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Abstract

Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic 

applications, such as providing spatial and temporal control over the release of therapeutic agents 

in drug delivery as well as engineering functional tissues and promoting the healing process in 

tissue engineering and regenerative medicine. This perspective presents important milestones in 

the development of polymeric biomaterials with defined structures and properties. Contemporary 

studies of biomaterial design have been reviewed with focus on constructing materials with 

controlled structure, dynamic functionality, and biological complexity. Examples of these 

polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/

assembly strategies, and modulated cell-material interactions have been highlighted. As the field 

of polymeric biomaterials continues to evolve with increased sophistication, current challenges 

and future directions for the design and translation of these materials are also summarized.

1. INTRODUCTION

The central role of polymers in the development of functional biomaterials has been fueled 

in large part by advances in synthetic methodologies that have enabled the production of 

well-defined and functionalized polymers that are responsive to desired physiological 

processes. Commodity synthetic polymers such as poly(hydroxyethyl methacrylate) 

(PHEMA), poly(lactic-co-glycolic) acid (PLGA), polyvinyl alcohol (PVA), and 

poly(ethylene glycol) (PEG) have been used widely and for many decades as contact lens 

and intraocular lens materials, formulated into thin films and microspheres as drug delivery 
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reservoirs, and employed in the preparation of cell-compatible polymer scaffolds for tissue 

engineering.1

With the extensive development of living and controlled polymerizations, additional and 

numerous types of biomaterials have emerged with increasing levels of sophistication in the 

ability to tune and manipulate complex physical and biological properties. Ever-increasing 

functional group tolerance of controlled polymerization methods have enabled a large scope 

of modifications of polymer behavior (e.g., degradable constituents and biochemical 

moieties), as well as great flexibility of properties under a wide range of use conditions (e.g., 

pH, ionic strength, and chemical compounds).2, 3 The development of recombinant methods 

as a tool in polymer science has complemented these advances in synthetic methods, and has 

significantly expanded the library of polymers containing sequences from naturally 

occurring proteins as well as components of native extracellular matrix (ECM), yielding 

biomaterials with tailored mechanical and cell signaling functions that mimic the complexity 

of native tissues.4–9

Taken together, the progress of the macromolecules community over the past five decades 

has not only enabled the development of functional biomaterials and novel medical products, 

but also the investigation and understanding of fundamental biological processes that 

underpin new approaches in medicine. Major contributions have been made in the well-

controlled manipulation of materials structures over multiple lengthscales, the introduction 

of dynamically versatile modifications to introduce complexity that can both mimic and 

affect in vivo cell-materials interactions, and the production of sequentially programmed 

biomaterial systems for targeted delivery of drugs, genes, and cells via de novo stimuli-

responsive strategies.

This perspective presents important milestones in the development of polymeric materials 

with defined structures and properties in order to highlight how this control has made, and 

will continue to make, key contributions to advancing the impact of biomaterials. 

Contemporary studies that focus on constructing materials with controlled structure, 

dynamic functionality, and biological complexity will yield new macromolecular approaches 

that foster prescribed interactions with biological systems. This will have significant benefit 

in the treatment of various diseases with small-molecule, macromolecule, and cell-based 

therapies, as well as in the regeneration of tissue and function after injury or disease.

2. TAILORED STRUCTURE AND FUNCTION

The design of polymeric biomaterials, complemented by an increased understanding of 

native tissue architecture and cell–material interactions, has evolved across lengthscales 

ranging from the molecular to the macroscopic. The advent of advanced synthetic polymer 

chemistry and recombinant protein expression techniques has provided exquisite control 

over the chemical composition and molecular architectures of materials that are key for their 

use as multivalent ligands, selective imaging agents, drug delivery vehicles and cell culture 

scaffolds. The development of orthogonal chemistries has afforded biocompatible 

preparation conditions and precise spatiotemporal manipulation of materials properties, 

permitting facile synthesis of biomaterials in the presence of cells and capturing some of the 
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inhomogeneity of native tissue. This section will highlight the advances in a toolbox of 

precision synthetic methods that have afforded polymeric materials with well-defined 

structures and tailored functions.

2.1 Advanced Synthesis and Conjugation Methods for Generating Functional Biomaterials

The development of controlled polymerization methods, covered extensively in other 

contributions to this issue, has yielded a plethora of new materials to tailor and/or 

understand biological responses. Advanced polymerization techniques, including living 

anionic polymerization, living ring-opening metathesis polymerization (ROMP), atom-

transfer radical polymerization (ATRP), and reversible addition-fragmentation chain-transfer 

polymerization (RAFT), have been enormously valuable in applications ranging from drug 

sequestration to surface modification,10–12 owing to their yield of polymers with predictable 

molecular masses, narrow molecular weight distributions, and high chain-end fidelity. Ring-

opening metathesis polymerization of oxanorbornene-based systems has been extensively 

leveraged by Tew and co-workers to design cell-penetrating peptide mimics with well-

defined structures for intracellular delivery via modulation of membrane interactions, 

cellular uptake efficiencies, and siRNA delivery.13 The high level of control in newly 

developed, sulfur-free RAFT emulsion polymerizations has facilitated the production of 

highly organized, sequence controlled multiblock copolymers, conferring substantial 

potential for molecular targeting, recognition and nanomedicine.14 Controlled 

polymerization strategies have also offered exceptional versatility for tuning polymer 

composition and brush density, for tuning interfacial properties and modulating cell 

adhesion, spreading, proliferation, and differentiation.15 Readers are directed to the 

contributions in this issue, as well as to other recent reviews,16, 17 for more information on 

this topic. Furthermore, the high degree of chain-end fidelity and the commercial access to 

various functionalized initiators have allowed the facile creation of polymer-protein/peptide 

conjugates and novel degradable materials that are sensitive to stimuli including glutathione, 

temperature, and photo irradiation.3 The development and use of such functional initiators 

and reactive polymers in the design of bioconjugates and degradable materials have been a 

topic of recent reviews.18, 19

Modern polymerization techniques have also expanded to the realm of biopolymers and 

biomimetics, to afford precision synthesis of biomaterials that can actively interface with 

biologically complex environments. Living/controlled polymerization strategies of α-amino 

acid-N-carboxyanhydrides (NCAs), pioneered by Deming and co-workers, have been 

exploited for the construction of synthetic polypeptides based on both natural and side-chain 

modified polypeptides with well-defined sequences and architectures that support, amongst 

a range of behaviors, the facile self-assembly of hydrogel scaffolds and vesicles via 

manipulation of intramolecular interactions or secondary structures.20, 21 Copolypeptide 

hydrogels with tunable physical properties (e.g., stiffness, porosity, and media stability) have 

been developed via the incorporation of α-helical copolypeptide domains, permitting 

prolonged release of both hydrophilic and hydrophobic molecules as well as facile 

preparation of cell suspensions for cell delivery.22, 23 The polymerization of non-natural 

amino acid and side-chain modified NCAs (e.g., saccharide-, alkyne-, azido-modified 

monomers) has provided exceptional diversity in polypeptide functionality to both mimic 
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protein functions and interact with cellular systems.24, 25 These versatile synthetic strategies 

have offered an economical and expedient approach for the production of high molecular 

weight polypeptides with precise structures and custom-made functionalities. Perhaps one of 

the most transformational advances in macromolecular approaches for biomedical 

applications has been the development of orthogonal chemistries of exceptional efficiency 

and functional group versatility, which have been almost universally applied for the modular 

design of sophisticated polymers and polymer conjugates with high levels of precision and 

control.26–29 The well-known alkyne-azide cycloaddition (including copper-catalyzed 

alkyne–azide cycloaddition and the later developed strain-promoted azide-alkyne 

cycloaddition), Diels-Alder reaction, radical mediated thiol-ene chemistry, Michael-type 

addition, and hydrazone/oxime chemistry, have all been extensively explored.30–32 The 

combination of high yield and outstanding selectivity afforded by these reactions has 

allowed the simple fabrication and functionalization of biomaterials, importantly under 

conditions sufficiently mild that they are regularly employed in the presence of biological 

molecules and living cells, as well as in the post-modification of cell culture matrices to 

mimic native biological structures.

Introduced by the groups of Sharpless and of Meldal,33, 34 the copper(I)-catalyzed azide-

alkyne cycloadditions (CuAAC, Figure 1A) has emerged as a popular methodology for 

efficient bioconjugation and facile production of biomaterials (e.g., well-defined hydrogel 

networks with reduced swelling).35 To address issues with copper toxicity in biological 

systems, copper-free strain-promoted azide–alkyne cycloaddition (SPAAC, Figure 1B) 

reactions, pioneered by Bertozzi and co-workers, have driven the development of a series of 

cell-laden materials including hydrogel scaffolds and microgels in physiologically relevant 

conditions, allowing for the direct observation and thorough understanding of cellular 

processes including adhesion, proliferation and differentiation in three dimensions.36, 37 

Similarly, the recently developed tetrazine ligation (inverse-electron demand Diels-Alder 

reaction of tetrazine and trans-cyclooctene, Figure 1C), has also emerged as an important 

tool for the assembly of complex biomaterials under dilute conditions (e.g., hydrogel 

microspheres and channels,38 polymer microfibers with cell attachment and alignment 

functions,39 and homodimeric protein-polymer conjugates40), owing to its exceptionally fast 

reaction rates in the absence of any catalysts.

Given the crucial role of spatial and temporal control when producing biomaterials for cell 

encapsulation and tissue engineering, radical-mediated thiol-ene reaction (Figure 1D) has 

been extensively utilized to generate cytocompatible networks and modulate biochemical 

and mechanical properties within the matrix, providing a versatile tool for the manipulation 

and study of cellular activity in three dimensions.41, 42 Recently, catalysis of the CuAAC 

reaction via the photochemical reduction of Cu(II) to Cu(I) (Figure 1E) has also been 

explored for fabricating patterned materials and patterned chemical modifications, 

expanding the toolbox of photo-mediated click reactions.43–45 Similarly, the strategic 

combination of photolabile o-nitrobenzyl (o-NB) and coumarin derivatives as protecting 

groups for photocaged amine catalysts of thiol Michael-type additions has permitted photo-

initiated surface patterning and formation of homogeneous networks with precise 

spatiotemporal control.46–48 These photolabile groups can also be used as thiol protecting 

groups (Figure 1F), to provide spatiotemporal control over the patterning of 3D matrices 
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with biomolecules to guide cell attachment and function49–51 as well as the production of 

hydrogel nanoparticles within nanotemplates.52 The translation of these orthogonal 

chemistries to biomedical applications is a rich area for the design of sophisticated 

biomaterials with pristine definition and architecture at multiple lengthscales. Interested 

readers are also referred to reviews by Azagarsamy et al.53 and Nimmo et al.54

2.2 Recombinant polypeptides

2.2.1 ECM-mimetic materials—With the monumental progress in the production of 

defined polymeric materials for biomedical applications, the design of protein-based 

biopolymers that capture biological functions has remained a powerful approach for 

generating biomaterials. Isolated ECM components such as Matrigel, collagen and fibrin 

have been extensively adopted but suffer from a lack of scaffold tunability, complicated bio/

chemical structures, batch-to-batch inconsistency and potential immunogenicity.55, 56 In 

addition, the materials properties and biological function of these types of matrices are 

intertwined, posing difficulties in the customization of the material or the study of a specific 

fundamental facet of cell-material interactions. The now routine application of recombinant 

technology to biopolymer design and production has fostered the development of modular 

biomaterials with monodispersity in molecular weights and site-specific and addressable 

biochemical compositions.57, 58 The recombinant methods allow combination of desired 

structural properties with biofunctional moieties to create responsive microenvironments for 

studying in vitro cell-materials interactions as well as in vivo cell-material-tissue responses, 

with wide application, including in wound healing, angiogenesis, drug and cell delivery, and 

tissue regeneration (Figure 2).

While there has been excellent progress in the production of many polypeptides that mimic 

structural proteins such as silk, collagen, and elastin,58–63 one of the most commonly 

employed recombinant polypeptides in biomaterials investigations have been elastin- and 

tropoelastin-based materials based on elastin’s pentapeptide sequence VPGXG (where X 

can be any residue except proline). There have been myriad polypeptides produced with 

differences in protein sequence, amino acid composition, molecular length, architecture and 

hydrophilic-hydrophobic ratio;64 these can be crosslinked via both physical and a variety of 

chemical methods, including transglutaminase-triggered enzymatic catalysis,65 

glutaraldehyde amine reaction, UV-initiated radical polymerization,66 NHS-ester 

bis(sulfosuccinimidyl) suberate (BS3) crosslinking,67 orthogonal alkyne-azide cycloaddition 

click chemistry68, 69 and hydroxymethylphosphine-based Mannich-type condensation 

reaction.70 These chemical crosslinking reactions have permitted fabrication of a wide 

spectrum of elastin-based materials ranging from hydrogels, films, particles, fibers, surface 

coating and porous scaffolds with tunable mechanical stiffness (Young’s modulus in the 

range of 0.1~0.9MPa), uniaxial extensibility, stress relaxation properties, and resilience 

values,65–6771, 72 although requiring chemical modification of the polypeptide, which can 

potentially alter protein function, reduce yields, and compromise monodispersity. Residue-

specific incorporation of non-canonical amino acids73–75 with new chemical functionality 

has afforded opportunities for highly-chemoselective, orthogonal in vivo protein coupling 

and labeling through reactions such as Staudinger ligation, hydrazide coupling, copper-

catalyzed click chemistry, iodine/zinc-mediated backbone cleavage, and benzophenone-
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initiated photo-crosslinking.75–77 ELPs have also been modified with the non-canonical 

photoactive para-azidophenylalanine (pN3Phe) to generate mechanically tunable 

“photoresist” materials without post translational chemical modification, enabling novel 

approaches for patterning of mechanical properties, manipulation of geometric shape and 

topography, and modulation of ligand receptor interactions.77

An emphasis on designing materials that are cell-instructive and matrix-interactive has 

cemented the value of recombinant polypeptides in biomaterials investigations. From the 

earliest work in which the now common fibronectin III-derived arginine-glycine-aspartic 

acid (RGD) integrin binding motif was incorporated into biosynthetic ECM scaffolds to 

promote cell adhesion and spreading,78 current approaches employ a wide array of diverse, 

ECM-derived peptide modules. Guided by this concept, ELP-based scaffolds have been 

produced for neuronal tissue engineering, with the addition of multiple biological modules 

in otherwise identical material compositions, allowing for independent modulation of elastic 

modulus, matrix degradation kinetics, and cell adhesion.67

There also has been a recent resurgence in studies of the insect structural protein resilin,79 

which is found in nature in the joints and sound-producing organs of insects and has long 

been known for its unique mechanical properties (e.g., large reversible extensibility, superior 

resilience, fatigue resistance and energy storage capability).80 The production of the first 

recombinant resilins in 200581 ushered in a suite of resilin-like polypeptide (RLP) materials 

based mainly upon two putative motifs (GGRPSDSYGAPGGGN derived from Drosophila 
melanogaster and AQTPSSQYGAP adopted from Anopheles gambiae) with tailorable 

compositions, crosslinking chemistries, and material properties that largely capture the 

excellent resilience of the native protein.82–84 These encouraging findings have initiated 

applications of RLP materials in biorubbers, nanosprings, diagnostic biosensors and in 

regenerative medicine as elastomeric tissue engineering scaffolds.81, 84–87 Our group has 

designed constructs combining the resilin consensus motif (GGRPSDSYGAPGGGN) with 

bioactive domains to impart cell adhesion, proteolytic degradation and heparin 

immobilization functions in tunable bioelastomers for mechanically demanding applications 

such as in therapies for vocal folds and cardiovascular tissues.83, 88–90 Hydrogels with 

different cell adhesion morphologies and matrix degradation profiles can be produced 

without compromising desired mechanical features (e.g., oscillatory shear moduli, Young’s 

moduli, resilience and stress relaxation),84, 91 offering substantial opportunities for 

reproducibility, tunable biocomplexity and dynamic multifunctionality (Figure 3).

2.2.2 Assembly and Delivery—In addition to uses in ECM-mimetic materials, the 

unique and quantitatively tunable inverse transition behavior92 of the ELPs (and some RLPs) 

has motivated widespread use of these polypeptides in the responsive assembly of 

nanoparticles (Figure 4A), which offer opportunities not only for sequestration of drugs but 

also for triggering delivery on the basis of multivalent interactions. Myriad thermally 

responsive ELPs (with Tt values easily tuned with polypeptide concentration, molecular 

weight, guest residues, pH, ionic strength, salt, ligands93, and chemoselective alkylation of 

methionine,94 Figure 4B), have been produced for biomedical applications including gene/

drug delivery,95 tissue engineering96 and emerging optoelectronic devices for bioimaging 

purposes.97 Most of these applications are largely based on hyperthermic treatments that 
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trigger the coacervation of the ELPs into nanoparticles or hydrogels and allow their 

localization to tumor (Figure 4A),98, 99 although preformed drug-loaded ELP-based micelles 

can be programmed to disassemble and release cargo molecules upon encountering the 

tumor environment.100 A calcium-binding peptide from calmodulin has been introduced and 

periodically interspersed within an ELP to generate novel protein polymers with both 

thermal and calcium sensitivities to trigger well-controlled assembly.101 Such fusion of 

small, biologically active peptides to ELPs has also been investigated for producing new 

ELPs for other biomedical applications.102 ELPs fused to the αB-crystallin peptide (which 

protects human retinal pigment epithelial (RPE) cells from oxidative stress during the 

progression of age-related macular degeneration (AMD)), modulated the assembly and 

intracellular uptake pathway of the native αB-crystallin peptide.103

The production of large libraries of these polypeptides has been enabled by the optimization 

of robust, high-throughput gene synthesis methods (e.g., overlap extension rolling circle 

amplification (OERCA) and codon-scrambling algorithm-implemented PCR-based gene 

synthesis);104, 105 these high-throughput methods have identified a range of polypeptides 

that are sensitive to multiple stimuli. Very recent studies by the Chilkoti group have 

presented general sequence heuristics to predict phase transitions across all intrinsically 

disordered proteins (IDPs) comprising structure-breaking residues Gly and Pro;106 these 

guiding principles can enable sequence-level design of predictable LCST, UCST or dual 

phase-transition behaviors in IDPs. They also allow probing of phase separation phenomena 

at the proteome level, with applications in exploiting protein phase transitions for 

biomaterials and understanding their role in homeostasis and disease.

The Rec1-resilins, as well as several other RLPs, exhibit intriguing dual phase-transition 

behavior characterized by both reversible LCST and UCST,107, 108 which has been 

employed to tailor transition temperature and sizes of RLP-based nanoparticles (Figure 

4C),109 as well as in protein purification, functionalization of surfaces, and immobilization 

of drugs, nanoparticles, enzymes and catalysts for delivery and diagnostic 

applications.110, 111 Our group has also demonstrated that the phase separation behavior of 

RLP can be manipulated by the addition of poly(ethylene glycol), to yield well-defined 

microstructured hydrogels (Figure 4D) for applications ranging from mechanical 

reinforcement to regenerative medicine.112 The well-defined temperature- and pH-sensitive 

responses of selectively engineered RLPs and ELPs suggests the promise of these 

recombinant polypeptides across a range of applications.

2.2.3 Biorecognition and Adaptable Networks—While the majority of selected 

structural and bioactive peptide domains have been inspired from native ECM proteins, 

peptide sequences from non-ECM proteins have also been repurposed from their 

physiological function in the generation of responsive biomaterials.113 Pioneering examples 

from the Tirrell laboratories adapted coiled-coil motifs as physical crosslinks in self-

assembling protein biomaterials;114, 115 hydrogel gelation mediated by the association of the 

coiled-coils can be triggered by external stimuli and the erosion kinetics modulated by 

selective molecular recognition and orientational discrimination of select coiled-coil 

domains.116 The resulting injectable hydrogels exhibit typical shear thinning and rapid 

recovery after large deformation, with properties suitable for in vivo cell delivery. More 
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recently, conjugation of thermoresponsive synthetic polymers to these polypeptides has 

provided an additional handle to improve mechanical properties.115

Similar types of behavior have also been recently for a triblock protein comprising a 

midblock derived from the N-terminal fragment of the rat cartilage oligomeric matrix 

protein (COMP, which adopts a homopentameric coiled coil conformation) flanked by two 

ELP end-blocks (Figure 5A).117 Such interactions, in combination with biomolecular 

recognition, can also be applied to reversibly tune the accessibility of immobilized adhesive 

ligands, mimicking the in vivo temporal regulation of ECM-anchored signaling ligands, with 

applications in guiding cellular behavior during development.118 Computationally predicted 

peptide domains have also been similarly valuable in supporting hydrogel formation. 

Hetero-assembling polypeptides comprising a WW domain (an anti-parallel, triple-stranded 

β-sheet peptide fold) that specifically recognizes proline-rich sequences encoded in a second 

polypeptide, support the formation of a reversible network upon simple mixing (Figure 

5B).119 The reversibly shear-thinning MITCH hydrogels supported in vitro growth and 

differentiation of neural stem cells and retained in vivo survival of injected adipose-derived 

stem cells in a subcutaneous mouse model, demonstrating the use of these approaches for 

encapsulating cells or any sensitive biological cargo for therapeutic delivery.120

These approaches have also proven valuable for the production of spontaneously 

crosslinking hydrogels. The recently discovered SpyTag and SpyCatcher reactive protein 

pair, derived from the fibronectin-binding protein (FbaB) of Streptococcus pyogenes, 

provides molecularly encoded “orthogonal chemistry” that has been exploited by the Tirrell 

group to produce spontaneously formed covalent linkages between ELPs under 

physiological conditions.121 The resulting “network of spies” comprised cell-adhesion 

ligands, matrix metalloproteinase-1 cleavage sites and full-length globular proteins 

(mCherry and leukemia inhibitory factor (LIF)), and encapsulated mouse embryonic stem 

cells remained pluripotent without the additional introduction of LIF, demonstrating the 

utility of these genetically coded, covalently reactive modular protein pairs for producing 

information-rich biomaterials that can direct stem cell responses.122

The progression of recombinant technologies coupled with bottom-up design strategies has 

enabled the fabrication of a variety of biomaterials with independent control of functional 

modules, mechanical features and biochemical signals, offering great potential as synthetic 

ECM scaffolds to investigate cell-microenvironment interactions. Recently developed 

powerful alternatives such as predictive computational modeling and high-throughput 

combinatorial screening have also been employed to create complex and multifunctional 

matrices comprising sequences beyond the library of naturally evolved-domains and 

endowed with de novo designed functionalities. This suite of approaches and protein-based 

materials are suitable for both fundamental biological studies and translational development 

for clinical applications.

3. CONTROL OVER DYNAMIC FUNCTIONALITY

Dynamic materials with spatially or temporally varied physicochemical properties have 

revolutionized biomaterials design and utility in studying cell-material interactions. A wide 
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variety of chemically labile bonds have been exploited as degradable linkages to endow 

biomaterials with dynamic features. Such design has evolved from simply achieving 

clearance of the materials via passive ester hydrolysis to introducing specific temporal 

control over properties in order to manipulate the release of cargo as well to engineer 

spatiotemporal changes in matrix properties relevant for tissue constructs.123124 The ability 

to tune properties spatiotemporally is essential for mimicking the dynamic complexity of the 

native cellular environment and understanding in vivo cell behaviors.

3.1 Programmed Degradation

Temporal changes in network degradation have commonly been achieved via simple 

hydrolysis or cell-mediated proteolysis. Historically the most common approach, the 

inclusion of hydrolytically degradable components in hydrogels allows manipulation of 

molecule release to local cells and tissues as well as control of distribution of ECM 

molecules secreted by encapsulated cells.125, 126 For example, hydrolytically degradable 

hydrogels have been engineered with different degradation profiles to control the spatial 

distribution of ECM components for formation of neocartilage.125, 127 However, hydrolysis 

usually occurs at pre-programmed rate throughout the bulk of a material, which often does 

not mimic the rate of matrix remodeling in vivo.128, 129

In order to address the need for cell-mediated modification of biomaterials, peptide 

sequences that can be cleaved by cell-produced proteases, such as matrix metalloproteinases 

(MMPs), are now routinely incorporated into hydrogel crosslinks. PEG-peptide hydrogels, 

pioneered by Hubbell and co-workers and employed creatively by many research groups, 

include protease-degradable crosslinks to engineer tissue constructs, through the 

incorporation of growth factors released via cellular cues and morphogenesis of 

encapsulated cells into a variety of tissue structures (such as bone and vasculature).130, 131 

With the increasing understanding and growing appreciation of the unique biological and 

physicochemical properties of glycosaminoglycans (GAGs) and polypeptides,79, 132 

protease-degradable GAG (e.g., heparin and hyaluronic acid)133 and polypeptide and protein 

hydrogels (e.g, ELPs, RLPs, and others)83, 84, 134 have also been produced to contain MMP-

sensitive peptide crosslinkers/sequences. Another appealing advantage of the protease-

sensitive hydrogels is that the rate of their degradation can be selectively modulated in 

pathologies where protease activity is altered, such as rheumatoid arthritis, cancer, and after 

myocardial infarction.124 MMP-sensitive hydrogels that locally release a recombinant tissue 

inhibitor of MMPs (rTIMP-3) in response to MMP activity, for example, have been explored 

to afford on-demand MMP inhibition after myocardial infarction, where the drug release rate 

and dose were controlled through a feedback mechanism.135

3.2 Stimuli-Responsive Materials

In addition to programmable degradation via the introduction of hydrolytically or 

enzymatically cleavable linkages, biomaterials that can respond to specific environmental 

stimuli have become a mainstay approach for obtaining on-demand, tailored release profiles 

of therapeutics and cells. A wide range of stimuli, either exogenous (variations in 

temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous 

(changes in pH, enzyme concentration or redox gradients), have been extensively explored 
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for the implementation of such responsive systems.136, 137 Due to the universal appreciation 

of pH differences between specific organs (e.g., the gastrointestinal tract), intracellular 

compartments (such as endosomes or lysosomes), and pathological situations (such as 

cancer), pH-responsive materials that can undergo protonation or cleavage reactions in 

response to environmental pH variation have been historically exploited to develop gastric-

resident devices in prolonged oral drug delivery, to offer intracellular delivery of payload, 

and to provide tumor-targeted release and increased tumor retention.138, 139

Thermoresponsive materials have been perhaps the most extensively studied, and there are 

myriad reports of the use of poly(N-isopropylacrylamide) (PNIPAM) in biomedical 

applications aimed at controlling enzyme activity, cell adhesion, and drug release.140 With 

the recent progress in peptide synthesis and protein expression (see above), however, 

peptides and recombinant proteins have also emerged as attractive building blocks for the 

construction of thermoresponsive materials. The unfolding transition of the peptide domains 

can be finely tuned, as well as engineered to be responsive to specific ligands or use 

conditions. Temperature-sensitive, coiled-coil peptides that unfold and dissociate above their 

melting temperature (~40°C) have been inserted in the membrane of liposomes to optimize 

drug release under mild hyperthermic conditions.141 Shear-thinning protein hydrogels 

utilizing the self-assembly of PNIPAM polymer-peptide conjugates have been developed to 

introduce thermoresponsive reinforcement of the physical crosslinked network, which can 

significantly retard material biodegradation and prolong transplanted cell retention time after 

in vivo injection.115, 142 Elastin-like polypeptides (ELPs) that exhibit LCST-like phase 

transition behavior, as introduced above, have also been utilized to engineer delivery 

vehicles for the hyperthermia-assisted delivery of various therapeutics including peptide and 

small molecule drugs.95 Collagen-like-peptides (CLPs) that form triple-helix crosslinks have 

been exploited to formulate injectable hydrogels with thermo-reversible gelation 

behaviors.143, 144 Our group has recently introduced thermoresponsive nanostructures based 

on the self-assembly of elastin-b-collagen-like peptide bioconjugates (Figure 6A), where 

facile formation of well-defined vesicles was enabled at physiological temperature and the 

resolubilization of the vesicles was achieved at elevated temperatures upon unfolding of the 

CLP domain.145 The precision synthesis of these materials, coupled with known structure-

property relationships of specific amino acid sequences, permits simple variations in the 

relative lengths and sequences of the peptide/polypeptides, which can be used to tailor the 

thermoresponsive behavior of these systems and impart triggered assembly/disassembly 

within physiologically and clinically relevant temperature ranges.

Beyond changes in environmental pH and temperature, levels of endogenous thiol-

containing molecules such as glutathione (GSH), an antioxidant localized to intracellular 

compartments and often overproduced in tumor microenvironments,148 have been a target of 

particular interest for stimuli-responsive materials. The incorporation of GSH-sensitive 

linkages in biomaterials can permit selective degradation in the presence of GSH and allow 

the targeted and triggered delivery of therapeutic molecules relevant to cancer applications. 

As a prevailing strategy, disulfide linkages that can undergo cleavage upon exposure to GSH 

have been commonly incorporated into biomaterials via oxidation, disulfide-containing 

crosslinkers, and thiol-disulfide exchange reaction, allowing the construction of GSH-

sensitive nanocarriers (e.g., micelles, polymersomes, and nanogels) and hydrogels.149, 150 
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These materials maintain excellent stability in circulation and in extracellular fluids, and 

undergo rapid degradation inside cells/tumor microenvironments. However, the rapid 

cleavage kinetics of disulfide bonds (half-lives ranging from 8 to 45 min)151 temporally 

limits the delivery process (ca. 12–24h). Alternatively, novel GSH-sensitive hydrogels 

developed by our group, in which degradation is mediated by retro Michael-type addition 

and subsequent thiol exchange (Figure 6B), have demonstrated increased stability against 

GSH with 10-fold slower rates of degradation.146, 152 which can offer selectivity as well as 

more extended delivery. The use of nanoparticle-crosslinked, multicomponent hydrogel 

systems may further extend the lifetime of related hydrogels, owing to the steric hindrance 

and local hydrophobic environment of the arylthioether succinimide crosslinks at the 

polymer-nanoparticle interface.153 The enhanced stability permits release of encapsulated 

cargo molecules over longer timescales (ca. 3–6 days),153, 154 demonstrating significant 

promise for tailoring therapeutic release within tumor microenvironments.

In addition to endogenous glutathione, other biological stimuli based on specific signal 

biomolecules have also been a focus of study in the design of biomaterials that undergo 

responsive assembly and disassembly as well as dynamic volume and shape changes. 

Conformationally dynamic proteins that can undergo hinge motion upon binding of specific 

biochemical ligands (e.g., glucose, ATP) have been incorporated into hydrogel networks to 

induce reversible volume changes.155 In a notable example demonstrated by Murphy and co-

workers, calmodulin-containing hydrogels underwent a significant volume decrease in the 

presence of the drug trifluoperazine, which shifted the conformation of calmodulin from an 

extended dumbbell shape to a collapsed globular conformation.156 Further, dynamic 

hydrogels have also been developed based on competitive biomolecule interactions (such as 

antigen-antibody binding and saccharin-lectin binding) to introduce reversible swelling/

shrinking behaviors in response to target biomolecules (e.g., antigens and tumor-specific 

marker glycoproteins) for potential applications in molecular diagnostics.157, 158 

Additionally, heparin-protein interactions have also been exploited by our group as 

reversible crosslinks in the design of cell surface receptor-responsive hydrogels. Taking 

advantage of the receptor-mediated targeting of growth factors to growth factor receptors, 

the hydrogels demonstrate receptor-mediated gel erosion and the cell-responsive, sustained 

release of vascular endothelial growth factor.159, 160 Similarly, thrombin-cleavable heparin 

hydrogels have been explored to introduce feedback-controlled regulation of heparin release, 

enabling the homeostatic control of blood coagulation activation in living tissues.161 The use 

of these dynamic mechanisms, including allosteric protein conformational changes and 

competitive ligand-protein binding, suggests a promising strategy in the design of 

bioresponsive materials to create spatially patterned actuators, tunable biosensors, dynamic 

growth-factor delivery systems as well as anticoagulant coating medical devices.

Owing to the non-invasive nature and remote spatiotemporal control of light, the 

development of photo-induced methods of controlling materials properties has represented a 

major innovation in the use of polymers in biomedical applications. Photodegradable 

systems incorporating photolabile o-nitrobenzyl (o-NB) and coumarin derivatives (Figure 

6C) allow real-time manipulation of the physical or chemical properties of materials,162 

offering opportunities to spatiotemporally pattern biological signals within a hydrogel 

matrix, to capture the complex signaling cascades found in nature, as well as to tailor 
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patient-specific drug delivery and therapeutic regimens. Studies pioneered by the Anseth 

group, and expanded by Kloxin, Kasko, and others have introduced photodegradable 

hydrogels with photo-cleavable crosslinks for controlling network structure (e.g., 

mechanical stiffness and shaped features) as well as on-demand release of pendant 

functional groups,147, 163, 164 allowing the temporal and spatial regulation of desired cell 

functions and an improved understanding of cellular responses in heterogeneous physical 

environments.165 Incorporation of o-nitrobenzyl derivatives into nanoparticles and polymer 

assemblies has yielded photoactivatable, acidifying nanoparticles for controlled acidification 

of impaired lysosomes166 as well as light-sensitive cationic nanocarriers for nucleic acid 

delivery and enhanced spatiotemporal control of gene activation.167, 168 Photo-controlled 

radical polymerization facilitated by the use of UV-light-responsive trithiocarbonate (TTC) 

“iniferters” has also been explored to provide a strategy for altering the structure and 

composition of covalent polymer gels.169 Gels formed by NIPAM polymers possess TTC 

moieties at the center of each network chain can undergo a photo-growth process upon light 

exposure, leading to an increase in the average MW between crosslinks via direct extension 

of network chains and providing access to soft materials with both mechanical and chemical 

3D gradients. Similarly, the photoisomerization of azobenzene has been leveraged to 

modulate the matrix elasticity in a reversible manner.170 Azobenzene can be incorporated 

into peptide crosslinkers of PEG hydrogels to reversibly stiffen and soften the networks 

upon stimulus with light, enabling investigations of the effect of dynamic changes in matrix 

stiffness on the behavior of adhered cells. Photo-sensitive methods have also been useful for 

the staged and sequential delivery of different stem cell populations, with opportunities in 

generating complex tissues that require multiple cell types.171 The incorporation of multiple 

photolabile moieties with wavelength-specific cleavage kinetics allows wavelength-

controlled release of multiple growth factors/molecules in a sequential and multistage 

fashion, which may better mimic the temporal profiles and spatial gradients of the healing 

process for improved tissue regeneration.172, 173 Recently, photolabile moieties have also 

been integrated with GSH-sensitive linkages by the Kloxin and Kiick groups, to generate 

multimodal degradable hydrogels that respond to both externally applied light and reducing 

microenvironments, creating complex degradation profiles and therapeutic regimens as 

necessitated by the specific biomedical application of interest.174 Limitations owing to the 

high energy and short penetration depth of UV light through biological tissue have motivated 

the synthesis of photolabile moieties susceptible to biologically benign near-infrared (NIR) 

via two-photon absorption.175, 176 Incorporation of biocompatible up converting 

nanoparticles (UCNPs)177–179 will expand the use of photoresponsive biomaterials, allowing 

for longer-wavelength irradiation with deeper tissue penetration, lower scattering, and 

minimal harm to tissues.

4. CONTROL OVER BIOCOMPLEXITY

Advances in dynamic and responsive materials, like those described in previous sections, 

have enabled the engineering of materials that are able to respond to, and integrate with, 

biologically complex environments. Insight into how information is processed and 

exchanged in tissues and organ systems has provided new opportunities to probe cell-

material interactions. Given difficulties encountered in capturing multiple biological 
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functions in a single material during its synthesis, recent approaches have focused instead on 

reducing the biological complexity into essential elements and then developing materials 

able to perform specific and select functions. Peptide, polypeptide, and bioconjugate 

materials have afforded materials able to interact with the biological environment and alter 

cell function accordingly.

4.1 Cell Sorting

Given the precision that can be exerted over polymeric substrate geometry and patterning, 

physical isolation of cells on the basis of size or deformation under pressure has been 

achieved using UV- and temperature-sensitive polymers.180 However, limitations in 

detecting subtle physical and biological differences between cell types have required 

approaches that utilize specific, affinity-based interactions between materials and cell-

surface receptors for cell isolation. Conjugation of linear PEG, or amphiphilic triblock 

polymers (PBA/PEA/PMA), to targeting ligands specific for circulating tumor cells (CTC) 

have been deployed on the surfaces of nanoparticles, providing a mechanism for CTC 

detection in vivo or isolation from drawn blood specimens.181, 182 Covalent conjugation of 

proteins, antigens, antibodies, and oligonucleotides to polymer backbones has also 

facilitated cell-surface receptor interactions with polymeric substrates,183 and has been 

utilized in microfluidic devices to increase cell capture efficiency by altering the surface 

topography or by conjugating targeting ligands.184, 185 While microfluidic approaches are 

promising, the high-throughput recovery of highly pure, isolated cells from microfluidic 

devices remains challenging. The development of (bio)polymers that are sensitive to phase-

changes (temperature, UV-light, enzymes, Ca2+ depletion) may improve retrieval of cells 

from microfluidic channels.184, 185

Assembly and degradation chemistries commonly utilized in the construction of bulk 

hydrogel materials have also been applied to cell isolation strategies. Encapsulation of 

desired cell populations, for example, has been achieved by applying temporary polymeric 

coatings to target cells, which protect antigen-positive cells while unprotected cells are lysed 

(Figure 7).186, 187 Photocleavage of o-NB linkages in the polymer then allows retrieval of 

highly purified cell populations post-lysis.186 The sequential application of two 

photopolymerization steps to thiolene-based polymers has allowed the capture of a 

population of cells, followed by selective encapsulation of undesirable cells and retrieval of 

the desired cell population.188 Polymer-based cell-sorting strategies have thus enabled both 

analysis of individual cell types and enrichment of specific cell populations for therapeutic 

use.

4.2 Stem Cell Therapies

Stem cell-based therapies are attractive approaches for promoting regeneration of tissues 

damaged by injury or disease. Unfortunately, these therapies have been plagued by 

challenges associated with survival of cells during injection and functional integration of 

transplanted cells, severely limiting clinical efficacy.189 To address these issues, 

sophisticated polymeric systems that can protect transplanted cells from rapid death and 

simulate engraftment with the host tissue have been of significant value.190 The use of 

weakly crosslinked injectable materials has been demonstrated to protect cells from 
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mechanical shear and extensional forces that arise during syringe needle flow.142 Gelation 

kinetics must be carefully tuned in order to successfully deliver cell-laden matrices to 

intended locations without cell aggregation or unwanted gelation. Materials comprising 

dynamic covalent bonds or supramolecular assembly have represented a major advance for 

these uses.191, 192 For example, utilization of associating protein motifs in mixing-induced 

two-component hydrogels (MITCH; Figure 5B) has yielded other injectable matrices that 

are cell protective.142 Secondary crosslinking steps, such as those achieved using 

thermoresponsive polymers, have been shown to support long-term cell survival, sustain 

matrix integrity, and limit fast biodegradation that is observed in hydrogel systems that 

exhibit weak physical crosslinks.142

Transplanted cells face a multitude of challenges post-injection including lack of supportive 

matrix, hypoxia (oxygen limitation), and inflammatory responses, and materials that aid in 

cell survival for specific clinical applications are of great importance. For example, materials 

engineered to deliver oxygen directly193 or deliver factors that aid in cell survival194 are 

enormously useful for delivering cells to ischemic tissues such as those present following 

acute myocardial infarction. Beyond assisting cell survival, transplanted cells must also 

overcome the immune and inflammatory response that occurs in injured tissue. Polymeric 

carriers were initially designed to shield cells from this harsh environment; however, 

advanced synthetic methodologies have enabled the design of bioactive materials that can 

direct immuno-activation or suppression. While this topic will be further discussed in 

Section 4.4, the design of specific elements within materials, including the use 

immunomodulatory peptide self-assemblies, has greatly aided cell transplantation 

therapies.195 Successful employment of biomaterial carriers also requires specific materials 

properties that enhance cell function once placed in vivo. Matrix mechanics, biochemical 

ligand presentation, delivery of soluble factors, and degradation profiles all largely influence 

cell differentiation, maturation, and secretion profiles.196 It is important to note that no 

single formulation is optimal for all stem cell or tissue types; thus, continued research 

probing the relationships between biomaterial properties and stem cell function will remain 

of significant importance.

4.3 Directing Cell Phenotypes

Polymer synthetic advances have enabled the production of polymers with highly tailored 

properties that can be altered to guide cell behavior; the presentation of biochemical cues, 

matrix architecture, and mechanical properties can be optimized for specific therapeutic 

applications.197 Small changes in the physicochemical properties of a polymer matrix, such 

as hydrophobicity and chemical functionality, can also influence cell phenotype and lineage 

commitment.198 For example, hydrophobic polymers, which promote protein absorption and 

subsequent cell adhesion, have been shown to enhance cell attachment, proliferation, and 

differentiation.198, 199 The incorporation of peptide and other bioactive ligands into both 

synthetic and biopolymers has also provided a broad range of functionalities, including cell 

adhesion,84 growth factor sequestration,200 and cell signaling;201 simple incorporation of 

peptides, as well as alterations in gradients in the concentration of single and multiple 

peptides,202 offer important strategies to enhance cell-matrix interactions and direct cell 

phenotype in wound healing, cancer, and vascular tissue engineering applications.
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The vast array of chemical approaches developed for macromolecular design has further 

enabled the incorporation of growth factors, cytokines, DNA, RNAi, and therapeutic drugs 

within tissue engineered constructs to direct cell behavior and phenotype. Affinity-based 

delivery systems, such as those utilizing heparin or specific ligands to associate proteins 

with the network, have been designed to release various factors, ranging over days to 

weeks.159, 203 Alternatively, cell-mediated release of covalently linked macromolecules (as 

mentioned above) can be regulated by conjugation of the growth factors to MMP-cleavable 

sequences in the polymer backbone, allowing for local therapeutic angiogenesis.204 The use 

of bioorthogonal photoactive chemistries has further provided mechanisms to control the 

addition and removal of biochemical signals to control cell adhesion and motility,205 

promote endothelial tubulogenesis,206 and initiate differentiation of stem cells.6 While 

photochemical patterning may prove difficult to implement in vivo, the inclusion of multiple 

matrix molecules within scaffolds marks additional progress toward the sophisticated 

complexity that is present in native ECM.

Cell signaling is also regulated in large part by the micro- and nano-scale organization and 

structure of the matrix in which cells reside. The chemical versatility of contemporary 

polymerization methods has enabled inclusion of topographical features that mimic those 

present in the native ECM. The combination of chemical and peptide-based approaches has 

allowed thoughtful design of the molecular interactions and processing conditions that drive 

nanoscale architecture, secondary structure formation, and self-assembly of tubes, fibers, 

and scaffolds.207 Fiber-like scaffolds, designed to mimic fibrillar ECM proteins, have been 

shown to regulate cell migration, proliferation, and epithelial-to-mesenchymal transition 

(Figure 8A).208, 209 Multiple processing strategies have been applied to develop 

microstructured materials, including photopatterning210 and selective degradation,211 as 

mentioned above. Such approaches yield materials that exhibit improved cell attachment and 

migration,212 as well as enhanced tissue infiltration into scaffolds.213 Additionally, as 

mentioned above, microstructured, elastomeric hydrogels materials explored by our group 

via the liquid-liquid phase separation of protein-PEG solutions,112 also present a simple 

approach to control the spatial organization of mechanical and biochemical cues that cells 

experience within 3D microenvironments.214

Protein and polymer organization and structure further play large roles in dictating 

mechanical properties, which profoundly influence and regulate the phenotypic behavior of 

cells. Pioneering work by the Discher laboratories established the key importance of 

substrate stiffness on stem cell differentiation and phenotype;215 and many others have 

demonstrated further utility of biopolymers for delineating the effects of stiffness on the 

phenotype of various cell populations in both 2D and 3D in vitro models.123 For example, 

neurite outgrowth from dorsal root ganglia was increased on compliant ELP hydrogels, as 

compared to stiffer gels.216 We have also shown the implications of stiffness on a variety of 

vascular and hematopoetic stem cells (Figure 8B), demonstrating differential attachment, 

proliferation, and gene expression in response to matrix mechanics.217, 218 Recently, 

Mooney and co-workers have also highlighted the importance of considering matrix stress 

relaxation in the design of biomaterials for cell culture, where alginate hydrogels with more 

rapid relaxation were shown to enhance cell spreading, proliferation and differentiation of 

mesenchymal stem cells (MSC) in 3D culture.219
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The inclusion of stimuli-sensitive macromolecules within scaffolds has enabled dynamic 

control of mechanical properties, thus allowing study of how changes in ECM rigidity, such 

as those during development and disease pathogenesis, impact cell phenotype. As previously 

mentioned in Section 3, polymeric matrices containing photolabile polymers220 and 

proteolytic peptide sequences221 have provided mechanisms to study cell response and 

differentiation fates in response to temporal decreases in stiffness, as well as to microscale 

variations in the spatial patterning of matrix mechanics. Multifunctional polymeric systems 

with dual modes of crosslinking provide platforms, mediated through radical, temperature, 

or cationic methods, in which the impact of matrix stiffening on cell phenotype and function 

can be studied.222, 223 However, determining the relationships between biomaterials 

properties and cell function remains convoluted, as manipulation of one parameter often 

results in unintended changes in several other biomaterials properties. Since cells respond to 

biomechanical and biochemical cues in a context-dependent manner, the development of 

materials with independent control over these cues will enable systematic parsing of cell-

material interactions.

4.4 Immunomodulation Strategies

The immune system plays a critical and positive role in the integration of biomaterials. Thus, 

biomaterials design strategies have focused on the development of immunomodulatory 

biomaterials in order to control immune cell response and facilitate functional integration of 

polymeric implants or retention of drug delivery carriers. Similar to reported behaviors of 

somatic and stem cells, microenvironmental cues presented by biomaterials play a crucial 

role in modulating immune cell behavior.224 Alterations in polymeric substrate stiffness, 

topography, and geometry have been shown to alter inflammatory cell response to polymeric 

implants,224, 225 while the size, shape, and surface chemistry play a significant role in 

extracellular trafficking, immune cell recognition, and intracellular processing of particulate 

systems.226 The inclusion of cell adhesion moieties and cell signaling molecules, as well as 

specific features of their presentation, have been shown to guide inflammatory cell 

recruitment and adhesion,227 and can thus also largely impact the degree of 

immunomodulation of a polymeric material. For example, self-assembling fibrillar peptides 

alone have generally not raised inflammatory or immunogenic responses in animal 

models;228, 229 however, fusion of the Q11 (QQKFQFQFEQQ) peptide to antigenic 

ovalbumin peptides formed multivalent fibrillar conformations able to provoke strong, long-

lasting antibody responses (increased IgG1, IgG2a, IgG3, IgM) without the use of 

adjuvants.230

Biomaterials-based therapies have been designed for vaccine delivery and cell-based 

immunotherapy.226 Vaccine efficacy has been improved with the use of synthetic delivery 

systems, including nanoparticles and thin films, to deliver vaccine subunits and 

corresponding molecular adjuvants to targeted lymphatic tissues.231, 232 Polymeric 

particulate systems have further been utilized to boost anti-tumor immunity in cell-based 

immunotherapies. For example, adjuvant-containing nanoparticles coupled to cytotoxic T 

cells during adoptive cell therapy are able to regulate the molecular interactions in the T-cell 

synapse and prolong the function of tumor-specific cytotoxic (CD8+) T cells during cancer 

treatment.233, 234 Similar strategies have been utilized to alter the fate of helper (CD4+) T 
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cells in order to promote tissue-graft survival.235 Design strategies have also enabled 

researchers to engineer immune responses outside of lymphoid organs. For example, 

biomaterials functionalized with inflammatory cytokines, immune danger signals, and tumor 

lysates were able to control the localization, activation, and antigen loading of dendritic cells 

in vivo, and subsequently led to the priming of antitumor T cells.236, 237 Accordingly, these 

examples demonstrate the substantial progress that biomaterials-based immunotherapies 

have made in regulating the immune response.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This perspective highlights the recent developments in the design of polymeric and 

(poly)peptidic biomaterials with a specific emphasis on advances in tailoring biomaterials 

structures and properties, introducing dynamic functionality, and capturing biocomplexity. 

The robustness and versatility of modern polymerization methods offer great flexibility in 

tuning macromolecular properties for desired biomedical applications, and the modularity 

and precision provided by peptide, polypeptide, and bioconjugate materials further provide 

versatility, control, and manipulation of physicochemical and biochemical properties. The 

limits of these synthetic strategies have certainly not yet been reached, and systematic 

investigations in reducing the cytotoxicity of polymers produced by controlled 

polymerization techniques will greatly expand the use of these well-defined synthetic 

materials in clinical applications.

Orthogonal and dynamic chemistries will continue to enable the production and 

functionalization of biomaterials that capture aspects of native biological structures. With 

increasing opportunities to better mimic the dynamic environment in tissues and organs, 

future studies on degradable and stimuli-responsive materials will require continued 

assessment of degradation and pharmacokinetic profiles in vivo, as well as development of 

an expanded toolbox of clinically relevant approaches that could offer patient-specific 

treatment regimens, such as, for example, polymer and nanoparticle platforms sensitive to 

tumor-specific ligands, receptors, and/or biologically benign wavelengths of light.

Parallel to these advances in synthetic chemistry tools that allow molecular control of 

biomaterials, the development of novel processing methods that impart well-defined 

macrostructure (e.g., phase separation and 3D printing), will also play a role in creation of 

complex materials with utility in biomedical applications such as enhanced cell and tissue 

infiltration. Additionally, the continued development of high throughput and combinatorial 

methods will offer key tools for biomaterials synthesis and deconstruction of the native 

cellular microenvironment as well as complex cell-material interactions.238, 239 It will also 

be important that the future developments of these techniques are achieved in a manner that 

both allows manufacturing at large scales and reasonable cost, and also overcomes 

regulatory challenges with the translation of new materials.

With the continued convergence and synergies in tailoring structure, dynamic function, and 

biological complexity, the prospects are promising for biomaterial systems that allow 

exquisite structural assembly, enable active interactions and perform tailored, high-level 

functions at complex biological interfaces. Such function will enable the tuning of cell-
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materials interactions that will be key for expanding our knowledge of the underlying 

mechanisms that control cell and tissue fate and that result in new and lasting contributions 

to the biomedical sciences.
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Figure 1. 
Examples of orthogonal chemistries that are commonly used in the production of functional 

biomaterials. A) Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC), B) Strain-

promoted azide–alkyne cycloaddition (SPAAC), C) Tetrazine ligation, D) Thiol-ene 

reaction, E) Alkyne–azide cycloaddition by photoinitiated Cu(II) reduction, F) Photo-

triggered thiol Michael-type addition by photocleavage of o-nitrobenzyl moieties.
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Figure 2. 
Schematic of highlights of key features and potential applications of modular designed 

biopolymers synthesized through recombinant DNA technology. Reproduced with 

permission from ref 58. Copyright 2012 Elsevier.
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Figure 3. 
Resilin-based elastomeric hydrogels with independent tunability of mechanical and 

biological functions for regenerative medicine application. (A) Schematic of modular RLP-

based hydrogels fabricated with various material compositions. Reproduced with permission 

from ref 84. Copyright 2016 John Wiley & Sons, Inc. (B) representative images of hMSCs 

stained for visualization of nuclei, vinculin, and actin cytoskeleton, on the surfaces of RGD-

containing (top) and no RGD (bottom) RLP hydrogels. Reproduced with permission from 

ref 88. Copyright 2013 Royal Society of Chemistry.
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Figure 4. 
Examples of multi-stimuli responsive biopolymers self-assemble to form micro- and 

nanostructures. (A) Digital switching of controlled cellular uptake by modulation of local 

arginine density is achieved by temperature-triggered micelle assembly of a genetically 

encoded ELP. Reproduced with permission from ref 98. Copyright 2012 American Chemical 

Society. (B) A 3-dimensional plot of the predicted Tt landscape for a superfamily of ELPs 

with various molecular weights and sequence compositions in PBS. Reproduced with 

permission from ref 92. Copyright 2013 American Chemical Society. (C) Temperature-

triggered non-reversible LCST phase separation of a RLP with representative TEM images 

of RLP-based nanoparticles formed at various temperatures. Reproduced with permission 

from ref 109. Copyright 2015 John Wiley & Sons, Inc. (D) Solution mixtures of PEG and 

RLP undergo phase separation to yield two aqueous phases in PBS buffer that can be 

crosslinked to form micro-structured hydrogels with distinct micro domains confirmed via 
Dylight-594 labeled RLP (red) and Dylight-488 labeled PEG (green). Reproduced with 

permission from ref 112. Copyright 2016 American Chemical Society.
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Figure 5. 
Examples of modular engineered hydrogels assembled via reprogrammed domain 

association through molecular recognition. (A) Artificial proteins EPE and ERE consist of 

terminal cysteine residues, elastin-like end-blocks E, and either the P or R midblock domain. 

ERE also contains an octapeptide recognition sequence M for proteolytic cleavage. The 

artificial protein PEP contains two P domains near the termini that flank the elastin-RGD-

elastin sequence. PEP forms physical hydrogels through association of the P end-blocks. 

EPE and ERE require covalent cross-linking with 4-arm PEG vinyl sulfone to form gels. 

ERE contains only covalent cross-links while EPE also has the potential to form physical 

cross-links through association of the midblock domains. Reproduced with permission from 

ref 117. Copyright 2016 John Wiley & Sons, Inc. (B) Schematic of the mixing-induced, two-

component hydrogel (MITCH). (Top left) Two WW domains (CC43 and a Nedd4.3 variant) 

bind the same proline-rich peptide (PPxY). (Bottom left) Hydrophilic spacers link multiple 

repeats of WW domains (spacer 1) or proline peptides (spacer 2). Spacer 1 contains a cell-

adhesion peptide RGDS. (Right) Three engineered protein families: C[x+2], N[y+2], and 

P[z+2]. Mixing component 1 with component 2 at constant physiological conditions results 

in hydrogel formation. Reproduced with permission from ref 119. Copyright 2009 National 

Academy of Sciences.
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Figure 6. 
Examples of stimuli-responsive biomaterials enabled by dynamic interactions/chemical 

linkages. A) Elastin-b-collagen-like peptide (ELP-CLP) bioconjugates with temperature-

triggered assembly/disassembly behaviors. Reproduced with permission from ref 145. 

Copyright 2015 American Chemical Society. B) GSH-sensitive PEG-heparin hydrogels with 

extended degradation profiles mediated by retro Michael-type addition. Adapted with 

permission from ref 146. Copyright 2013, Royal Society of Chemistry. C) Photodegradable 

PEG hydrogels synthesized via the incorporation of a photocleavable o-nitrobenzyl 
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containing crosslinker. Reproduced with permission from ref 147. Copyright 2009 American 

Association for the Advancement of Science.
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Figure 7. 
Pure populations of marker-positive cells attained through polymerization. (A) Cells are 

immunolabeled with polymerization initiators, and protective coatings are formed only on 

initiator labeled cells. Unprotected cells are lysed while coated cells are viable. (B) Naive 

Jurkat cells. (C) Uncoated Jurkat cells are lysed in <10 s in 5% SDS. Only sparse cellular 

debris remains in the viscous lysate. (D) Polymer-coated Jurkats intact are after 10 min in 

5% SDS. (E) Epifluorescent image of Jurkat cells coated with a red fluorescent nanoparticle-

loaded polymer in pure deionized water. Scale bars are 25µm. Reproduced with permission 

from ref 187. Copyright 2015 American Chemical Society.
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Figure 8. 
Biocomplex materials direct cell response. (A) Matrix topography influences phenotype of 

cells. (a) MDCK (Madin-Darby Canine Kidney) cells cultured on 0.5 µm diameter PCL-

RGD electrospun fibrous scaffolds grew as compact colonies with cuboidal cells, while (b) 

cells on 5 µm scaffolds exhibited a spindle-shaped morphology and associated more closely 

with individual fibers, indicative of an EMT-like phenotype. Scale bars = 100 µm. Adapted 

with permission from ref 208. Copyright 2016, American Chemical Society. (B). Decreasing 

the modulus of PEG-gelatin hydrogels induced a vascular phenotype in human cord blood 

stem cells. (a) In lower modulus hydrogels, cells formed large clusters and stained strongly 
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for von-Willebrand Factor (vWF, shown in green; nuclei are in red), an endothelial cell 

marker. As hydrogel modulus increased, (b) clustering became less apparent and (c) cells 

stained weakly or not at all for vWF. Scale bar is 50 µm. Adapted with permission from ref 

217. Copyright 2015, Elsevier.
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