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Abstract 

Currently, development of subunit vaccine based on recombinant antigens or peptides 

has gradually become an important alternative option for traditional vaccine. However, 

induction of potent immune response with desired efficacy remains a major challenge. 

The nanoparticle-based antigen delivery system has been considered a potential carrier 

system to improve the efficacy of subunit vaccine. In the present study, we have 

designed an immune-stimulatory delivery system by conjugating three-armed PLGA to 

PEG via the peroxalate ester bond which is sensitive to hydrogen peroxide (H2O2), a 

major reactive oxygen species (ROS). Hyaluronic acid (HA), a ligand for CD44 

receptors was also modified onto the outer shell of the 3s-PLGA-PEG nanoparticles to 

promote immune cell uptake. For in vitro and in vivo immune response assessment, a 

model antigen ovalbumin (OVA) was enclosed within the core of the 3s-PLGA-PEG 

nanoparticles to form 3s-PLGA-PO-PEG/HA nanoparticles (PHO NPs). Our results 

showed that the PHO NPs enhanced dendritic cell maturation, antigen uptake and 

antigen presentation in vitro, likely due to enhanced lysosomal escape. In vivo 

experiments further revealed that the PHO nanovaccine robustly promoted OVA-

specific antibody production and T cell response accompanied by modest stimulation 

of memory T cells. In summary, the ROS-responsive PHO NPs with modified HA may 

be an effective vehicle antigen delivery system to promote antigen-induced immune 

response. 

Keywords: ROS triggered; hyaluronic acid modified; nanoparticles; immune response 
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1 Introduction 

Designing and preparation of appropriate delivery systems for biomacromolecules such 

as genes, proteins, polypeptides remains a major challenge in the field of drug delivery 

system development1.The application of nanoparticles transferring system as vaccine 

carrier could potentially overcome limitations of subunit vaccines by increasing the 

antigen surface area, enhancing the stability of proteins, stabilizing the biological 

activity of antigens/proteins and augmenting the solubility of the antigen/protein 

complexes. Moreover, nanoparticles could prolong the systemic circulation time of 

antigens by processes such as encapsulation, which protects the active segments of 

antigens from endogenous enzyme degradation while promotes local accumulation. In 

addition, by employing nanoparticles as vaccine carriers, controlled and sustained 

release of antigens accompanied by other immune modulators can be achieved, which 

is essential to potent immune responses and lasting immune memory. In addition, 

studies have shown that nanoparticles can stimulate dendritic cell (DC) maturation and 

antigen presentation, both of which are crucial for the initiation of effective immune 

responses2, 3. Moreover, -it has been shown that nanoparticles can stimulate immune 

responses, and that their compatibility with the immune system are mainly dependent 

on surface chemical reactivity of the nanoparticles. Reducing the immune toxicity of 

nanoparticles could make them useful platforms for drug delivery4. 

Limited by their biological characteristics, biomacromolecules are easily degraded in 

vivo resulting in low bioavailability. As a result, for biomacromolecules delivery, 
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polymer nanocarriers have often been used5.However, while polymer nanocarriers 

improved bioavailability of the biomacromolecules, in vivo stability and toxicity have 

been reported with the use of liposomes and cationic polymers respectively. Instead, 

natural macromolecules have been shown to improve the distribution of nanoparticles 

in vivo with enhanced targeted delivery capability.  

Hyaluronic acid (HA) is a natural protein polysaccharide and often found in the 

extracellular matrix and connective tissues. It plays an important role in the 

maintenance of extracellular matrix structure and regulation of intracellular activity. It 

also functions as ligand to CD44 receptor, a transmembrane glycoprotein which is one 

of the most important receptors on the cell surface. HA and HA receptor CD44 as well 

as the HA binding protein (e.g., hyaluronan6, proteoglycans and glycoproteins such as 

aggrecan, versican, neurocan or brevican) regulate a variety of biological behaviors of 

cells including cell adhesion, migration, proliferation, differentiation and wound 

healing7. Studies have shown that CD44 is highly expressed on cells such as tumor cells, 

dendritic cells (DCs) and some epithelial cells8.The binding of CD44 and HA can 

trigger the combination of CD44 cytoplasmic domain and signal transduction 

molecules and then induce and activate intracellular signal transduction pathways such 

as Rho/Ras signal9. Given the high level of expression of CD44 on tumor and DC 

surface, HA has been widely used during the construction of nanoparticles for targeted 

drug/antigen delivery10. 

However, HA is easily degraded physiologically. When used alone as drug delivery 

system, it leads to reduced circulation time and drug leakage with decreased delivery 
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efficiency. Moreover, when inflammation occurs, certain enzymes can degrade HA 

derivatives, causing accidental drug release at the sites of inflammation11. One previous 

study has been reported that polyethylene glycol (PEG) modification of HA could 

prevent HA degradation and increase HA stability in vivo, likely due to effective 

inhibition of plasma protein, enzyme and other substances adhesion on the surface by 

PEGylation12. Thus, in the present study, we have designed a three-arm PLGA-PEG 

nanoparticle (3s-PLGA-PEG NPs) connected by peroxalate ester bonds as OVA antigen 

carrier, with HA modified on the external surface (3s-PLGA-PO-PEG/HA, PHO NPs). 

Since the peroxalate ester bonds are sensitive to ROS, which promotes in vivo immune 

responses and inflammation13, we expect that the PHO NPs would be able to target DCs 

by binding to the CD44 receptors while the ROS-responsiveness would enable targeted 

release of antigen for potent immune response induction. 

 

2 Experimental section 

2.1 Materials 

D,L-Lactide(DLA) and GA were supplied by Glaco Ltd (Beijing, China). PEG (Mn = 

4000 g/mol) wasbought from Guangfu Fine Chemical Research Institude (Tianjin, 

China). HA, Lipopolysaccharide(LPS), 3-(4,5-dimethyl-2-thiazolyl)-2,5-dipheny- l-2-

H-tetrazolium bromide(MTT), Phosphate Buffered Saline (PBS), Dimethyl sulfoxide 

(DMSO), Fluorescein isothiocyanate (FITC), 4’,6-diamidino-2-phenylindole (DAPI), 

Tween 20 were obtained by Solarbio (Beijing,China). Ovalbumin(OVA), Polyvinyl 

alcohol(PVA) (Mn=30000-70000), Carboxyfluorescein diacetate, succinimidyl ester 
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(CFSE), 2,7-Dichlorodi -hydrofluorescein diacetate (DCFH-DA) were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Cyanine7 NHS ester was obtained by Apexbio 

(USA). The Micro BCA™ Protein assay kit was supplied by Thermo Fisher Scientific 

Inc. (Rockford, IL USA). Lyso Tracker Red was purchased from Beyotime 

Biotechnology (Shanghai, China). Roswell Park Memorial Institute (RPMI) 1640 and 

fetalbovine serum (FBS) were purchased from Gibco (Grand Island, NY, USA). Anti-

mouse IgG Biotin, anti-mouse ELISA kits IL-6, TNF-alpha were purchased from 

eBioscience. Anti-mouse IgG1, IgG2a Biotin were obtained by BD bioscienses. 

Recombinant mouse GM-CSF and IL-4 were purchased from Peprotech (Rocky, Hill, 

USA). Fluorochrome-labeled anti-mouse monoclonal antibodies (CD3e, CD28，CD4, 

CD8a, CD11c, CD40, CD86, MHCI, MHCII, CD44, CD62L) were purchased from 

eBioscience (CA, USA). 

Female C57BL/6 mice(6-8-week-old) were purchased by National Institutes for Food 

and Drug Control (Beijing, China). All animal procedures were reviewed and ethically 

approved by Center of Tianjin Animal Experiment ethics committee and authority for 

animal protection (Approval No.:SYXK (Jin) 2011-0008). 

2.2 Synthesis of 3s-PLGA-PO-PEG 

The synthetic route of 3s-PLGA-PO-PEG was depicted as follow. The 3s-PLGA was 

firstly synthesized using lactide and glycolide by ring-opening polymerizationas 

previously reported14.The block copolymer was obtained when modified 3s-PLGA and 

PEG linked with oxalyl chloride by acylation reaction. Three-arm PLGA connected to 

PEG by peroxalate ester bond which breaks in the presence of H2O2.
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2.3 Preparation and characterization of NPs modified with HA 

A double emulsion (W1/O/W2) method was used to prepare 3s-PLGA-PO-PEG/HA NPs 

loaded OVA (PHO). Firstly, OVA aqueous solution was added in 2 mL dichloromethane 

which containing 50 mg 3s-PLGA-PEG(LA:GA=50:50) to form water-in-oil (W1/O) 

primary emulsion under a microtip probe sonicator (VCX-130-PB, Sonics & Material 

Inc., Connecticut, USA) at 30% amplitude for 10 min15. The first emulsion was then 

added in a secondary aqueous solution containing 1% (w/w) PVA with HA by 

ultrasonication at 30 % amplitude for another 10min to generate a W1/O/W2 double 

emulsion. The final preparation was stirred for 4 h and transferred into solid NPs until 

the dichloromethane completely removed. The HA-coated NPs were washed four times 

with distilled water by centrifugation at 23,000 rpm for 30 min before lyophilized and 

sterilized by gamma irradiation and stored at -20 °C in dry state and the supernatant 

was used to test loading capacity. The 3s-PLGA loaded OVA(P-O) NPs and 3s-PLGA-

PEG loaded OVA (PO) NPs were also prepared as control in the same way. NPs loaded 

OVA conjugated FITC (OVA-FITC) or OVA conjugated Cy7 NHS ester(OVA-Cy7) 

were prepared using the above describe method for the purpose of tracking. 

The average particle size, encapsulation and loading capacity and surface morphology 

were determined to evaluate the characteristics of NPs. The particle size, size 

distribution and surface charges of the NPs were determined by photon correlation 

spectroscopy (PCS)using Nano-ZS ZEN3600 (Malvern Instruments). Morphological 

test of NPs was measured and taken pictures by transmission electron microscopy 

(TEM, JEM-2100F, Japan). The NPs were suspended in water at 4°C over21 d and the 
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size was tested at different time to observe the size and distribution change of NPs. To 

determine the encapsulation efficiency (EE) and loading capacity (LC) of NPs, the 

amount of OVA in NPs and free OVA in supernatant were determined using BCA Assay 

Kit (Thermo, USA). The EE and LC calculated by the equations: EE = (total OVA − 

unbound OVA)/total OVA × 100%; LC = loaded OVA/total mass of nanovaccine × 

100%. The release kinetics experiment of NPs was carried out in phosphate buffer (PBS, 

pH 7.4) at 37 °C. 12 mg OVA-loaded NPs was suspended in PBS to release in shaking 

table at constant temperature (37 °C, 150 r/min). The release amounts of OVA from 

supernatant obtained by centrifugation (20000 r/min, 5 min) was measured at different 

time by BCA Assay Kit. 

2.4 The scavenging ability of H2O2 by NPs in vitro 

The scavenging ability of H2O2 by NPs was measured as follows. To 1 mL of H2O2 

solution (200 μM) was added 1 mg of polymer materials, P-O, PO, PHO NPs and free 

OVA and then was left in a shaker (150 r/min) at 37°C. The H2O2 concentration of 

supernatant was measured after 3 h incubation by Amplex Red Probe (Invitrogen, 

Carlsbad, CA). Human smooth muscle cells (SMC) were cultured with1 μg/mL LPS to 

induce intracellular ROS in a 24-well plate and then treated with NPs for 3 h. Then, 

ROS in cells was labeled by 10 μmol/L DCFH-DA. The fluorescence signal of ROS in 

cells was measured using a BD Accuri™ C6 flow cytometer (BD Biosciences, San Jose, 

CA). 

2.5 Dendritic cells viability assays 

To evaluate the potential cytotoxicity of NPs on cells, we performed a MTT assay of 
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cells treated with soluble OVA or NPs. DC 2.4 cells were cultured in RPMI1640 with 

10% FBS, 100 μg/mL penicillin, 100 μg/mL streptomycin under 5% CO2 at 37°C. They 

were seeded in96-well plates in 100 μL medium per well at a density of 5×104 cells/mL 

for 24 h and then cells were washed and incubated for another 24 h with 100 μL of 

medium-containing free OVA or NPs. Then, the NP-containing medium was removed. 

0.5mg/mL MTT solution in medium was added and kept for 4 h. At last, the supernatant 

was removed and 150 μL DMSO was added. Cells were covered with tinfoil and 

agitated on orbital shaker for 15 min. Absorbance was read at 490 nm with a reference 

filter of 630 nm using a microplate reader (Varioskan Flash 3001, Thermo, USA).  

2.6 Intracellular uptake of OVA by DC  

DC 2.4 cells were firstly cultured at 5×105 cells/well in a 24-well plate for 24 h and 

then treated with OVA-FITC (10 μg/mL) and nanoparticle-formulated OVA-FITC at 

37 °C for 4 h and then washed. The uptake percentage and mean fluorescence 

intensity(MFI) of OVA-FITC by DCs was measured by a BD Accuri™  C6 flow 

cytometer (BD Biosciences, San Jose, CA). 

2.7 Cellular uptake and localization of antigens in DC  

DC 2.4 cells were seeded in cover glass-bottom confocal dish at a density of 8×104 

cells/well overnight at 37 °C. Free OVA-FITC (10μg/mL) and OVA-FITC loaded NPs 

were placed in wells and incubated at 37 °C for 4 h. The cells were washed for three 

times and then were fixed with 4% paraformaldehyde. The 50nM LysoTraker Red 

DND-99 and DAPI was separately used to label endosomes and nucleus. The 

fluorescent images were recorded by a confocal laser scanning microscopy (CLSM 410; 
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Zeiss, Jena, Germany) 

2.8 Bone marrow dendritic cells (BMDCs) stimulation and maturation 

BMDCs which were isolated from C57BL/6J mice femurs and tibias. Erythrocytes were 

lysed by red cell lysing reagent. BMDCs were then cultured in complete RPMI1640 

medium containing 20 ng/mL GM-CSF and 10 ng/mL IL-4 for 6 d to obtain immature 

DCs16.The immature DCs were treated with free OVA (20 μg/mL) and OVA-loaded 

NPs for 24h. The levels of surface markers expression were observed by flow cytometry. 

The DCs were stained with anti-mouse CD11c, CD40, CD86 and CCR7 monoclonal 

antibodies for 30 min at 4 °C in the dark. Cells were washed twice and then analyzed 

by flow cytometry using a BD Accuri™ C6 flow cytometer (BD Biosciences, San Jose, 

CA). 

2.9 Antigen cross presentation in vitro 

In vitro antigen cross presentation by DCs was evaluated by B3Z T cell activation 

assay17.Immature BMDCs were harvested and pulsed with free OVA or OVA loaded 

NPs in a 24-well plate for 8 h at 37 °C. BMDCs were washed and then cocultured with 

B3Z T cells at a density of 5 ×105 cells/well which is the CD8+ T cell hybridoma 

presented by MHC class I molecules overnight. X-Gal substrate (1.5 mg/mL of X-Gal，

0.25% PBS-NP40) was added to the remaining cells and then incubated for 24 h. Finally, 

the positive signal was measured by a microplate reader (Thermo) at 405 nm. 

2.10 In vivo trafficking of cyanine 7-labeled NPs 

To investigate the effect of nanovaccines on lymphatic trafficking in vivo, OVA was 

labeled by near infrared (NIR) fluorescent Cyanine 7 dyes. C57BL/6 mice were 
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administrated by subcutaneous (s.c) injection at the tail base site and OVA-Cy7 and 

OVA-Cy7 NPs were then visualized at the injection site and the inguinal lymph nodes18. 

Cy7 fluorescent signals at different time (0, 6, 12, 24 h) was measured by Maestro 

imaging system (CRI, USA). Fluorescence quantitative change was measured by 

quantifying the fluorescent intensity. 

2.11 In vivo immunization, antibody production and in vitro T cell proliferation 

assay 

Six-to-eight-week-old female C57BL/6J mice (4 mice/group) were immunized with 

OVA or OVA-loaded NPs (20 μg OVA/mouse) by subcutaneous injection at a 2-week 

interval for three times. As for antibody production analysis, blood was collected 7 days 

after last immunization, OVA specific IgG, IgG1, IgG2a antibody in serum were 

determined by ELISA (eBioscience). 

Seven days post last immunization, splenocytes (1×106 cells/mL) were isolated and 

stimulated with OVA (20 μg/mL) in a 24-well plate for 72 h. The production of IL-6 in 

supernatants was measured by ELISA kit. To determine T lymphocytes proliferation, 

splenocytes were isolated and stained with 5 μmol/L CFSE (Sigma-Aldrich). After anti-

mouse CD3 and anti-mouse CD28 immobilized in a 24-well plate, the CFSE-dyed T 

cells (1×106 cells/mL) were incubated with 20 μg/mL soluble OVA for 72h. Finally, the 

cells were labeled with PE-anti-mouse CD4 or PE-anti-mouse CD8, and decreased 

CFSE intensity was determined to observe different T cell proliferation using flow 

cytometry. 

2.12 T cell activation response in vivo 
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Six-to-eight-week-old female C57BL/6J mice were immunized with OVA (20 μg/mL) 

or OVA loaded NPs twice every two weeks. Splenocytes (1×106 cells/mL) were isolated 

and cocultured with OVA (20 μg/mL) for 72 h at 37 °C. Cell surface markers FITC-

anti-mouse CD62L, APC-anti-mouse CD44, PE-anti-mouse CD4 or PE-anti-mouse 

CD8 were stained. Fluorescence populations were sorted using a BD Accuri™ C6 flow 

cytometer (BD Biosciences, San Jose, CA) to measure the amount of effectory memory 

T cells (CD44Hi CD62LLo) and central memory T cells (CD44Hi CD62LHi)19. 

2.13 Statistical analysis 

The quantitative data were presented as mean ± S.D. Statistical significance were 

analyzed using a student’s T-Test (*P<0.05; **P<0.01; ***P<0.001). 

 

3 Results and discussion 

3.1 Characterization of NPs 

NPs were prepared by a double emulsion (W1/O/W2) solvent evaporation method. 

Soluble OVA were added in PLGA or PLGA-PEG organic phase to form W1/O primary 

emulsion. The emulsion was then emulsified in PVA with HA to multiple emulsion 

(W1/O/W2). Due to the binding affinity of HA to CD44 receptors, we expect that the 

PHO NPs would be readily taken up by antigen-presenting cells(APCs), such as DCs, 

following recognition of CD44 receptor on APCs cell surface. Since uptake of foreign 

particles would activate the NADPH-oxidase which catalyzes the glycolytic reactions 

and results in H2O2 generation, the ROS-responsive NPs would then degenerate in an 

H2O2-rich environment within DCs due to breakage of the peroxalate ester bonds, 
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leading to release of antigen within the NPs. 

 

Table 1. Characteristics of OVA-loaded P-O, PO, PHO. Data are shown as the 

mean±SD (n=3). 

NPs Size(nm) PDI Zeta potential(mV) EE LC 

P-O 219.3 ± 0.82 0.144 ± 0.016 -19.9 ± 0.3 15.2 ± 0.8 3.6 ± 0.2 

PO 200.0 ± 2.43 0.270 ± 0.003 -22.0 ± 1.4 85.0 ± 11.1 12.5 ± 0.9 

PHO 225.0 ± 1.29 0.097 ± 0.034 -7.27 ± 0.4 94.4 ± 2.1 15.4 ± 0.3 

 

 

Fig. 1 The physical properties of NPs in vitro. (A) PHO size distribution. (B) TEM 

image of PHO. (C) The change of PHO particle size and PDI for 21 d was measured to 

observe the stability of particles. (D) The release kinetics curve of P-O, PO, PHO in 
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PBS (0.01 M, pH 7.4) for 21d. Data are mean ± SD (n=3). 

 

Thus, OVA loaded 3s-PLGA-PO-PEG/HA (PHO) NPs, 3s-PLGA (P-O) NPs and 3s-

PLGA-PO-PEG (PO) NPs were prepared. The average diameter of PHO NPs was 

225.0±1.29 nm and polydispersity index (PDI) was 0.097±0.034. The size distribution 

of PHO NPs was presented in Fig. 1A. The surface charge of PHO NPs was -7.27±0.4 

mV (Table 1). The results of TEM and Dynamic Light Scattering showed that all groups 

of NPs exhibited dispersed spherical shape of similar size (Fig. 1B).  

The protein capsulation efficiency (EE) and loading capacity (LC) were listed in Table 

1. We found that PEGylation increased OVA loading likely due to the hydrophilicity of 

PEG. In addition, HA modification also increased viscosity of NPs and protein adhesion. 

The stability of the NPs was then investigated. Our results observed no evident 

morphological changes of all groups of NPs for 21 days at 4 ℃，indicating suitable 

stability of the NPs (Fig. 1C).  

It has been demonstrated that PEG fragments not only increase the stability of NPs, but 

also reduce proteolysis, both of which result in increased circulation time and improved 

efficacy20.Since HA is a member of the mucopolysaccharide family with high viscosity 

that may attenuate protein release, we have also examined the protein releasing ability 

of the NPs (Fig. 1D). We observed sustained OVA release from all OVA-loaded NPs in 

PBS (pH 7.4) for 21 days. A burst release of more than 20% was detected during the 

first day for P-O and PO, followed by a slower and continued release for 20 days. In 

contrast, OVA were released from the PHO NPs in a slower manner compared to the P-
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O and PO groups, mainly due to the viscosity of the HA coatings.  

Given that smaller particles (20-200 nm) tend to accumulate within the LN-resident 

DCs and other monocytic APCs21,our NPs could potentially be effective nanovaccine 

delivery vehicles considering their narrow size distribution, high encapsulation 

efficiency, stability and sustained antigen-releasing property. 

3.2 Hydrogen peroxide responsiveness of NPs in vitro 

It has been known that the peroxyl oxalic easter bonds, which connect the PLGA and 

PEG segments of the 3s-PLGA-PO-PEG NPs, are sensitive to H2O2. In the presence 

ofH2O2, breakage of the PO bonds would lead to degeneration of the NPs. To assess the 

responsiveness and the scavenging H2O2 property of the NPs by the amplex red 

hydrogen/peroxidase assay22.As shown in Fig. 2A, the concentrations of remaining 

H2O2 detected from PO or PHO NPs were fewer in comparison to P-O NPs and PEG 

solution. To further examine the H2O2 clearance action of the ROS-responsive NPs, 

human fibroblast NIH 3T3 cells were treated with NPs. ROS was labeled with DCFH-

DA probe and quantified using flow cytometry. We observed reduced H2O2 levels from 

cells treated with soluble OVA, P-O, PO and PHO NPs compared to control cells (Fig. 

2B). Cells treated with PHO NPs showed the most substantial decrease of ROS than 

cells treated with OVA or P-O, demonstrating better ROS scavenging ability of the PHO 

NPs.  
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Fig. 2 H2O2 scavenging of NPs in vitro. (A) Scavenging activity of polymer materials 

and NPs determined by the Amplex Red Assay. (B) Scavenging of H2O2 by NPs in cells 

determined by a DCFH-DA probe. (C) Cytotoxicity of NPs for DC2.4 cells after 24 h 

determined by the MTT assay. The values shown are mean ± SD (n=3). *P < 0.05, **P 

< 0.01 and ***P < 0.001 to control. 

 

3.3 In vitro stability and toxicity of NPs 

To determine in vitro stability and toxicity of the NPs, cell viability was assessed using 

a dendritic cell line (DC 2.4). Cell viability was performed using the MTT assay after 

cells were treated with a series of NPs ranging from 12.5 μg/mL to 400 μg/mL. Cell 

viability was calculated as follows: cell viability% = (sample OD - blank OD) / 

(negative control OD – blank OD) ×100%. As shown in Fig. 2C, DC 2.4 cells exposed 

to all groups of NPs exhibited robust viability. The results demonstrated that NPs 
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composed of PLGA, PEG, HA exhibited excellent in vitro biological compatibility and 

are suitable as vaccine delivery vehicles. 

3.4 NPs enhanced antigen uptake, DC maturation and cross-presentation 

Antigens are initially processed by APCs, such as DCs and macrophages. These cells 

then regulate subsequent immune responses via antigen presentation of processed 

antigens to T or B cells. The potency of immune responses, as a result, is dependent on 

efficacy of antigen presentation of APCs following antigen uptake. Since HA bind to 

CD44 receptors on surface of cells such as DCs, the PHO NPs would enable targeted 

antigen delivery and uptake, which would be expected to increase efficiency of antigen 

presentation. We therefore have investigated the effect of all groups of NPs on antigen 

uptake, DC maturation and cross-presentation using the model antigen OVA uptake and 

localization of OVA-FITC was examined by confocal fluorescent microscopy (Fig. 3A) 

in DC2.4 cells. The images showed that soluble OVA-FITC and P-O NP groups was 

co-localized with lysosomes (shown in red) and the green fluorescence which 

corresponds to OVA-FITC was rather faint, indicating low level of free OVA uptake. 

Compared with soluble OVA, we observed more intense green fluorescence signal that 

indicates elevated intracellular OVA in cells treated with PO and PHO NPs. In cells 

treated with PO and PHO NPs, majority of OVA uptake was detected in the cytosolic 

space separated from lysosomes, demonstrative of “lysosomal escape” of the antigen 

and possible cross-presentation downstream. 

The exact amounts of OVA-FITC uptake by DCs treated with different groups of NPs 

were quantified by measuring the mean fluorescence intensity (MFI) of FITC via flow 
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cytometry. As shown in Fig. 3B, an over 10-fold increase of OVA-FITC uptake was 

observed in DCs co-cultured with PHO NPs in comparison to OVA control group. 

Similar pattern was also observed in the MFI of OVA-FITC uptake (Fig. 3C). These 

results indicate that HA could enhance antigen recognition and internalization by DCs, 

possibly via its binding to CD44 receptors. In addition, we also observed increased 

OVA-FITC uptake from cells treated with PO NPs in comparison to P-O, which suggest 

PEGylation also improve antigen uptake.  Moreover, since antigens uptake promotes 

a host of intracellular ROS production in cells. Our ROS-responsive NPs would further 

target to immune cells following phagocytosis of OVA. 

 

 

Fig. 3 Cellular uptake and endosomal release of NPs by DC2.4 cells. (A) Confocal 

microscope images of DC2.4 cells after incubated with soluble OVA-FITC and OVA-

FITC NPs for 3 h. The scale bar shows 20 µm. (B) The percentage of OVA-FITC uptake 

was determined by flow cytometry. (C) The intracellular MFI of DC 2.4 cells cocultured 

with soluble OVA-FITC and OVA-FITC NPs for 3 h was detected by flow cytometry. 

Bars shown are mean ± SD (n=3). *P < 0.05, **P < 0.01 and ***P < 0.001 to OVA 
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groups. 

 

 

Fig. 4 Cellular uptake and endosomal release of NPs by BMDC cells. Confocal 

microscope images of BMDC cells after incubated with soluble OVA-FITC and OVA-

FITC NPs for 3 h. The scale bar shows 20 µm.  

 

Dendritic cells play an essential role in antigen presentation and vaccine induced 

adaptive immunity. The recognition and antigen uptake by immature DCs is the first 

process during induction of immune responses. Following antigens uptake, DCs would 

undergo and become ready for subsequent processing of the antigens and presentation 

to T cells, a stage often referred to as maturation and characterized by up-regulation of 
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costimulatory molecules (such as CD40 and CD86) on maturated DC cell surface. Since 

DC maturation is critical to T cell and immune response activation, we have further 

investigated the effect of NPs on DC maturation in vitro using bone marrow derived 

DCs (BMDCs). Thus, immature BMDCs were harvested on day 7 and exposed to NPs 

for 24h. Both PO and PHO NPs enhanced the expression of CD40 and CD86 (Fig. 5A, 

B), indicating their capability of promoting DC maturation.  

Antigen cross-presentation is another step following antigen uptake and DC maturation, 

during which DCs present the processed antigens to CD4+ or CD8+ T cells through the 

MHC class II or MHC class I pathways, respectively. To measure the effects of NPs on 

antigen presentation, BMDCs were pulsed with free OVA or NP-formulated OVA for 

24 h, and co-cultured with OVA-responsive B3Z T cells hybridoma overnight. Indeed, 

the LacZ B3Z T cells are sensitive to OVA class I epitope SIINFEKL that is known to 

be presented by the MHC class I H-2Kb on DCs and are able to generate β-galactosidase 

upon antigen recognition, concentrations of β-galactosidase were quantified from all 

tested groups23. As shown in Fig.5C,P-O NPs significantly enhanced the value of OD 

405 by 2folds compared to free OVA, indicating OVA-specific CD8+T cell activation. 

PO and PHO NPs also induced significantly elevated CD8+T cell activation than free 

OVA. It has been known that endogenous antigens are often presented via the MHC 

class I pathway, while exogenous antigens are presented via the MHC class II 

pathway24.Since our results showed up-regulation of CD8+ T cell activation following 

exposure to NP-delivered OVA, it could be said that NPs promoted antigen cross 

presentation possibly due to enhanced DC phagocytosis, antigen release and lysosomal 
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escape that had been observed with the ROS-responsive NPs. Cytokine release by 

mature DCs is also important for the induction of local immune responses. We have 

also measured cytokine productions in supernatants of BMDCs that had been co-

cultured with NP-delivered OVAs. As shown in Fig. 5D, E, BMDCs secreted 

significantly more IL-6 and TNF-α following NPs stimulation compared to free OVA, 

consistent with a pro-inflammatory role of the NP-delivered OVAs.  

Our results indicate that NPs promoted antigen uptake, DC maturation and cross-

presentation, accompanied by pro-inflammatory cytokine production compared to free 

OVA. However, no significant differences could be detected among different 

composition of the NPs, which could mean that the PLGA NPs themselves were a 

potent adjuvant. Indeed, previous studies have reported adjuvant property of PLGA, 

consistent with our results25. 

 

 

Fig. 5 BMDCs maturation and cytokine production induced by free OVA or NPs 

cocultured for 24 h in vitro. (A, B) The expression of CD40 and CD86 on BMDCs was 
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determined using flow cytometry. (C) MHC I antigen presentation by BMDCs to B3Z 

cells to observe CD8+T cell activation in vitro. (D, E) The secretion of IL-6 and TNF-

α from BMDCs with different NPs. The values were mean ± SD (n=3).*P < 0.05, **P 

< 0.01 and ***P < 0.001 to soluble OVA. 

 

3.6 Nanovaccine enhances antigen in vivo trafficking  

As an important immune organ, lymph nodes will uptake antigen by DCs or 

macrophages to activate immune response. Antigens are expected to migrate to the 

draining lymph nodes and NP in vivo trafficking has been used as an indicator to 

monitor vaccine delivery. It has been reported that smaller particles were more often 

found in lymph nodes while larger particles were more efficiently phagocytosed by 

DCs26.As a result, considering that the NPs used in the present study range less than 

200 nm, we expect that they would be readily transferred to lymph node following 

administration. To assess the effect of NPs on migration properties, fluorescently 

labeled OVA (OVA-Cy7) and NPs-delivered OVA-Cy7 were injected by 

subcutaneously at the tail base site and in vivo trafficking of OVA-Cy7 was monitored 

by examining the fluorescence signal of Cy7 using a small animal in vivo imaging 

system. 
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Fig. 6 Antigen persistence at injection sites and transport into the right inguinal draining 

lymph node to determine in vivo tracking of OVA-Cy7 and OVA-Cy7 NPs. (A) 

Fluorescence images of different NPs in mice. (B) The total signal intensity of antigen 

in the right draining lymph node was calculated. 

 

As shown in Fig. 6A, significantly strong fluorescence signals were observed in the 

inguinal draining lymph node at 6 h from mice received free OVA, and the signals 

increased at 12 h followed by a rapid decrease 24 h after injection. In contrast, the 

fluorescence signals of mice received P-O, PO, PHO NPs migrated slowly and the 

residence time in lymph nodes was prolonged compared to free OVA. The fluorescence 

signals detected in lymph nodes of all NPs group became stronger 12 h after initial 

administration. For mice received PHO NPs in particular, robust fluorescence signal 

was detected at 24 h (Fig. 6B), which could be due to increased DC targeting property 
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of the NPs as a result of HA modification. We also monitored the fluorescence signals 

for more than 1 week with attenuated fluorescence intensity detectable as time extended. 

Nevertheless, we found that administration of NPs would result in slow accumulation 

and retention of OVA in the LNs compared to soluble OVA (Fig. S1). 

3.7 Nanovaccine enhanced in vivo T cell activation and antibody production 

Six-week old female C57BL/6J mice were immunized with OVA or OVA-loaded NPs 

(20 μg OVA/mouse) as detailed in the Methods section. Splenocytes were then isolated 

7 days after the last immunization and labeled appropriately as previously reported for 

T-cell proliferation study27. We found that mice immunized with PO and PHO NPs had 

elevated numbers of spleen CD8+ T cells than other groups (Fig. 7A, B). Up-regulation 

of CD4+ T cell number was also observed in mice treated with PO NPs (Fig. 7A). As 

shown in Fig. 7C, D, increased percentages of both CD4+CFSElowand CD8+CFSElow T 

cells were observed in all NP groups compared to free OVA. Since T cell proliferation 

is a key indication of immune activation, these results implicate a stimulatory role of 

NPs on both CD4+ and CD8+ T cells proliferation and immune activation. However, 

administration of PHO nanoparticles did not increase T-cell proliferation or activation 

in vitro, which could be due to the lack of memory T/B cell and circulating cytokines 

signaling system in a simplified in vitro environment. The aim of vaccine design is to 

induce adaptive immune response, i.e. cellular or humoral immunity. In general, antigen 

presenting cells (APC), including DCs, mononuclear / macrophages, are part of the 

innate immune system and are the first line of defense during pathogen invasion. The 

antigens can be identified and transported locally by the DCs from the infected 
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peripheral tissues or transferred systemically to the lymph nodes for further processing. 

DCs stimulate the response of T cells to antigens, usually by the pattern recognition 

receptor (PRR) to identify the immunogenic components. The commonly 

acknowledged PRRs are Toll like receptors and mannose receptors. The Toll like 

receptors recognize a variety of bacteria and viruses. Following PRR identification on 

DC surface, the pathogen / antigen is usually taken in by the DC through endocytosis / 

phagocytosis. When the antigen enters APCs such as DCs, it is then presented by MHC- 

I or MHC- II molecules. Exogenous particles, viruses, or pathogens are usually 

processed into small molecular antigens and then packed into the MHC- II molecules. 

The MHC- II presentation pathway then initiates the activation of auxiliary T cells, 

which further stimulates the production of antibodies or cellular immunity. On the other 

hand, the MHC- I presentation pathway is often activated through endogenous antigens 

within the cytoplasm of DCs. Together, the MHC- I and II presentation is known as 

cross presentation. Ultimately, the antigen presentation process triggers downstream 

signaling protein (cytokine) activation and induce adaptive immunity of the auxiliary T 

cells (Th cells). Taken all the above into consideration, the PLGA–based nanovaccine 

carriers are likely able to to induce cellular immune responses and Th1 immune 

responses in vivo as observed in previous and our present study3, 28.29 
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Fig. 7 Effect of NPs on promoting T cell proliferation and MHC I and II antigen 

presentation pathway. (A, B) CD4+ and CD8+ T cells were obtained and restimulated 

with OVA from immunized mouse splenocytes isolated 7days after last immunization. 

(C, D) The percentage of CFSE low proliferated CD4+ and CD8+ T cells labeled with 

CFSE, PE-anti-mouse CD4 or PE-anti-mouse CD8 was determined with decreased 

CFSE intensity using flow cytometry. The values are mean ± SD (n=3). *P < 0.05, **P 

< 0.01 and ***P < 0.001 to OVA group. 

 

To determine humoral immune response in vivo, C57BL/6J mice were immunized with 

OVA or OVA-loaded NPs, and anti-OVA IgG antibodies were measured 7 days post last 

immunization. As shown in Fig. 8, P-O and PO NPs induced anti-OVA specific IgG by 

10-30 folds, meanwhile PHO NPs increased IgG production by 50 folds. We also 

measured anti-OVA IgG1 and IgG2a levels. The PHO NPs enhanced OVA-specific 
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IgG1 and IgG2a production more than other NPs and free OVA. It is known that in mice, 

Th1 T cell activation will often produce IgG2a antibody whilst Th2 T cell activation 

would likely induce IgG1 antibody generation30.As a result, since elevation of both 

IgG2a and IgG1 antibodies was observed, the PHO NPs would likely promote both Th1 

and Th2 cell immune response in vivo. In addition, elevated IL-6 production was also 

observed in splenocytes extracted from mice treated with PHO NPs, confirming a 

potent role of the PHO NPs in promoting immune cells proliferation, differentiation 

and CTL response induction. 

 

 

Fig. 8 Antigen-specific antibody production in the C57BL/6 mice immunized with OVA 

or OVA-loaded nanoparticles. (A-C) OVA specific IgG, IgG1, IgG2a titers in serum 

were measured using ELISA. (D) The secretion of IL-6 in supernatants was measured 

from splenocytes isolated after immunization and re-stimulated with soluble OVA for 
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72h. The values are mean ± SD (n=3). *P < 0.05, **P < 0.01 and ***P < 0.001 to soluble 

OVA. 

 

3.8 Nanovaccines enhanced memory T cell proliferation in vivo 

Memory T cell responses were measured by lymph node homing receptors. According 

to the difference of expression of lymph node homing receptors, memory T cells are 

divided into effector memory T cells (CD44Hi CD62LLo) for rapid effector function and 

central memory T cells (CD44HiCD62LHi) for potent proliferation and lymph node 

homing properties31, 32. As shown in Fig. S2, the PHO NPs improved central memory 

T cells proliferation in both CD4+ T cells compared to other NPs. However, there was 

no significant difference from all groups in effector memory T cells, which may due to 

the effective cells gathering in central lymphoid organ. 

 

4 Conclusions 

In the present study, we have designed a ROS-triggered 3s-PLGA-PO-PEG 

nanoparticle-based antigen delivery system with HA modification that targets the CD44 

receptors on DC surface (PHO NPs). We found that the PHO NPs enhanced dendritic 

cell maturation, antigen uptake, lysosomal escape and antigen presentation in vitro. 

PHO NPs also robustly promoted OVA-specific antibody production while stimulated 

antigen-induced both CD4+and CD8+ T cell responses as well as memory T cells (Fig.9). 

In summary, the ROS-triggered nanoparticle-based antigen delivery system could 

enhance vaccine-induced cellular and humoral immune responses and may be a 

promising candidate as a novel vaccine.  
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Fig. 9 The design of nano vaccine and possible cellular mechanisms. The preparation 

of nano vaccine: 3s-PLGA-PO-PEG/HA nanoparticles loaded OVA (PHO) were 

formulated by a double emulsion (W1/O/W2) solvent evaporation method and modified 

with HA. The PHO was taken up by APCs following recognition by CD44 receptor on 

APCs. The nanoparticles would be splitting in H2O2 environment in cells. The 

exogenous NPs loaded antigen were processed by endo/lysosomes following presented 

to CD4+ T cells via MHC II pathway. The NPs also could escape lysosome phagocytosis 

and would be dissembled in H2O2 environment. The antigen would be presented to 

CD8+ T cells via MHC I pathway. 
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