An Approach to *cis*-Phlegmarine Alkaloids via Stereodivergent Reduction: Total Synthesis of (+)-Serratezomine E and Putative Structure of (-)-Huperzine N

Caroline Bosch,[†] Béla Fiser,[‡] Enrique Gómez-Bengoa, [‡] Ben Bradshaw,^{*,†} and Josep Bonjoch^{*,†}

[†] Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain

[‡] Departamento de Química Orgánica I, Universidad del País Vasco, Manuel Lardizábal 3, 20018-San Sebastián, Spain

Supporting Information Placeholder

ABSTRACT: A unified strategy for the synthesis of the *cis*-phlegmarine group of alkaloids is presented, leading to the first synthesis of serratezomine E(1) as well as the putative structure of huperzine N(2). A contrasteric hydrogenation method was developed based on the use of Wilkinson's catalyst, which allowed the facial selectivity of standard hydrogenation to be completely overturned. Calculations were performed to determine the mechanism, and structures for huperzines M and N are reassigned.

In the field of natural product synthesis there is a growing trend towards developing strategies that can prepare diverse molecular skeletons from a common intermediate.¹ Such 'unified synthesis' approaches have the advantage in that they produce the maximum amount of molecular diversity in the most efficient manner possible, thereby facilitating structure-activity relationship studies. Our interest in this field stems from our research program to develop a unified synthesis of the Lycopodium alkaloids.² In particular, our efforts have focused on the phlegmarine alkaloid subset, since not only do their multiple stereochemical arrangements present synthetic challenges, but the core framework, embedded throughout the Lycopodium alkaloids, would constitute an ideal common scaffold in a unified synthesis of these compounds.^{3,4}

Previously, we have developed an organocatalyzed tandem cyclization to access 5-oxodecahydroquinoline **3** bearing three stereogenic centers in a one-pot manner. Subsequent coupling generated the first point of diversification, providing vinylpyridines **4** or **5** depending on the conditions employed. Hydrogenation of the formed alkene led to a second point of diversity, which from **4** almost exclusively gave the stereochemistry required for the synthesis of lycoposerramine Z.⁵ Similarly, hydrogenation of vinylpyridine **5**, under the same conditions, allowed the synthesis of cermizine B⁶ (Scheme 1). Access to a wide range of C-5 epimeric Lycopodium alkaloids, such as

Scheme 1. Stereochemistries of cis-phlegmarine alkaloids

Figure 1. Structural conformations and relative stabilities of **6a/b** and **8a/b**, computed at B3LYP/6-311G** (LANL2DZ) level of theory

those shown in Scheme 1,⁷ would require the facial selectivity of this hydrogenation step to be completely overturned. ⁸ We herein report a highly efficient process to achieve this objective and its application to the first total synthesis of serratezomine E.^{7a} Using this strategy, we also accomplished the total synthesis of the putative structure of huperzine N^{7e} and its reassignment.

The selectivity of the hydrogenation of vinylpyridine 4 (Figure 1) using either Pd-C or Raney nickel is believed to be governed by an axially positioned methyl group, which blocks the approach from the lower face of the molecule, leading to the kinetic decahydroquinoline **6b** (Table 1, entries 1 and 2). A priori, compound 7 appeared to be a convenient precursor of **8a**, since its different conformation (Figure 1) could allow a kinetic hydrogenation from the bottom face and lead to the thermodynamically more stable epimer **8a**. However, hydrogenation of the secondary amine **7** (entry 3) did not give the expected reversal of selectivity. An explanation is that the haptophilicity⁹ of the secondary amino function binds it to the catalyst surface and thus directs the delivery of the hydrogen from the top face of **7** to give **8b** as the major epimer.

We then evaluated the reductive radical conditions recently reported by Shenvi,¹⁰ known to give more thermodynamically favoured products. Calculations showed that the targeted **6a** was 2.8 kcal more stable than its epimer **6b** (Figure 1), and indeed, it was obtained as the main compound in a ratio of 73:27 (entry 4), although it was difficult to separate from significant amounts of byproducts (>30%).¹¹ When the same conditions were applied to the N-H compound **7**, there was no reaction and the starting material was completely recovered (entry 5). Similar radical-based methods based on other protocols,¹² either directly or modified, were also evaluated, but with no significant improvements (entries 6-8). We then assessed homogeneous hydrogenation catalysts and were pleased

Table 1. Screening of conditions for the reduction reaction^a

^{*a*} For detailed reactions conditions, see Supporting Information. Reactions were performed on a mixture of *E*:*Z* isomers (4:1). ^{*b*} Yield of hydrogenated compounds refers to the conversion determined from ¹H NMR spectra. ^{*c*} The ratio was determined by ¹H NMR spectroscopy of the unpurified reaction mixture. ^{*d*} EtOH used as solvent. ^{*e*} PrOH used as solvent and 1,4-cyclohexadiene as additive.

to observe that Crabtree's catalyst provided the same stereoselectivity as Mn(dpm)₃ but without any byproducts (entry 9). Finally, Wilkinson's catalyst proved more successful, enabling us to achieve almost complete diastereoselectivity (96:4) in a clean quantitative manner using only 2 mol % of catalyst (entry 10).¹³

Given the sterically impeded nature of the β , β disubstituted vinyl pyridine and large size of Wilkinson's catalyst, we presumed the reaction proceeded via a coordination of the catalyst.¹⁴ Indeed, when the analogous benzene analog of **4** (not shown) lacking the pyridine nitrogen was prepared, no reduction was observed.

To understand the reaction and account for the excellent stereocontrol observed, calculations were performed and the proposed reaction mechanism is outlined in Scheme 2. The hydrogenated Wilkinson's catalyst (I) forms an initial complex **A** by coordination to the double bond and the pyridine nitrogen atom of the substrate, releasing two molecules of phosphine in the process, which can occur through both faces of the double bond. In complex **A**, the Rh atom is coordinated to the pyridine ring and the double bond with short interatomic Rh-N (2.4 Å), and Rh-alkene (2.3 Å) distances, inducing a slight deconjugation of the double bond and the pyridine ring, which is partially responsible for its 10 kcal/mol higher energy than the initial hydrogenated Wilkinson catalyst. Thus, the initial equilibrium between the starting materials and **A** is shifted towards the former (Scheme 2). However, the very low

activation energy required for the hydro-rhodation (TS-down is only 4 kcal/mol above A) makes the whole process feasible, triggering an easy formation of C, and the consumption of the starting material. After the insertion of hydrogen into C, the reaction proceeds through reductive elimination, liberating the final product **D**. As mentioned, the hydro-rhodation step can occur on either face of the double bond, through two diastereoisomeric transition states, TS-down and TS-up $(E \rightarrow G)$. The computed activation energies predict that TS-down is favoured by 2.8 kcal/mol over TS-up, justifying the experimental formation of the major diastereoisomer 6a. The main difference between the two diasteromeric transition states consists of the different orientation of the N-tosyl moiety of the substrate. In **B**, the phenyl ring of the tosyl group forms at least three strong π -stacking interactions, with one of the rings of the PPh₃ group, and with two different H atoms of the bicyclic skeleton (see Supporting Information). During the transition state, the Rh-alkene bond is even tighter than in A (2.1 Å), inducing a weakening of the Rh-N coordination (2.5 Å).

With the optimum reduction method in hand, transformation of **4** (prepared in six steps from the commercially

available 5-aminopentanoic acid) led to a concise synthesis of serratezomine E (1, Scheme 3). Hydrogenation with Wilkinson's catalyst, and removal of the tosyl group of **6a** led to the secondary amine **8a** in a pure form, and the introduction of the required acetyl group gave **9**. Subsequent reduction of the pyridine provided serratezomine E (1) as a white solid,¹⁵ whose structure was unequivocally confirmed by X-ray analysis (Figure 2), having the absolute configuration (S) at the C2 piperidine ring and (R) at the C7 decahydroquinoline ring, characteristic of phlegmarine alkaloids.^{16,17}

Figure 2. X-Ray structure of (+)-serratezomine E (1)

An analogous procedure allowed for the synthesis of huperzine N (2, Scheme 4). Hydrogenation of 5 with Wilkinson's catalyst gave the desired epimer 10 in a 9:1 ratio. Removal of the tosyl group, formation of the N-methyl via reductive amination with $ZnCl_2^{18}$ and reduction of the pyridine gave 11 in good overall yield. Finally, oxidation with $Na_2WO_4/$ urea $H_2O_2^{5}$ gave the reported structure of huperzine N, although the NMR spectra of 2 did not match those described (see SI). Instead, the ¹³C NMR data of natural huperzine N would be explained by structure 14 (Figure 2), whose NMR data are consistent with the *N*-oxide form of the previously isolated lycoposerramine Y.¹⁹ Indeed, the closely related alkaloid huperzine M (15)^{7c} should also be reassigned, its NMR data being identical to those of lycoposerramine Y (16).

In summary, a divergent hydrogenation protocol was developed, providing access to a range of Lycopodium compounds unattainable by standard hydrogenation of common vinyl pyridine intermediates. Via rhodium complexation with the pyridine nitrogen and selective facial delivery, it was possible to invert the course of hydrogenation from 97:3 to 4:96 dr. This method was successfully applied for the first total synthesis of serrazomine E as well as huperzine N. The latter turned out to be a putative structure, and the natural one was structurally reassigned. The application of this strategy to other *cis* and *trans* Lycopodium alkaloids is now in progress.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, spectroscopic and analytical data, NMR spectra of new compounds and X-ray data for 1 (CIF). Cartesian coordinates and energies for all the species considered in Scheme 2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* E-mail: josep.bonjoch@ub.edu

* E-mail: benbradshaw@ub.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support for this research was provided by Project CTQ2013-41338-P and CTQ2013-47925-C2 from MINECO the Ministry of Economy and Competitiveness of Spain and the FP7

Marie Curie Actions of the European Commission via the ITN ECHONET Network (MCITN-2012–316379). We also thank SGlker (UPV/EHU) for providing computational resources.

REFERENCES

(1) (a) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. *Nature* **2011**, *475*, 183; (b) Anagnostaki, E. E.; Zografos, A. L. *Chem. Soc. Rev.* **2012**, *41*, 5613; (c) Mercado-Marin, E. V.; Sarpong, R. *Chem. Sci.* **2015**, *6*, 5048.

(2) (a) Ma, X.; Gang, D. R. *Nat. Prod. Rep.* **2004**, *21*, 752; (b) Hirasawa, Y.; Kobayashi, J.; Morita, H. *Heterocycles* **2009**, *77*, 679; (c) Siengalewicz, P.; Mulzer, J.; Rinner, U. *The Alkaloids* **2013**, *72*, 1.

(3) For initial studies to access all stereoparents of the 7-methyl-5oxodecahydroquinoline core of phlegmarine alkaloids, see: Bradshaw, B.; Luque-Corredera, C.; Saborit, G.; Cativiela, C.; Dorel, R.; Bo, C.; Bonjoch, J. *Chem. Eur. J.* **2013**, *19*, 13881.

(4) For total synthesis of *trans*-phlegmarine alkaloids, see: (a) Wolfe, B. H.; Libby, A. H.; Al-awar, R. S.; Foti, C. J.; Comins, D. L. *J. Org. Chem.* **2010**, *75*, 8564 and references therein; (b) Tanaka, T.; Kogure, N.; Kitajima, M.; Takayama, H. *J. Org. Chem.* **2009**, *74*, 8675.

(5) Bradshaw, B.; Luque-Corredera, C.; Bonjoch, J. Org. Lett., 2013, 15, 326.

(6) Bradshaw, B.; Luque-Corredera, C.; Bonjoch, J. Chem. Commun. 2014, 50, 7099.

(7) (a) Serratezomine E: Kubota, T.; Yahata, H.;Yamamoto, S.; Hayashi, S.; Shibata, T.; Kobayashi, J. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3577; (b) Dihydrolycolucine: Ayer, W. A.; Browne, L. M.; Nakahara, Y.; Tori, M.; Delbaere, L. T. *Can. J. Chem.* **1979**, *57*, 1105; (c) Huperzine N: Gao, W. Y.; Li, Y. M.; Jiamg, S. H.; Zhu, D. Y. *Helv. Chim. Acta* **2008**, *91*, 1031.

(8) For an unsuccessful analogous reduction of the vinyl pyridine unit in an approach to the alkaloid dihydrolycolucine, leading to the opposite stereochemistry to that required, see: S. E House, *Ph.D thesis*, 2010, University of California, Berkeley.

(9) Thompson, H. W.; Rashid, S. Y. J. Org. Chem., 2002, 67, 2813.
(10) Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crosslev, S. W. M.;

(10) Iwasaki, K.; Wan, K. K.; Oppenisano, A.; Crossley, S. W. M.; R.; Shenvi, R. A. *J. Am. Chem. Soc.* **2014**, *136*, 1300.

(11) While it was not possible to fully determine the structure of the by-products, we speculatively assigned them as migrated double bond products and miscellaneous oxygenated compounds.

(12) (a) Leggans, E. K.; Barker, T. J.; Duncan, K. K. and D. L. Boger, D. L. Org. Lett., **2012**, *14*, 1428; (b) King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc., **2014**, *136*, 6884; (c) Lo, J. C.; Yabe, Y. Baran, P. S. J. Am. Chem. Soc., **2014**, *136*, 1304.

(13) The use of the E isomer alone gave the same result. It should also be noted than the free N-H compound 7 did not react with either catalyst.

(14) For directed-hydrogenations leading to products with contrasteric selectivity, see: Friedfeld M. R., Margulieux, G. W.; Schaefer B. A.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 13178.

(15) The remaining mass comprised the epimer in the form of an oil, which enabled its simple separation from the desired product, despite the two compounds having identical R_f values.

(16) The NMR data for the piperidine ring atoms are slightly different from those reported for the natural product. However, partial protonation of our synthetic **1** afforded NMR data identical to those described for natural **1**. For a similar titration of a free base with TFA, see: Altman, R.A.; Nilsson, B. L.; Overman, L. E.; Read de Alaniz, J.; Rohde, J. M.; Taupin, V. J. Org. Chem. **2010**, *75*, 7519.

(17) Although 1 shows the same dextrorotatory character as natural serratezomine E, there are differences in the value of the specific rotation. For a strong change in specific rotation upon protonation in the alkaloid field, see: (a) Kuehne, P.; Linden A.; Hesse, M. *Helv. Chim. Acta* **1996**, *79*, 1085; (b) Weiss, M. E.; Carreira, E. M. *Angew. Chem. Int. Ed.* **2011**, *50*, 11501.

(18) Bhattacharyya, S. Synth. Commun. 1995, 25, 2061.

(19) Katakawa, K.; Kitajima, M.; Yamaguchi, K.; Takayama, H. *Heterocycles* **2006**, *69*, 223.