Pyrrolinone
Synthesis via Metalloenamine Mediated Cyclization.
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Scheme 2.
(A) Synthesis of Amino Ester and Aldehyde Building Blocks. (B) Amino Ester Building
Blocks for Approaches A and B.
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Scheme 3.
(A) Third Generation Pyrrolinone Synthesis. (B) Synthesis of Polypyrrolinones on Solid
Support. (C) Palladium-Catalyzed Functionalization of C-terminal Pyrrolinones.
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Scheme 4.
Convergent Synthesis of Macrocyclic Hexapyrrolinone (+)-65.
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Table 2

HIV-1 Protease Bioassay Data for Monopyrrolinone and Related Amide-based Inhibitors. 50% Inhibitory
Concentration (IC50); Cellular 95% Inhibitory Concentration (CIC95)

Inhibitor IC50 (nM) CIC95 (nM) C/I

Indinavir 0.36 25-100 69-277

L-682,679 0.6 6 000 10 000

(−)-39 1.3 800 615

L-697,807 0.03 3 100

(−)-43 2.0 100-250 50-125
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Table 3

Binding Affinities of Pyrrolinone-Based SRIF Mimetics.

Ligand IC50 hsst 4 IC50 hsst 5

(−)-61 2.14 μM 2.44 μM

(+)-62 4.04 μM 1.27 μM

(+)-63 2.05 μM 38% at 10 μM

SRIF-14 0.111 nM 0.362 nM
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