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ABSTRACT:  Improved understanding of charge-transport in single molecules is essential for harnessing the potential of molecules 

e.g. as circuit components at the ultimate size limit. However, interpretation and analysis of the large, stochastic datasets produced by 

most quantum transport experiments remains an ongoing challenge to discovering much-needed structure-property relationships. 

Here, we introduce Segment Clustering, a novel unsupervised hypothesis generation tool for investigating single molecule break 

junction distance-conductance traces. In contrast to previous machine learning approaches for single molecule data, Segment 

Clustering identifies groupings of similar pieces of traces instead of entire traces. This offers a new and advantageous perspective 

into dataset structure because it facilitates the identification of meaningful local trace behaviors that may otherwise be obscured by 

random fluctuations over longer distance scales. We illustrate the power and broad applicability of this approach with two case studies 

that address common challenges encountered in single molecule studies:  First, Segment Clustering is used to extract primary 

molecular features from a varying background to increase the precision and robustness of conductance measurements, enabling small 

changes in conductance in response to molecular design to be identified with confidence. Second, Segment Clustering is applied to a 

known data mixture to qualitatively separate distinct molecular features in a rigorous and unbiased manner. These examples 

demonstrate two powerful ways in which Segment Clustering can aid in the development of structure-property relationships in 

molecular quantum transport, an outstanding challenge in the field of molecular electronics. 

1. INTRODUCTION 

Ever since 1974, when Aviram and Ratner proposed using 

a single molecule to rectify current,1 the nanoscale transport 

community has pursued the goal of molecular-based circuitry 

to take advantage of the small size, enormous design space, 

and potential low manufacturing costs of circuit components 

composed of individual molecules.2 However, in order to 

create functional devices that can capitalize on these 

advantages, it is first necessary to understand the fundamental 

physics and design principles underlying charge transport in 

single molecule systems. This understanding is most 

commonly gained using either Mechanically Controlled Break 

Junctions (MCBJs)3–10 or Scanning Tunneling Microscope 

Break Junctions (STM-BJs),11–15 techniques which pull apart 

a thin metal bridge, typically made from gold, to form a 

nanogap, while simultaneously applying a small bias across 

the bridge or gap and recording the resulting current. The 

changes in current when individual molecules bridge the gap 

provide insight into the electrical non-equilibrium properties 

of single-molecule circuit components.  

Most commonly, such experiments yield “breaking traces”, 

in which the junction conductance 𝐺 = 𝐼/𝑉 is recorded as a 

function of stretching distance during the breaking process. 

Figure 1a contains example breaking traces collected using 

our MCBJ set-up with the molecule OPV3-2BT-H (Chart 1), 

plotted on a log-linear scale in order to capture the large 

dynamic range of possible molecular conductances, as is 

standard in the field. These examples illustrate three 

characteristic features of breaking traces: 1) Just before 

rupture, a plateau occurs at the conductance value 

corresponding to a single atomic point contact. For Au 

electrodes, this value is 77.48 µS,16 and denoted 1 𝐺0; 2) 

When no molecule is bound in the junction (blue traces), the 

conductance is solely due to tunneling and decays 

exponentially; and 3) When a molecule is bound in the 

junction (red traces), the conductance is roughly constant 

(though potentially fluctuating) over the length of the 

molecule, forming a “molecular plateau”.  

 
Chart 1. Structures of molecules considered in this work 

and their associated abbreviations. 
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Figure 1. Break junction data collected with the molecule OPV3-2BT-H. (a) Selected breaking traces from before (blue) and after (red) the 

addition of molecules, offset by 1.5 nm for clarity. The blue traces illustrate exponential tunneling decay in an empty nanogap (linear on a 

logarithmic scale), while the red traces illustrate molecular plateaus and their variability. (b,c) 2D histograms of 7122 and 6280 consecutive 

breaking traces collected before and after the addition of molecules, respectively. (b) exhibits a clear tunneling decay feature below 10-3 G0, 

while (c) exhibits a pronounced molecular feature extending out to ~1.5 nm at ~10-4 G0. (d) 1D histograms for the datasets in (b) (blue) and 

(c) (red). While both histograms display a sharp peak at ~1 G0 from the single gold point contact plateaus, only the histogram collected after 

molecular addition displays a broad peak at ~10-4 G0 due to presence of molecules.  

However, because of the stochastic nature of the breaking 

process, molecular conformation, and molecular diffusion in 

and out of the junction, individual molecular traces are highly 

variable. In particular, plateaus for the same molecule can vary 

by over an order of magnitude in conductance (e.g. first two 

red traces in Fig. 1a); some traces collected in the presence of 

molecules do not display any molecular plateau at all (e.g. 

third red trace in Fig. 1a); and molecular plateaus may break 

off and re-form within the same trace (e.g. last two red traces 

in Fig. 1a). In order to capture this variability, thousands of 

traces are collected under the same experimental conditions. 

A set of traces can then be summarized by a 2D histogram 

(Fig. 1b,c), which shows the frequency of observing each pair 

of inter-electrode distance and log(conductance) values; or a 

1D histogram (Fig. 1d), which is obtained from the 2D 

histogram by integrating out the inter-electrode distance 

dimension to “collapse” all of the data onto the 

log(conductance) axis.  

While such histograms usefully summarize the ensemble of 

single molecule conductance behaviors, they obscure likely 

meaningful differences within and among different molecular 

constructs that could be harnessed to advance a host of 

intriguing molecular electronics research directions. At 

present, 1D histograms are often used to determine a single 

“peak” or “most probable” conductance for a given 

molecule,17–27 and 2D histograms have been used to separate 

molecular features that may correspond to distinct physical 

phenomena, such as different binding modes.9,28–32 However, 

the broad features found in these histograms make it difficult 

to confidently separate features without introducing bias, and 

the complex “background” signature, composed of tunneling 

decay and broken molecular plateaus, makes it hard to 

robustly fit molecular peaks. These inter-related challenges 

have motivated several research groups to develop automated 

clustering and data-sorting methods for analyzing breaking 

traces33–41 and related data.15,42–44  Broadly speaking, the goal 

of these approaches is to partition a large dataset of highly-

varied traces into separate groupings in order to improve the 

robustness of peak conductance measurements and/or to 

identify distinct junction behaviors. Using an automated 
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algorithm to identify clusters of data helps eliminate bias 

towards seeing only the types of groupings that are expected 

a priori. The clustering approaches developed so far are based 

on techniques ranging from principal component analysis34,38 

to neural networks,35,37,38,41,43 and have found success in 

separating known features in experimental or simulated 

data,34,35,37,42,43 and in detecting intriguing sub-features for 

further quantitative or qualitative analysis.33,34,38,41,42,45   

Nearly every published clustering approach applied to 

breaking traces treats each entire trace as one single 

object.15,33–35,37–42,44 This choice implicitly assumes that the 

overall trajectories that traces follow are non-random, and 

hence such algorithms are best suited for traces that exhibit 

few unpredictable fluctuations. However, our own 

experimental data and many published examples suggest that 

this is often only true over distances much shorter than most 

molecular lengths. Over longer distances, there are often 

sudden and unpredictable conductance shifts between mostly 

linear sections,32,46–50 and in some instances such traces 

constitute the majority of all molecular “plateaus”. Whole-

trace focused methods can thus easily miss a meaningful sub-

feature, even one conserved across many traces, if the other 

parts of those traces differ significantly due to random and 

uncorrelated behavior. We therefore designed a new 

approach, “Segment Clustering”, based on the idea of defining 

pieces of traces as the objects to be clustered, and in particular 

linearly approximated segments. This definition better 

matches the empirical structure of trace trajectories in most 

systems studied so far,13,51–59 ranging from in situ chemical 

reactions to photo-switching. Segment Clustering is thus able 

to identify the truly conserved features in highly-stochastic 

datasets and has the potential to reveal insights not available 

to other clustering approaches. Additionally, Segment 

Clustering does not require training, like some neural 

network-based approaches,35,38,41,43 nor does it rely on criteria 

that are likely dataset-specific, like many filtering-based 

approaches,15,40,44 and so is expected to be easily generalizable 

to new datasets.  

We emphasize that Segment Clustering is neither expected 

nor designed to identify every meaningful feature in every 

single molecule dataset. Instead, it focuses on one broad 

category of features—approximately linear trace sections—

which are evidently quite common in distance-conductance 

traces, thus providing a new perspective into dataset structure. 

At the same time, just because segment clustering identifies a 

given cluster does not, by itself, constitute proof that such a 

cluster corresponds to a distinct physical behavior. Rather, 

Segment Clustering is designed as a hypothesis generation 

tool: by identifying data groupings that may not be obvious to 

the naked eye and which do not rely on preconceived and 

potentially flawed notions of meaningful data structure, it can 

help spawn ideas of what types of behaviors may be present 

in single-molecule junctions. These ideas can then be tested 

via additional experiments or targeted data analysis, laying the 

basis for further insight into the fundamental physics of single-

molecule transport.  

In the remainder of this paper, we describe our experimental 

methodology and then explain in detail the motivation and 

mechanics behind Segment Clustering. We next present two 

case studies using our own MCBJ data to illustrate two 

applications of Segment Clustering. In the first case study, we 

show that Segment Clustering can reliably separate the 

“primary” molecular feature from a shifting background 

signal, enabling us to confidently distinguish small changes in 

conductance across a family of similar molecules. In the 

second case study, we use a known data mixture to 

demonstrate that Segment Clustering can separate molecular 

features even when they come from overlapping conductance 

distributions.  

2. EXPERIMENTAL SECTION 

2.1. Fabrication. Samples for the MCBJ experiment were 

fabricated by depositing a gold wire on a polyimide-coated 

phosphor bronze substrate using electron beam evaporation. 

A 4 nm titanium layer was used to improve adherence of the 

80 nm thick gold film. The pattern for gold deposition, 

including an ~100 nm wide gold bridge in the center of the 

wire, was fashioned by electron beam lithography. The gold 

bridge was then created via O2/CHF3 plasma etching of the 

polyimide to produce an ~1-2 μm undercut (Fig. S1a,b).  

2.2. Trace Collection. Samples were clamped and then 

bent with a push rod placed underneath the gold bridge (Fig. 

S1c). A 100 mV bias was applied across the gold bridge while 

simultaneously measuring the conductance of the bridge using 

a custom, high-speed amplifier described previously.60  A 

stepper motor (ThorLabs DRV50) was used to move the push 

rod until the bridge conductance was between 5 and 7 G0, at 

which point a linear piezo actuator (ThorLabs PAZ60 or 

ThorLabs PAS009) was used to break and then re-form the 

bridge at a rate of 60 m/s. The motor and the piezo were both 

controlled with custom LabView software that automatically 

collected thousands of breaking traces for each sample. The 

entire bending apparatus is built on a vibrationally isolated 

laser table to reduce mechanical noise, and placed inside a 

copper Faraday cage to reduce high-frequency 

electromagnetic noise.  

2.3. Molecular Solutions. OPV2-2BT and all OPV3-2BT-

X molecules were synthesized on-site, while C6-2SMe was 

purchased from Sigma-Millipore and used as received. OPV2-

2BT and all OPV3-2BT-X molecules were dissolved in 

dichloromethane (HPLC grade, >99.8%), and C6-2SMe was 

dissolved in a mixture of hexanes (Reagent grade, >98.5%). 

All OPV3-2BT-X solutions were ~1 M; both ~1 μM and ~10 

μM solutions of OPV2-2BT were used (see SI Table S3 for 

details); the C6-2SMe solution was ~10 μM.  

2.4. Running Samples. Each sample was cleaned with 

O3/UV immediately before use and a Kalrez gasket (0.114” 

ID, 0.250” OD) was placed around the gold bridge (Fig. S1d). 

Initially, 10 L of pure dichloromethane or hexanes was 

deposited inside this gasket using a clean glass syringe for 

dichloromethane or a micropipette for hexanes, after which a 

few thousand breaking traces were collected. Only samples 

displaying clean breaking and clear tunneling behavior were 
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considered for subsequent experiments. After pausing the 

LabView program and fully breaking the gold bridge, 10-20 

L of the molecular solution was deposited inside the Kalrez 

gasket using a clean glass syringe for dichloromethane 

solutions or micropipette for hexanes solutions, and data 

acquisition was resumed. For many samples, molecular 

solution or pure solvent was re-deposited multiple times 

and/or the push rod was fully relaxed prior to restarting the 

experiment (see SI section S.4 for details).  

2.5. Initial Data Processing. The voltage applied to the 

piezo actuator was converted to piezo displacement using a 

previously performed interferometric calibration. For each 

sample, the conversion factor between piezo displacement and 

inter-electrode distance was determined by fitting the 

distribution of tunneling slopes from the traces collected 

before molecular deposition (see SI section S.2 for details), 

and this conversion factor was applied to all traces collected 

with that sample. Each breaking trace was aligned at zero 

inter-electrode distance using its last crossing of 0.7 G0 

following the method of Mischenko et al.61  Breaking traces 

with no data points between 0.8 and 1.2 G0 were excluded 

from subsequent analysis (typically < 1% of total breaking 

traces).  

3. RESULTS AND DISCUSSION 

3.1. Description of Segment Clustering. 3.1.1. 

Motivation. A key consideration when deciding how to cluster 

multidimensional data is what type of object to cluster. In the 

case of break junction distance-conductance traces, two 

natural choices are to treat each trace as a single object (“trace 

clustering”, which most approaches15,33–35,37–42,44 have used so 

far) or to treat different visited points in distance-conductance 

space as individual objects (“point clustering”, which we used 

in a previously reported clustering approach36). Neither choice 

is inherently superior to the other. Instead, each has potential 

advantages that are best understood by considering the 

question of how much “history” distance-conductance traces 

have—i.e., how much a trace’s behavior at one distance is 

correlated with its behavior at a previous or future distance. If 

traces randomly transition between different stable 

distance/conductance configurations (i.e. traces have “no 

history”), then point clustering can better identify these stable 

configurations whereas trace clustering may get confused by 

the random trajectories. On the other hand, if trace trajectories 

are highly non-random (i.e. traces have “significant history”), 

then trace clustering can identify groupings of similar 

trajectories that point clustering will likely miss.  

In our experience, however, real experimental traces fall 

somewhere between these extremes: they display “partial” or 

“local” history. To illustrate this, we calculate the correlation 

coefficient between the conductances of all traces at one 

specific distance with their conductances at a second distance. 

This is repeated for each pair of distances, and the results are 

summarized in a “distance correlation histogram”, shown in 

Figure 2 for one of our OPV3-2BT-H datasets. This plot 

shows that while conductances are strongly correlated at close 

distances, there is essentially no correlation over longer 

distances. Similar behavior was found in all of the single 

molecule datasets we examined, suggesting that trace history 

is only relevant over short pieces of an entire trace.  This is 

consistent with investigations of the dynamics of single-

molecule junctions held at a fixed distance,62–67 which have 

found that junction conductance is relatively stable over short 

periods of time, but jumps unpredictably between different 

levels over longer time windows. Therefore, both trace 

clustering and point clustering fail to fully and appropriately 

capture the empirical balance between predictable and random 

junction behaviors, limiting the insight they can provide. This 

motivates the development of a novel clustering approach in 

which pieces of traces are the type of object clustered.  

 

Figure 2. Distance correlation histogram for the OPV3-2BT-H 

dataset from Fig. 1c, showing the Pearson’s correlation 

coefficient between the conductances of all traces at each pair of 

distances. While trace conductances are highly correlated over 

short distances, this correlation quickly fades with distance, 

demonstrating that trace “history” is important only locally, not 

globally.  

While certain theoretical models predict significantly 

curved trace features, experimental traces collected from an 

extremely wide variety of molecular systems13,51–59 appear (on 

a logarithmic conductance scale) to be composed mainly of 

sudden changes between fairly linear sections. Segment 

Clustering is therefore based on using piecewise-linear 

approximation to determine where to separate each trace into 

different sections. This design choice helps ignore noisy high 

frequency components and instead focuses attention on the 

principal features of each trace. Additionally, linear segments 

are a computationally efficient way to represent a trace, since 

a handful of linear segments can well-approximate thousands 

of individual data points (e.g. Fig. 3a). Implementing Segment 

Clustering via this approach consists of four major steps, 

summarized in Figure 3: segmentation, parameterization, 

calculating the overall clustering structure, and extracting 

specific clusters. Where appropriate, we employ established 

algorithms for these individual steps in order to increase 
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Figure 3. A summary of the segment clustering process. (a) Each breaking trace in a dataset is first approximated with a series of linear 

segments using BUS with the Greedy Iterative L-Method, and then each segment is parameterized to produce a 5-tuple (see inset). (b) Next, 

the set of 5-tuples for all segments from all traces in the dataset are clustered using the SOPTICS algorithm, producing a hierarchical clustering 

structure that can be visualized using a reachability plot in which valleys correspond to clusters. Finally, a specific clustering solution can be 

extracted by making a cut through the reachability plot and assigning the points in each valley dipping below that level to a separate cluster, 

while assigning any points with reachability distances greater than the cut to a catch-all “noise cluster”. Extracting at the solid blue line in 

(b) produces the clustering solution in (c), with each valley dipping below the line filled in with color to match its corresponding cluster of 

segments, and the noise cluster segments shown in black.  

confidence in the robustness of the overall approach, which 

combines these algorithms in a new way.   

3.1.2. Segmentation. The goal of segmentation is to break 

each trace into consecutive sections such that each section can 

be well-represented by a linear segment and corresponds to a 

meaningful piece of the trace structure. Because this goal is 

common in data-mining applications, several algorithms have 

been developed to try to optimally represent time-series data 

with a set of piece-wise linear segments.68 After first applying 

consistent starting and ending criteria to each trace (see SI 

section S.3.1 for details), we employ the “Bottom-Up 

Segmentation” (BUS) algorithm because it is conceptually 

simple and has been found to produce excellent and robust 

results for data from a variety of contexts.68,69 Briefly, BUS 

starts by perfectly representing a time series of n points with 

n/2 two-point segments. Next, BUS iteratively merges the pair 

of neighboring segments that will least increase the error of 

the overall segment approximation, repeating until some 

stopping criteria is met. At each step, every segment is 

constructed as the linear regression line for the data points it 

is currently representing, and the error for each segment is 

taken as the sum of the squared residuals from that regression 

line.68   

For our stopping criteria, we use the “Greedy Iterative L-

Method”, which was found to work well on a wide variety of 

test datasets.69  Briefly, this method first performs the merging 

process to completion, so that a plot of the number of 

segments remaining vs. the error gained at each merge step 

may be constructed. An iterative fitting process is then used to 

locate the optimal number of segments by identifying the point 

at which more segments produce diminishing returns in terms 

of error reduction. Applying this combination of BUS and the 

Greedy Iterative L-Method to distance-log(conductance) 

traces produces convincing segmentation solutions (e.g. Fig. 

3a). In addition to the examples presented by the developers 

of the Greedy Iterative L-Method,69 testing on our own single 

molecule data demonstrates that this method is quite robust 

(see SI section S.5.5).  

3.1.3. Parameterization. Because clustering algorithms 

need to compute distances between the objects to be clustered, 

it is necessary to first extract “features” that can be used to 

represent each object as a point in a metric space. In order to 

avoid well-known challenges to clustering in high-

dimensional spaces (the “curse of dimensionality”)—such as 

increasingly sparse data and a non-intuitive breakdown in the 

concept of nearest neighbors70—it is preferable to choose a 

minimal set of features while still capturing most of the 

important information about each trace piece. Our 

segmentation approach already produces linear segments 

which capture most trace variation—e.g., 82% for the dataset 

in Figure 1c—and so parameterizing these linear segments 
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produces features that are both efficient and easy to interpret. 

We therefore convert each segment into a 5-tuple consisting 

of four parameters which uniquely describe each linear fit, and 

a fifth parameter to describe the fit quality.  

The specific parameters chosen to represent each segment 

are illustrated in Figure 3a. The first two parameters—the 

center of a segment on the inter-electrode distance axis, X0, 

and on the log(conductance) axis, Y0—succinctly represent 

where each segment is located. Another key segment attribute 

is its length, L. However, in absolute terms, long segments will 

tend to differ by more than short ones, making it difficult to 

form clusters of long segments. We therefore use the 

logarithm of the length of a segment on the inter-electrode 

distance axis, Log(L), as our third parameter, so that the 

difference between two segments on this dimension depends 

on their ratio. To represent how tilted a segment is, the angle 

that it makes with the horizontal, θ, is used as the fourth 

parameter. This angle is less sensitive to outliers than a 

segment’s raw slope due to the nature of the arctan function. 

Finally, to represent the linearity of each trace piece, we 

include the coefficient of determination, R2, of each segment 

vis-à-vis the portion of raw data it represents as the fifth 

parameter. This helps capture additional information about 

mild segment curvature and/or the magnitude of high-

frequency noise, and is important for differentiating the few 

segments which are not well-approximated as linear. These 

five parameters are each measured in different units, so before 

clustering each must be standardized so that differences 

computed along different dimensions are comparable. In order 

to minimize the influence of outliers, we use the range of the 

middle 80% for each parameter to carry out this 

standardization (see SI section S.3.2 for details).  

3.1.4. Calculating the Overall Clustering Structure. Many 

clustering algorithms can be applied to a set of 5-tuples, and 

each has its own advantages and disadvantages.71 For this 

work, we employ the Ordering Points to Infer Cluster 

Structure (OPTICS) algorithm based on the following 

advantages relevant to our specific context: 1) it can detect 

clusters of arbitrary shape and is not biased towards spherical 

clusters like other common algorithms;71,72 we acknowledge 

that this necessarily brings along a danger that dissimilar 

groups of data may end up in the same cluster if there is a 

continuous spread of data between them; 2) it has a limited 

number of parameters; 3) it does not require the number of 

clusters to be specified as an input parameter, unlike many 

popular algorithms such as K-means, BIRCH, etc.;72 and 4) 

instead of a single partitioning, OPTICS produces a clustering 

hierarchy in which sub-clusters are contained within clusters, 

providing relevant insight into the data structure (see below). 

To overcome its poor computational scalability on large 

datasets, we employ a variation called Speedy-OPTICS 

(SOPTICS) in which random projections are used to 

dramatically reduce the clustering time while producing 

results nearly identical to the original algorithm.73   

OPTICS/SOPTICS clustering works by starting at a random 

data point, then iteratively proceeding to the next unvisited 

point that is closest to any point visited so far.36,74  This 

journey is represented by a “reachability plot” (Fig. 3b) in 

which the distance to the next point (the “reachability 

distance”) is plotted against the order in which the points were 

visited (the “cluster order”). Valleys in the reachability plot 

intuitively correspond to clusters of data points, because the 

points in a valley are relatively close to each other but 

relatively far from points outside of the valley.74 A 

reachability plot thus visually represents the overall 

hierarchical structure of a dataset, as valleys may contain sub-

valleys which themselves can contain sub-sub-valleys, and so 

on. We refer to the reachability plot and its associated 

information as the “clustering output” for a given dataset.  

In our implementation, SOPTICS relies on four parameters: 

cL, cP, minSize, and minPts. The first three parameters are 

related to how SOPTICS approximates the original OPTICS 

algorithm and, when in a reasonable range, they each have an 

extremely minimal effect on the clustering results. We thus 

assign fixed values to each of these parameters (see SI section 

S.3.3 for details). The fourth parameter, minPts, is the one 

holdover from OPTICS (SOPTICS does not require the 

generating distance parameter ε); it is related to how the data 

density in 5-dimensional standardized parameter space is 

estimated at each point, and affects how “jagged” the 

reachability plot is.74 While minPts is the most important 

parameter for OPTICS/SOPTICS, its abstract definition 

makes it difficult to assign rationally without a deep 

understanding of the data under consideration. In 

acknowledgement of this uncertainty, we re-cluster each 

dataset using 12 different values of minPts (35, 45, 55, 65, 75, 

85, 95, 105, 115, 125, 135, and 145). We then use the variation 

between these 12 clustering outputs as a measure of the 

uncertainty in the exact boundaries of an extracted cluster. In 

practice, this variation is quite limited, implying that Segment 

Clustering is not overly sensitive to the value of minPts. 

Finally, because OPTICS/SOPTICS is a density-based 

clustering algorithm and longer segments represent more raw 

data points than shorter segments, we find that clustering 

results are improved if, in the density calculations, we weight 

each segment according to its length (see SI section S.3.4 for 

details).   

3.1.5. Extracting Specific Clusters. In order to extract 

specific clusters from a given clustering output, a cut is made 

across the reachability plot (e.g. Fig 3b) and the points in each 

valley dipping below the cut are assigned to a separate cluster, 

while all points with reachability distances larger than the cut 

are assigned to a catch-all “noise cluster” (e.g. Fig 3c). We 

refer to the specific set of clusters generated by a given cut as 

a “clustering solution”. Thus, while the hierarchical nature of 

OPTICS/SOPTICS is a distinct advantage, it also presents an 

interpretation challenge, because a single clustering output 

can have many different clustering solutions based on 

different extraction levels.  

Meaningful extraction levels can be chosen using the 

concept of ξ-steepness74 or by employing an internal cluster 

validation index,75,76 but these strategies introduce ambiguity 

in the form of what value of ξ to use or which index to employ,  



7 

 

 

Figure 4. (a) The same reachability plot as in Fig. 3b, but color-coded to indicate the maximum size of each valley containing at least 1% of 

all clustered points. Valleys are filled in hierarchically: the pink valley e.g. contains the dark green and lavender valleys, the green valley 

contains the pink and yellow valleys, etc. (b-i) The “full-valley clusters” corresponding to each color-coded valley from (a), with segments 

assigned to the cluster plotted in color on top of the overall dataset distribution in gray.  

and many validation indices are expensive to compute. We 

therefore introduce a new strategy motivated by the 

observation that the clustering solutions at most extraction 

levels are extremely similar to one another. For example, 

Figure 3c shows the clustering solution obtained by extracting 

at the solid line in Figure 3b. If this extraction level is 
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increased to the dashed line, the only change is that each 

valley grows slightly, with a few segments moving into those 

clusters from the noise cluster. The clustering solution will 

only qualitatively change if the extraction level is raised, for 

example, to the dotted line, where the red and blue 

valleys/clusters will merge into one. In the context of Segment 

Clustering, we are interested in categorizing as many data 

points as possible, so we extract each individual valley at the 

highest extraction level before it merges with a neighboring 

valley to produce what we call “maximum valley clusters”. If 

a minimum valley size is then set, an entire clustering output 

can be efficiently summarized with just a handful of maximum 

valley clusters (Fig. 4). This allows us to still examine the 

hierarchical structure of a clustering output without having to 

consider an unmanageable number of different solutions. This 

novel extraction strategy works especially well in the present 

context because valleys tend to be quite sharp (e.g. Fig. 4a), 

and its robustness is validated by the fact that it successfully 

identifies equivalent clusters in the multiple clustering outputs 

for each dataset (see SI section S.6 for details). However, we 

note that this extraction approach is not fundamental to 

Segment Clustering, and so other methods can be substituted 

if full-valley clusters were to exhibit shortcomings on new 

types of datasets. The minimum valley size should be set 

according to the specific context and what types of clusters a 

user is interested in; we have found that a minimum size of 

1% of the total number of data points (after length-weighting) 

often works well.  

3.2. Using Segment Clustering to Distinguish the 

Conductances of Similar Molecules. In structure-property 

investigations of single molecule conductance, it is common 

to determine a single “most probable” conductance for each 

molecule by fitting the molecular peak in the 1D histogram.17–

20,22,24,26 The peak value is then identified as the molecular 

conductance, and often compared across different molecules 

or with first principles calculations. However, because the 

molecular signal is necessarily convolved with a 

“background” signal due to traces in which no molecule was 

bound or in which the molecule detaches and re-attaches 

multiples times (e.g. Fig. 1a), molecular peaks in 1D 

histograms tend to have complex, asymmetric shapes (e.g. 

Fig. 1d). Fitting these peaks thus requires arbitrary and ill-

motivated restrictions and/or background subtraction. 

Moreover, it has been shown that the molecular peak can vary 

significantly between repeated measurements under identical 

conditions,33 likely due in part to uncontrolled variation of this 

“background” signal. Using data collected from a series of 

OPV3-2BT-X molecules (Chart 1), we show how segment 

clustering can help address these twin challenges by 

separating the primary molecular feature from the background 

signal, enabling subtle conductance differences to be 

identified with confidence.  

3.2.1. Extraction of “Main Plateau Cluster” From 

Background. In order to perform this background separation, 

we examined each full-valley cluster for the OPV3-2BT-H 

dataset shown in Figure 4b-i. Of these, the red cluster (Fig. 4h) 

 

Figure 5. Raw 1D histogram for the OPV3-2BT-H dataset from 

Fig. 1c (yellow), along with a restricted Gaussian fit to the 

molecular peak (dotted purple, see SI section S.8 for details). 

Overlaid in blue is a 1D histogram of the data from just the main 

plateau cluster (Fig. 4h) and an unrestricted Gaussian fit (red), 

both scaled up by a factor of seven for clarity. Whereas the 

complex shape of the raw data peak necessitates arbitrary fitting 

restrictions to obtain reasonable results, the simple shape of the 

main plateau cluster peak can be fit without restrictions, leading 

to a more confident and robust peak value.  

is the unambiguous choice for the primary molecular signature 

because 1) it most closely corresponds to the dense molecular 

region in Fig. 1c that is not present in Fig. 1b, and 2) it is 

composed of relatively long and flat molecular plateaus that 

approximately match the expected length of the molecule after 

adding 0.5 nm to account for the “snapback” distance28,77 (see 

SI section S.9 for details). We therefore refer to the cluster in 

Fig. 4h as the “main plateau cluster”. In contrast to the raw 

data, the conductance peak for the main plateau cluster has a 

simple shape that can be confidently fit with no restrictions by 

a single Gaussian (Fig. 5). This is a direct consequence of 

Segment Clustering’s novel focus on pieces of traces as the 

clustering unit, since trace clustering approaches will 

necessarily produce clusters with complex conductance 

histogram shapes. However, the main plateau cluster in Fig. 

4h does not represent all of the molecular signature in the 

dataset. In fact, the points in these segments only account for 

a small fraction of the molecular peak seen in the raw 1D 

histogram (Fig. 5). This may be caused by a majority of 

molecular traces at room temperature jumping back and forth 

between tunneling decay and molecular plateaus (e.g. Fig. 1a), 

whereas the segments in the main plateau cluster only 

originate from the “cleanest” molecular plateaus (i.e. those 

that are long, unbroken, and relatively constant). We 

hypothesize that these “cleanest” plateaus will yield the most 

reliable measure of molecular conductance and the underlying  
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Figure 6. (a-h) Main plateau clusters selected for 8 different 

OPV3-2BT-H datasets, demonstrating that this feature is a 

consistent structural element of these datasets. (i) Comparison of 

peak conductance values from unrestricted Gaussian fits to the 

main plateau clusters from (a-h) with the peak conductance values 

from restricted Gaussian fits to the raw 1D histograms (see SI 

section S.8 for details), demonstrating that Segment Clustering 

increases the precision of peak conductance measurements.     

quantum transport, which is otherwise obscured by the large and 

stochastically visited space of possible junction configurations.  

To test this hypothesis, we collected nine total OPV3-2BT-

H datasets across three different samples run under identical 

conditions (see SI section S.4 for details). Within all but one 

of these datasets (see SI section S.7 for details), a main plateau 

cluster analogous to the one shown in Figure 4h could be 

unambiguously identified (Fig. 6a-h), providing strong 

evidence that this type of cluster is a meaningful and 

reproducible structural element of these datasets. Each of 

these main plateau clusters can again be effectively fit with an 

unrestricted single Gaussian (see SI section S.8 for details). 

Comparing the spread of these 8 peaks with the restricted 

peaks fit to the raw 1D histograms (Fig. 6i) reveals a 

significantly tightened distribution (Table 1), consistent with 

our hypothesis that segment clustering is aiding the extraction 

of an inherent molecular feature from a widely varying 

background.  

Table 1. Comparison of different measures of spread for 

the raw data peaks vs. the main plateau cluster peaks for 

8 different OPV3-2BT-H datasets (see Fig. 6i), 

demonstrating that Segment Clustering increases the 

reproducibility of peak conductance measurements. All 

units are decades.  

 
Raw Data 

Peaks 

Main Plateau 

Cluster Peaks 

Range 0.159 0.099 

Standard 

Deviation 
0.063 0.032 

Inter-Quartile 

Range 
0.121 0.037 

 

3.2.2. Quantitative Comparison of Conductances of Similar 

Molecules. Figures 5 and 6 demonstrate the power of segment 

clustering: the need for complex and arbitrary fitting criteria 

is eliminated and dataset-to-dataset reproducibility is 

improved, allowing us to identify peak molecular 

conductances with increased precision and confidence. To 

illustrate the advantages of this increased precision, we used 

our MCBJ set-up to collect multiple sets of breaking traces for 

a total of seven OPV3-2BT-X molecules (Chart 1; see SI 

section S.4 for details on datasets). For all but two datasets 

(see SI section S.7 for details), we identified a clear and 

unambiguous choice for the full-valley cluster corresponding 

to the main plateau feature. Our peak conductance results for 

all of these OPV3-2BT-X main plateau clusters are 

summarized in Figure 7, in which the error bars represent the 

uncertainty introduced by varying the minPts parameter (see 

SI section S.6 for details).  

Figure 7 shows that, as with OPV3-2BT-H, the peak 

conductances for each molecule in the series are highly 

reproducible, further supporting the claim that segment 

clustering is extracting an inherently molecular feature. 

Moreover, because of this high reproducibility, we are able to 

confidently differentiate the conductances of these molecules 

despite their high structural similarity. This makes it possible 

to search for structure-property relationships to physically 
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explain such conductance differences. Extensive testing 

confirms that the peak conductances in Figure 7 are not 

meaningfully affected qualitatively or quantitatively by 

modest changes to the clustering parameters (see SI section 

S.5 for details). Not only does this increase confidence in these 

specific results, but it also provides strong evidence that 

Segment Clustering is a highly-robust and generalizable tool 

for unsupervised analysis of potentially subtle variations in 

molecular conductances.  

 

Figure 7. Comparison of peak conductance values from main 

plateau clusters for each OPV3-2BT-X dataset considered in this 

work. Error bars represent the uncertainty due to clustering with 

different values of the minPts parameter (see SI section S.6 for 

details). Due to the high reproducibility enabled by Segment 

Clustering, subtle conductance differences between molecules 

can be identified with confidence.  

3.3. Using Segment Clustering to Separate Overlapping 

Molecular Features. In addition to the extraction of a single 

“primary” molecular feature in different data sets, Segment 

Clustering can also be used to distinguish multiple features in 

a single dataset. When 2D histograms of breaking traces 

display multiple “clouds” of increased density, it is often taken 

as an impetus to investigate the possibility of different binding 

modes, molecular configurations, etc.9,28–32 While such clouds 

can offer tantalizing hints of multiple transport motifs, a major 

challenge is that it is often quite ambiguous whether density 

clouds are truly separate or not. This introduces a significant 

opportunity for bias, and may also limit the scope of 

hypotheses considered for further investigation. Because 

segment clustering is unsupervised and largely model-free, it 

is a useful tool for objective separation of molecular features.  

To demonstrate this, we constructed a synthetic dataset 

consisting of equal numbers of experimental traces from 

samples run with two structurally rather different molecules. 

The first half of traces are taken from a dataset collected with 

the molecule C6-2SMe (Chart 1), which displays a short 

molecular feature at ~10-4 G0 (Fig. 8a,c). Segment clustering 

of this dataset unambiguously identified a full-valley cluster 

corresponding to this molecular feature (Fig. 8b,c; see SI 

section S.10 for details). The remaining traces for our 

synthetic mixture are taken from an OPV2-2BT (Chart 1) 

dataset. The histograms of the breaking traces for this 

molecule reveal a strong high-conductance feature at ~10-3 G0 

as well as a subtler low-conductance feature at ~10-4 G0 (Fig. 

8d,f), likely due to molecular stacking or direct π-Au 

binding.21,59  While segment clustering identifies a main 

plateau cluster corresponding to the high-conductance feature 

(Fig. 8e), none of the full-valley clusters matches well with 

the low-conductance feature (see SI section S.10 for details). 

This shows that segment clustering will not always extract 

every meaningful feature from a dataset.  

However, because the low-conductance feature of OPV2-

2BT partially overlaps the primary C6-2SMe feature, our 

synthetic mixture provides an excellent challenge case for 

Segment Clustering. This can be seen in the 2D histogram for 

our mixture (Fig. 8g), which is qualitatively quite similar to 

the pure OPV2-2BT histogram (Fig. 8d) and displays exactly 

the type of ambiguous dual density cloud often reported in 

literature,9,28–31  and sometimes imbued with speculative 

microscopic meaning. Moreover, Figure 8i shows that the 

intensity and location of the lower peak in the 1D histogram 

of our synthetic mixture falls within the variability observed 

between different pure OPV2-2BT datasets, further 

illustrating the challenge posed by separating these two 

molecular distributions.  

As shown in Figure 8h, segment clustering of our mixture 

dataset identifies two full-valley clusters that appear to 

correspond to the main OPV2-2BT and C6-2SMe features 

(though because both molecular features are “diluted” by 

mixing, the minimum valley size was lowered below 1% to 

locate these valleys; see SI section S.11 for details). Because 

this mixture was constructed synthetically, we can 

quantitatively test this hypothesis. We find that the separation 

of molecular features is indeed quite accurate, even though the 

two clusters partially overlap: 97% of the data in the OPV2-

2BT cluster belong to traces taken from the OPV2-2BT 

dataset, and 84% of the data in the C6-2SMe cluster come 

from C6-2SMe traces. It is not surprising that the C6-2SMe 

cluster has a higher misidentification rate, because this 

cluster’s shorter segments are much more likely to be found in 

an arbitrary dataset simply by chance. This is evidenced by the 

fact that a cluster of C6-2SMe-like segments did not exist in 

the pure OPV2-2BT dataset, indicating that the misassigned 

segments added to the C6-2SMe cluster from the mixture 

dataset did not form a region of high density by themselves. 

To further test the robustness of this feature separation, we 

constructed seven additional 1:1 OPV2-2BT:C6-2SMe 

synthetic mixture datasets using different combinations of 

traces from different pure-molecule datasets (see SI section 

S.4 for details). As shown in Figure S17 and Table S6 in the 

SI, segment clustering successfully extracted both molecular  



11 

 

 

Figure 8. (a) 2D histogram for 1315 consecutive breaking traces collected in the presence of C6-2SMe. (b) The full-valley cluster 

identified as the main plateau cluster for the data from (a). (c) 1D histogram for the raw data from (a) (yellow), overlaid with the 1D 

histogram for the data from the main plateau cluster in (b) (blue) with an unrestricted Gaussian fit (dotted red). (d-f) Analogous plots 

to (a-c) for a dataset containing 5807 consecutive breaking traces collected in the presence of OPV2-2BT. (g) 2D histogram for a 

synthetic dataset constructed by combining equal numbers of traces from the datasets in (a) and (d). (h) The two full-valley clusters 

identified as molecular plateau features for the data from (g). (i) 1D histogram for the data from (g) (dark blue), overlaid with the 1D 

histograms for the two clusters from (h) (pink and yellow) and their respective single Gaussian fits (dotted lines). For comparison, 1D 

histograms for 5 different raw OPV2-2BT datasets are included (various shades of green), demonstrating that the intensity and location 

of the peaks in the synthetic mixture lie well within the range of the different pure OPV2-2BT datasets. 

features for all but one of these mixtures (see SI section S.12 

for details), and each of these separations displayed high 

quantitative accuracy.   

By reliably separating features in an experimental dataset, 

Segment Clustering contributes to an important goal of single 

molecule transport research, towards which some progress has 

already been made.  For example, several existing clustering 

algorithms have a demonstrated ability to extract multiple sub-

features from experimental datasets of one molecular 

species.33,34,36,38,42 However, while these studies offer 

intriguing hints about different binding modes and molecular 

conformations, such sub-features are unfortunately difficult to 

corroborate without extremely trustworthy atomistic 

simulations. More-testable examples of feature separation 
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have been demonstrated by Hamill et al., whose sorting 

algorithm successfully separated the features for two 

molecules in a mixture displaying an “obvious bimodal 

feature”,34 and recently by Huang et al., whose deep-learning 

clustering algorithm separated two features from an 

overlapping molecular mixture.37 However, because neither 

mixture was synthetic, these separations could not be 

quantitatively confirmed for the accuracy of cluster 

assignments. Finally, Vladyka and Albrecht very recently 

applied a neural network-based classification algorithm to a 

synthetic mixture of three different molecules, and while some 

pairwise separation was qualitatively observed, the 

combination of all three molecular features could not be 

separated.41 The OPV2-2BT/C6-2SMe case study described 

here is thus a significant advance in that it constitutes a 

quantitatively validated example of experimental feature 

separation, and it does so in the challenging case of 

overlapping features. This provides a powerful demonstration 

of the usefulness of Segment Clustering as a hypothesis 

generation tool.  

4. CONCLUSIONS 

In this work we presented Segment Clustering, a novel 

approach to aid hypothesis generation for datasets of single-

molecule breaking traces. Segment Clustering is categorically 

different than all previous clustering approaches since it treats, 

for the first time, pieces of breaking traces as the fundamental 

clustering unit, allowing behaviors occurring in just part of a 

trace to be more readily identified. This sub-trace focus gives 

Segment Clustering the potential to yield new and powerful 

insights into single-molecule datasets because grouping the 

data by segments is a better match for the empirical “local 

history” and piece-wise linear structure of break junction data 

than grouping by entire traces. This suggests that the 

segmentation approach described here may be a valuable 

avenue for future investigations even outside the context of 

clustering, for example by comparing the distribution of 

segment lengths between different datasets or exploring the 

likelihood of certain types of segments to appear in the same 

traces as others. To encourage such new directions, and to 

enable the use of the Segment Clustering in other contexts, we 

have made our code freely available in a user-friendly open-

source package (github.com/LabMonti/SMAUG-Toolbox). 

To demonstrate the power and versatility of the full 

Segment Clustering approach, we have applied it to two 

common challenges faced in the analysis of breaking traces. 

First, to address the related issues of complex peak shapes and 

varying background signals in conductance histograms, we 

used Segment Clustering to extract the “primary” molecular 

feature in a series of similar molecules. We showed that this 

increases measurement reproducibility and the robustness of 

peak-fitting, allowing subtle conductance changes to be 

distinguished with confidence. Second, to address the problem 

of separating ambiguous or overlapping molecular features, 

we used Segment Clustering to search for clusters 

corresponding to particular features in 1D and 2D histograms. 

By constructing a synthetic mixture of traces from two 

different molecules with overlapping conductance 

distributions, we demonstrated that Segment Clustering 

performs this feature separation with high quantitative 

accuracy even in challenging circumstances. We expect that 

these two advances in particular, as well as the new 

perspective offered by Segment Clustering in general, will aid 

in the establishment of structure-property relationships in 

single molecule quantum transport and thus help unlock new 

paths toward harnessing molecular electronics by design.   
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S.1 MCBJ Set-Up 

 
Figure S1. Images of MCBJ set-up. (a) Example of a lithographically defined MCBJ sample. (b) False 

color SEM image at 45° showing the suspended gold bridge in the center of a sample. (c) Side view of 

bending apparatus showing clamped-in sample with push rod underneath. (d) Top view of a clamped-in 

sample showing a Kalrez gasket placed around the center of the junction. 

 

S.2 Inter-Electrode Distance Calibration 

In an MCBJ set-up, the amount by which the two nano-electrodes pull apart (inter-electrode distance, 

𝛥𝑥) for a given vertical movement of the push rod (piezo distance, 𝛥𝑧) is given by the “attenuation ratio” 
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(𝑟 =  𝛥𝑥/𝛥𝑧). While 𝑟 can be calculated using a simple model of elastic bending, this result tends to be 

wrong by a factor of 2 to 4 due to the inhomogeneous elastic properties of real lithographically defined 

junctions.1 It is therefore preferable to experimentally determine the attenuation ratio via one of several 

possible calibration methods.2 Because the attenuation ratio depends on the exact length of the suspended 

gold bridge, which varies from sample to sample, we independently calibrated 𝑟 for each sample 

considered in this work. To enable this calibration, each sample was run “bare” (no molecules deposited, 

only pure solvent which quickly evaporates) for a few thousand traces, and the 𝑟 value calculated from 

these traces was then applied to all subsequent traces collected with that sample.   

For the calibration itself, we employ the method of the tunneling slope. For small bias voltages, the 

tunneling current between two nano-electrodes as a function of their separation, 𝑥, is well-approximated 

by 𝐼(𝑥) = 𝐼0exp (−𝐵𝑥), where 𝐵 is a constant depending on the effective work function of the 

electrodes.3 A plot of 𝐿𝑜𝑔10(𝐺/𝐺0) vs. distance should therefore have a constant slope. By comparison to 

an STM-BJ set-up, Hong et al. found that this slope is 5.5 to 6 decades/nm for breaking traces collected 

in argon.4 In an independent study, Grüter et al. found that the tunneling slope is ~1.7 times smaller for 

traces collected in air compared to in vacuum.5  Based on high-quality data collected under vacuum,2 this 

implies traces collected in air should have a tunneling slope of ~6 decades/nm, in agreement with the 

Hong et al. result, and thus we use this value for our calibration.  
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Figure S2. Histogram of 3481 individual trace attenuations (blue) and Gaussian fit (dotted red) used to 

determine the attenuation ratio for sample 113-2. Bin width was set to 1.54×10-5 using the Freedman–

Diaconis rule.   

 

To perform the calibration, we first linearly fit the portion of each breaking trace below 2×10-4 G0, since 

this ensures that the tunneling slope is reliable,2 and above 10-5 G0, to be comfortably above the value of 

the noise floor of our amplifier.6 We then calculated an attenuation ratio for each trace by assuming that 

the tunneling slope is 6 decades/nm. Next, a histogram of these attenuation ratios was constructed using 

the Freedman–Diaconis rule to determine the bin width, and finally we fit this histogram with a single 

unrestricted Gaussian (e.g. Figure S2). The peak of this Gaussian was taken as the attenuation ratio for 

all traces collected with the same sample. Table S1 shows the number of tunneling traces used to calibrate 

each sample considered in this work and the resulting attenuation ratios.  
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Table S1. List of tunneling datasets considered in this work. One such tunneling dataset was collected for 

each MCBJ sample after depositing pure solvent (which quickly evaporates) but before depositing 

molecules. These tunneling datasets were used to determine an attenuation ratio for each sample, which 

was then applied to all subsequent datasets collected using that same sample.   

Dataset ID# Sample # 
Molecule Later 

Deposited on Sample 
# of Traces 

Attenuation 

Ratio/10-4 Solvent Used 

135 108-4 C6-2SMe 6460 1.01 Hexanes 

127 111-4 OPV2-2BT 1537 1.02 Dichloromethane 

130 108-5 OPV2-2BT 3847 1.52 Dichloromethane 

49 097-2 OPV3-BT-Br 3469 2.01 Dichloromethane 

82 106-1 OPV3-BT-Br 5777 1.96 Dichloromethane 

85 098-4 OPV3-BT-Cl 2148 1.18 Dichloromethane 

102 102-5 OPV3-BT-Cl 3881 2.30 Dichloromethane 

105 101-4 OPV3-BT-CN 7664 1.58 Dichloromethane 

112 101-3 OPV3-BT-CN 2084 1.55 Dichloromethane 

117 114-2 OPV3-BT-CN 2206 1.42 Dichloromethane 

120 103-2 OPV3-BT-CN 8009 1.98 Dichloromethane 

30 098-2 OPV3-BT-F 4113 1.36 Dichloromethane 

33 099-5 OPV3-BT-F 4894 1.47 Dichloromethane 

94 099-1 OPV3-BT-F 4580 2.03 Dichloromethane 

97 098-3 OPV3-BT-F 3454 1.72 Dichloromethane 

1 113-2 OPV3-BT-H 3481 1.47 Dichloromethane 

11 104-5 OPV3-BT-H 7122 1.17 Dichloromethane 

54 104-4 OPV3-BT-H 3567 1.84 Dichloromethane 

23 097-1 OPV3-BT-MeO 2523 1.27 Dichloromethane 

27 111-2 OPV3-BT-MeO 2480 0.96 Dichloromethane 

18 113-3 OPV3-BT-NO2 6269 1.21 Dichloromethane 

21 113-4 OPV3-BT-NO2 3497 1.59 Dichloromethane 

 

S.3 Additional Design Criteria for Segment Clustering 

S.3.1 Trace Starting and Ending Criteria. In the BUS segmentation process, the first segment of each 

trace is forced to start at the first data point. It is thus important to use consistent starting criteria for every 

trace in a dataset to avoid any influence from confounding variables. For this work, we begin each trace 

the last time it passes below 2.5 G0, to avoid issues with limited discrimination and accuracy of our 

amplifier at higher conductance values.6  Modifications to these starting criteria do not meaningfully affect 

our results (see section S.5.3). 
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The ending criteria for each trace are similarly important. We first exclude any conductances below the 

noise floor of our amplifier6 (typically 10-6 G0, but slightly higher in a few datasets; see section S.4 for 

details). Additionally, in cases where a trace drops below the noise floor but then later returns to a higher 

conductance, we end the trace the first time it drops below this level. This is necessary to avoid large 

empty gaps in traces, since BUS is not designed to work in such cases.  

S.3.2 Parameter Standardization. Standardizing the distribution of a variable typically involves 

dividing by the sample standard deviation. However, because the standard deviation is sensitive to outliers, 

this can skew the standardization process. In contrast, the range of the middle 80% of values in a dataset 

is quite insensitive to outliers, so we use this measure of spread to standardize the first three segment 

parameters (X0, Y0, and Log(L)). Because the θ and R2 parameters have limited possible ranges—(-90° to 

90°) and (0 to 1), respectively—we standardize them by dividing by 80% of those full possible ranges. 

This has the advantage of making the standardization process less dependent on a particular dataset.  

Finally, θ is only calculated after the inter-electrode distance and log(conductance) dimensions have 

already been standardized. This is necessary to ensure that θ is fully independent of the units on the x- and 

y-axes.  

S.3.3 Assignment of SOPTICS Parameter Values. The cL and cP SOPTICS parameters control how 

many random projections are performed, with larger values leading to a more stable and accurate 

approximation of the original OPTICS algorithm. The creators of SOPTICS found that cL = cP = 20 

produced excellent results;7 out of an abundance of caution, we use a higher value of cL = cP = 30 (see 

section S.5.1 for details).  

The minSize parameter helps control how the random projections are sampled to find nearby points.7  

Because SOPTICS is extremely insensitive to the value of minSize over a large range (see section S.5.2), 

we fix its value at 120.  
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S.3.4 Length-Weighting of Segments. Because OPTICS/SOPTICS is a density-based clustering 

algorithm, the density of segment parameters in 5-dimensional space ultimately determines how segments 

are clustered, with the densest regions forming the “cores” of key clusters. However, because segments 

are drawn from traces of roughly the same length, there will almost always be many more short segments 

than long ones. Perversely, this leads to a lower density of long segments, even though they represent 

many more data points from the original traces, making it difficult to form clusters of long segments. To 

remedy this issue, in the density calculations we apply a weighting factor to each segment that is 

proportional to its length. This ensures that the density of segments in parameter space corresponds to the 

density of raw data points rather than the number of segments themselves. In practice, this weighting is 

accomplished by duplicating each segment in proportion to its length before clustering. This step 

introduces another parameter, len_per_dup, that controls how many times a segment of a given length is 

duplicated. This parameter also serves as the minimum segment length, as we exclude segments that are 

not long enough for even a single duplicate. We set len_per_dup to 0.05 nm (e.g., segments between 0.20 

and 0.24 nm long will have 4 total copies) to ensure that all segments down to the length of a single bond 

will be included. We also note that the effects of changing len_per_dup are correlated with the effects of 

changing minPts, the parameter that defines how density is estimated (see section S.5.4). Therefore, 

because we use 12 different values of minPts, we are already capturing much of the possible variation 

from using different values of len_per_dup. Segment duplication is performed after the parameterization 

step.  

S.4 Dataset Collection and Construction 

Pausing a sample to re-deposit molecular solution often leads to a discrete, qualitative change in trace 

behavior—e.g., the fraction of traces displaying a molecular plateau (the “molecular yield”) may 

significantly increase or decrease after re-deposition, or the gold electrodes may undergo rearrangement, 



S8 

 

as evidenced by a significant change in where bridge rupture occurs on the absolute push rod movement 

scale. Such changes may also occur when depositing pure solvent on a junction already containing 

molecules, or when “starting a new trial” by fully relaxing the push rod and junction, followed by 

restarting trace-collection. We therefore treat the traces collected during each deposition/trial combination 

for a given MCBJ sample as a separate dataset. In the context of clustering, splitting each sample into 

multiple datasets in this way is the conservative approach; if instead we clustered the traces from each 

sample as one big dataset, we would be much more likely to find “consistent” features because the 

algorithm might only identify the regions where multiple disparate features all overlap. Splitting datasets 

at the natural points where qualitative changes tend to occur challenges Segment Clustering by providing 

the most opportunities for it to be confounded by changes in the “background”.  

For this work, we did not consider datasets from samples which showed strong signs of contamination 

in their initial “pure tunneling” sections. We also excluded molecular datasets in which no molecular 

feature was apparent, insufficient traces were collected (significantly less than 1000), or obvious noise 

features were present. For the OPV3-2BT-X family, this left us with 43 different molecular datasets, each 

corresponding to an entire deposition/trial block of traces (Table S2). We observed no apparent correlation 

between the number of depositions or trials and junction conductance. In nearly all of these datasets, the 

noise floor was set to 10-6 G0, the nominal bottom end of the range for our amplifier.6  However, due to 

differences in calibration, a few samples displayed higher noise levels, requiring us to manually set a 

higher noise floor to prevent physically meaningless data from affecting clustering results (see Table S2).  
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Table S2. List of all OPV3-2BT-X datasets considered in this work. Each dataset corresponds to a full 

deposition/trial block of traces. All molecular solutions were 1 M. The top-to-bottom order of datasets in this table 

corresponds with the left-to-right order of points in Figure 7. 

Dataset ID# Sample # Trial # Deposition # # of Traces Molecule Name Noise Floor (G0) 

2 113-2 1 1 5424 OPV3-BT-H 1.0E-06 

3 113-2 1 2 9446 OPV3-BT-H 1.0E-06 

12 104-5 1 1 3545 OPV3-BT-H 1.0E-06 

13 104-5 1 2 4550 OPV3-BT-H 1.0E-06 

14 104-5 2 2 2997 OPV3-BT-H 1.0E-06 

15 104-5 3 2 6280 OPV3-BT-H 1.0E-06 

16 104-5 4 2 5062 OPV3-BT-H 1.0E-06 

58* 104-4 2 3 4113 OPV3-BT-H 1.0E-06 

59 104-4 3 3 6294 OPV3-BT-H 1.0E-06 

25 097-1 2 1 4065 OPV3-BT-MeO 1.0E-06 

26 097-1 2 2 3137 OPV3-BT-MeO 1.0E-06 

28 111-2 2 1 4051 OPV3-BT-MeO 1.0E-06 

29 111-2 2 2 6214 OPV3-BT-MeO 1.0E-06 

31 098-2 1 1 5182 OPV3-BT-F 1.0E-06 

95 099-1 1 1 7695 OPV3-BT-F 1.0E-06 

96 099-1 1 2 2147 OPV3-BT-F 1.0E-06 

34 099-5 1 1 7922 OPV3-BT-F 1.0E-06 

35 099-5 1 2 18568 OPV3-BT-F 1.0E-06 

37 099-5 2 3 3941 OPV3-BT-F 1.0E-06 

98 098-3 1 2 8661 OPV3-BT-F 1.0E-06 

99 098-3 1 4 8753 OPV3-BT-F 1.0E-06 

101 098-3 2 5 4120 OPV3-BT-F 1.0E-06 

86 098-4 2 1 2940 OPV3-BT-Cl 1.0E-06 

88 098-4 3 2 7670 OPV3-BT-Cl 1.0E-06 

103 102-5 1 1 6394 OPV3-BT-Cl 1.0E-06 

104 102-5 1 2 7841 OPV3-BT-Cl 1.0E-06 

50 097-2 1 1 8603 OPV3-BT-Br 1.0E-06 

51 097-2 1 2 10529 OPV3-BT-Br 1.0E-06 

83 106-1 1 1 9572 OPV3-BT-Br 1.0E-06 

84 106-1 1 2 15707 OPV3-BT-Br 1.0E-06 

19 113-3 1 1 7310 OPV3-BT-NO2 1.0E-06 

20 113-3 1 2 8083 OPV3-BT-NO2 1.0E-06 

22 113-4 1 1 7799 OPV3-BT-NO2 1.0E-06 

107 101-4 2 2 6679 OPV3-BT-CN 5.5E-06 

108 101-4 2 3 7449 OPV3-BT-CN 5.5E-06 

109 101-4 2 4 2309 OPV3-BT-CN 5.5E-06 

114* 101-3 1 2 2772 OPV3-BT-CN 1.0E-05 

116 101-3 2 3 5477 OPV3-BT-CN 1.0E-05 

118 114-2 1 3 4280 OPV3-BT-CN 3.0E-06 

121 103-2 1 1 10259 OPV3-BT-CN 1.0E-06 

123 103-2 2 2 3175 OPV3-BT-CN 1.0E-06 

125 103-2 3 3 2783 OPV3-BT-CN 1.0E-06 

126** 103-2 3 3 6548 OPV3-BT-CN 1.0E-06 

*Dataset not included in analysis; see section S.7 for details.  

**Pure dichloromethane was deposited between datasets #125 and #126; hence they are treated as distinct datasets even though they have 

the same trial number and number of molecular depositions.  
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For this work, we also considered five OPV2-2BT datasets and two C6-2SMe datasets (Table S3). In 

two of these cases, the dataset consisted of a subset of consecutive traces from a deposition/trial block in 

order to exclude clear noise features (see Table S3). We then constructed eight different 1:1 synthetic 

mixtures of these OPV2-2BT and C6-2SMe datasets by combining different sets of traces from different 

datasets. Because the OPV2-2BT datasets contained more traces, for each mixture we used all of the traces 

from one of the C6-2SMe datasets and then added an equivalent number of consecutive traces from a 

subset of one of the OPV2-2BT datasets (see Table S4 for details).  

Table S3. List of all OPV2-2BT and C6-2SMe datasets considered in this work. “Subset” refers to datasets 

corresponding to a consecutive subset of traces from an entire deposition/trial block, taken to exclude clear 

noise features. All noise floors are 10-6 G0. 

Dataset 

ID# 

Sample 

# 

Trial 

# 

Deposition 

# 
Subset 

# of 

Traces 

Molecule 

Name 

Solution 

Concentration (μM) 
Solvent Used 

128 111-4 1 1 No 3234 OPV2-2BT 1 Dichloromethane 

129 111-4 1 2 No 2680 OPV2-2BT 1 Dichloromethane 

132 108-5 1 2 Yes 2400 OPV2-2BT 1 Dichloromethane 

133 108-5 3 5 No 6562 OPV2-2BT 1 Dichloromethane 

134 108-5 4 1* No 5807 OPV2-2BT 10 Dichloromethane 

136 108-4 1 2 Yes 1315 C6-2SMe 10 Hexanes 

137 108-4 2 2 No 1065 C6-2SMe 10 Hexanes 

*1st deposition of a 10 μM solution, but 6th depositon overall (first 5 depositions were each with a 1 μM solution). 

 

Since each sample has a slightly different attenuation ratio, the density of data points on the inter-

electrode distance scale is also different for each sample. This is an issue for constructing synthetic mixture 

datasets because it would cause the denser dataset to have extra weight in what is supposed to be a 1:1 

mixture. We therefore used linear interpolation to resample all OPV2-2BT and C6-2SMe traces at a rate 

of one data point per 4×10-4 nm of inter-electrode distance. This resampling was performed before 

clustering the pure datasets and before the construction and clustering of the synthetic mixture datasets.  
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Table S4. List of the eight different 1:1 OPV2-2BT:C6-2SMe synthetic mixture datasets created for this 

work, along with details of their construction. Dataset ID #s refer to Table S3. Mixture #1 is the dataset 

used for Figure 8g-i.  

Mixture # Total # of Traces 
Dataset ID for OPV2-

2BT Traces 

Dataset ID for 2,9-

dithiadecane 

Traces Used from 

OPV2-2BT Dataset 

1 2630 134 136 1-1315 

2 2130 134 137 1-1065 

3 2630 133 136 1-1315 

4 2630 128 136 1-1315 

5 2630 132 136 1-1315 

6 2130 132 137 1-1065 

7 2630 129 136 1-1315 

8 2630 134 136 1500-2814 

 

S.5 Robustness of OPV3-2BT-X Results to Clustering Parameters 

S.5.1 Robustness to Random Seed. The SOPTICS algorithm employs random projections in order to 

achieve its improved clustering times, and even regular OPTICS, when properly implemented, uses a 

random choice for the first point in the cluster order. If the clustering structure extracted by these 

algorithms is truly inherent to the dataset, then the clustering results should not be meaningfully affected 

by using a different set of random numbers. To confirm that this is the case for our OPV3-2BT-X results, 

we re-clustered one of our datasets (ID# 3 in Table S2) using ten different random seeds for MatLab’s 

pseudo-random number generator. This is also a good way to evaluate our choice for the parameters cL 

and cP; because these parameters control how many different random projections are used by SOPTICS, 

we know that their values are suitably large when the clustering outputs for different random seeds all 

converge to give the same results. We therefore repeated this random seed testing for three different values 

of cL = cP. For this testing we fixed the value of minPts at 85.  

We used two different methods to evaluate the similarity of these different clustering results. First, we 

simply compared the peak conductance value for the main plateau cluster in this dataset, as this peak 

conductance is what we are ultimately interested in for our analysis of the OPV3-2BT-X family. Second, 
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we used a similarity index developed by Rand to compare the entire clustering solutions that each main 

plateau cluster belongs to. The Rand similarity index is a pairwise comparison that ranges from 0 to 1, 

with 1 meaning that every data point was assigned to the same cluster in both clustering solutions and 0 

meaning that every data point was assigned to a different cluster in one solution vs. the other.8  Because 

this method compares the overall clustering structure instead of just the peak value of a single cluster, it 

provides a more stringent test of the similarity of different clustering results.  

 
Figure S3. Comparison of fitted peak conductance values for the main plateau cluster for a single OPV3-

2BT-H dataset clustered using 10 different random seeds and three different values for the parameters cL 

= cP, with the minPts parameter fixed at 85 (left axis). For the right axis, the clustering solution which 

contained the main plateau cluster for each of the 30 clustering outputs was first identified. Each of these 

solutions was then compared to the solution for a random seed of 9001 using the Rand similarity index. 

These results demonstrate both that SOPTICS is not affected meaningfully by random seed choice and 

that cL = cP is set to a sufficiently large value. 
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The results of these evaluation methods for our random seed testing are summarized in 

 
Figure S3. Even for cL = cP = 20, changing the random seed has essentially no effect, with the 

conductance peak varying by less than 0.003 decades and the Rand Similarity Index always greater than 

0.985. Our decision to use cL = cP = 30, where the convergence is even tighter, is thus clearly a very safe 

choice.  

In addition, these results demonstrate that in our implementation SOPTICS is essentially unaffected by 

the set of random numbers used, and is thus behaving properly. For the clustering results discussed in the 

main body of the paper and for all subsequent testing, we therefore used the last digits of the system time 

to generate a different random seed for each clustering run.  

S.5.2 Robustness to minSize. To ensure that our OPV3-2BT-X results are not dependent upon our 

choice for the minSize parameter, we re-clustered another dataset (ID# 25 in Table S2) using 17 different 

values of minSize. We again fixed the value of minPts at 85 for this testing.  
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Figure S4. Comparison of fitted peak conductance values for the main plateau cluster for a single OPV3-

2BT-MeO dataset clustered using 17 different values for the parameter minSize, with the minPts parameter 

fixed at 85 (left axis). For the right axis, the clustering solution which contained the main plateau cluster 

for each of the 17 clustering outputs was first identified. Each of these solutions was then compared to the 

solution for minSize = 120 using the Rand similarity index. These results demonstrate that the exact value 

of minSize is not very important for the behavior of SOPTICS, and so it is safe to use a single fixed value 

for this parameter. 
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We used the same two evaluation methods (main plateau cluster peak conductance and Rand similarity 

index) described in section S.5.1 to compare these different clustering results. As shown in 

 

Figure S4, the clustering output is extremely insensitive to the choice of minSize over quite a large 

range. This justifies our choice to fix the value of minSize at 120.   

S.5.3 Robustness to Trace Starting Criteria. As described in section S.3.1, to ensure consistent 

starting criteria before the segmentation step, we begin each trace the last time it passed below a 

conductance of 2.5 G0. To check that our OPV3-2BT-X results do not depend on this choice, we re-

clustered another of our datasets (ID# 19 in Table S2) using six different values for this “TopChop” 

conductance value.  

Because changing the TopChop affects the segmentation step, these different clustering outputs do not 

contain the exact same objects for clustering, and so cannot be compared using the Rand similarity index. 
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However, comparing the peak conductance of the main plateau cluster for each of these results (

 
Figure S5a) shows that the choice of the TopChop value does not meaningfully impact our results.  

As an additional test, we also considered a different type of starting criteria: instead of a “TopChop”, a 

“LeftChop” in which we begin each trace at zero inter-electrode distance. Comparing the results for six of 

our datasets for these two different chop methods (
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Figure S5b) again confirms that our OPV3-2BT-X conclusions are not dependent upon our choice of 

starting criteria. We note that this left chop at zero significantly improves clustering time by reducing the 

number of data points, and so may be preferred in some situations.  

 
Figure S5. Demonstration of the insensitivity of OPV3-2BT-X clustering results to trace starting criteria. 

(a) Peak conductance values for the main plateau cluster of the same OPV3-2BT-NO2 dataset clustered 

using 9 different “TopChop” values (only the portion of each trace after the last time its conductance 

passes below TopChop is included for clustering). (b) Comparison of the peak conductance values for the 

main plateau clusters for six different OPV3-2BT-X datasets (dataset ID#s refer to Table S2) clustered 

using a TopChop of 2.5 G0 (red) or a “LeftChop” (blue), in which only the portion of each trace after zero 

inter-electrode distance is included for clustering. 

 

S.5.4 Robustness to len_per_dup and Correlation with minPts. As described in section S.3.4, the 

parameter len_per_dup controls how often each segment is duplicated in proportion to its length (and also 

sets the minimum segment length). Decreasing len_per_dup increases the density of data points in all 

regions, and is thus expected to have a similar effect to decreasing the value of minPts. To confirm this, 

we re-clustered one of our datasets (ID# 2 in Table S2) at a variety of combinations of minPts and 

len_per_dup parameter values. The clustering solutions containing the main plateau cluster were then 
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compared using the Rand similarity index as well as the peak plateau conductance (

 
Figure S6a,b), as described in section S.5.1. Because len_per_dup also controls the minimum segment 

length, clustering runs with larger len_per_dup values used slightly fewer segments for clustering. 

Therefore, for each pairwise comparison only those segments present in both clustering results were 

considered when computing the Rand similarity index.  

 
Figure S6. Comparison of outputs for a single OPV3-2BT-H dataset clustered using 120 different 

combinations of the minPts and len_per_dup parameters. (a) Rand similarity index for the clustering 

solution from each output which contained the main plateau cluster, compared to the chosen solution for 

the minPts = 85 and len_per_dup = 0.05 nm output. The fact that most of the index values are close to 

one shows that the clustering is relatively insensitive to these two parameters, and the northwest-to-

southeast “ridge” demonstrates that they are positively correlated with each other. (b) Fitted peak 
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conductance values for the main plateau cluster for each output, demonstrating that this measurement is 

quite insensitive to both parameters. 

 

The high Rand similarity indices (

 
Figure S6a) and similar peak conductance values (
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Figure S6b) that are found across a wide range of len_per_dup values indicate that clustering results are 

quite robust to changes in this parameter. More importantly, however, 

 
Figure S6a demonstrates that there is indeed a strong correlation between the effects of changing the 

len_per_dup and minPts parameters, as expected. This helps justify our decision to fix the value of -

len_per_dup, because it means that by using multiple values of minPts we are already capturing much of 

the variation that would be caused by changes to len_per_dup.  

S.5.5 Robustness to Settings of Iterative L-Method. One of the advantages to using the Iterative L-

Method as a stopping criterion for Bottom-Up Segmentation is that it is described as being parameter-free. 

However, the algorithm does rely on a value, minimum_cutoff_size, which the authors argue can be 

considered a constant instead of a parameter because a value of 20 yields good results in a wide variety of 

contexts.9  Out of an abundance of caution, we also tried re-clustering a handful of our datasets using a 

smaller (16) or larger (24) value of minimum_cutoff_size.  
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Figure S7. Comparison of the peak conductance values for the main plateau clusters for six different 

OPV3-2BT-X datasets (dataset ID#s refer to Table S2) clustered after using the “standard” segmentation 

procedure (blue); after segmentation with the minimum_cutoff_size value set to 16 (red) or 24 (green) 

instead of its standard value of 20; and after using the “Global” instead of the “Greedy” Iterative L-Method 

as stopping criteria for segmentation (black). These results demonstrate that slight variations in how the 

segmentation algorithm is implemented do not meaningfully affect our OPV3-2BT-X results. 

 

Additionally, the authors actually present two slight variations of the Iterative L-Method: “Global” and 

“Greedy”. As mentioned above, we use the “Greedy” Iterative L-Method because it was generally found 

to produce superior results.9  However, again out of an abundance of caution, we also tried re-clustering 
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these same datasets using the “global” Iterative L-Method instead. As shown in 

 
Figure S7, neither the changes to minimum_cutoff_size nor the switch from “Greedy” to “Global” 

meaningfully affect our results for the OPV3-2BT-X molecules.  

S.6 Selecting Clusters from Multiple Cluster Outputs for the Same Dataset 

As discussed in the main text, each dataset in this work was re-clustered twelve times using different 

values of the parameter minPts in order to account for uncertainty in the “optimal” setting for this 

parameter. For the figures in this work, we calculated and show each clustering output for minPts = 85 

(roughly in the center of the 12 different minPts values).  

After selecting a particular full-valley cluster of interest in the minPts = 85 output of a given dataset 

(e.g. the main plateau cluster for each OPV3-2BT-X dataset), we employed an automated algorithm to 

identify the analogous full-valley cluster in each of the other eleven clustering outputs for that same 

dataset. This algorithm first calculates the median value of each normalized segment parameter for the 

manually chosen cluster as well as for every full-valley cluster in the other eleven outputs. It then selects 
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the single full-valley cluster from each of those outputs with the smallest Euclidean distance between its 

“median centroid” and that of the manually chosen cluster. The clusters identified with this automated 

algorithm matched the unambiguous assignments that would have been made by eye.  

When the distributions for chosen clusters were fit to determine peak conductance values, the clusters 

from the twelve different outputs for each dataset were fit independently to obtain twelve different peak 

values. To represent the peak conductance of a single dataset (specifically, in Figure 7, 

 



S24 

 

Figure S5,  

Figure S7, and Figure S17), we use the median from among these twelve peak values, along with error 

bars representing the range of the middle eight of the twelve values (i.e. the middle 66.7%).  

S.7 Selection of Main Plateau Clusters for OPV3-2BT-X Datasets 

Of the 43 OPV3-2BT-X datasets listed in Table S2, one dataset (ID# 114) did not produce any full-

valley clusters that came close to corresponding to the molecular feature in the 2D histogram (possibly 

because the percentage of junctions containing a molecule was too low), and so was excluded from 

subsequent analysis. In 31 cases, only a single full-valley cluster had any similarity to the molecular 

feature, and each of these clusters was quite similar to the main plateau cluster shown in Figure 4h. We 

therefore unambiguously assigned each of these clusters as the analogous “main plateau cluster” for their 

respective datasets.  

In 10 of the OPV3-2BT-X datasets, two full-valley clusters were found which might correspond well to 

the molecular feature region in the 2D histogram. However, in each of these cases, one of the clusters 
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consisted of mostly flat segments like the main plateau clusters in the 31 datasets mentioned above (e.g. 

Figure S8a,d,g,j), whereas the second cluster consisted of more angled segments at slightly higher 

conductance (e.g. Figure S8b,e,h,k). Moreover, the valley corresponding to each flatter cluster always 

showed up in a similar location in its reachability plot as the other identified main plateau clusters (e.g. 

Figure S8c,f,i,l), suggesting that it represents an analogous component of the dataset’s hierarchical 

structure.  Therefore, in these 10 datasets there was still a single unambiguous choice for which full-valley 

cluster was the analogous feature to the cluster in Figure 4h and should thus be assigned as the main 

plateau cluster. Figure S8 compares the chosen main plateau clusters with the angled clusters for four 

examples from these 10 datasets to demonstrate how clear these choices were.  
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Figure S8. (a) Main plateau cluster chosen for dataset #59 (see Table S2). (b) Second full-valley cluster 

discovered in dataset #59 which corresponds well with the molecular feature from the 2D histogram, but 

is qualitatively distinct from the other identified main plateau clusters due to its higher conductance and 

more-angled segments. (c) Reachability plot for dataset #59 with the valleys corresponding to the 
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clusters in (a) and (b) highlighted, showing how they fit into the hierarchical clustering structure. (d-f) 

Analogous plots for dataset #103. (g-i) Analogous plots for the dataset #104. (j-l) Analogous plots for 

dataset #37. Together, these four examples demonstrate that even in the datasets containing multiple 

molecule-like full-valley clusters, there was consistently an unambiguous choice for which cluster was 

structurally most analogous to the cluster in Figure 4h and should thus be assigned as the main plateau 

cluster (i.e., the flatter clusters in the first column).  

 

Finally, in one OPV3-2BT-H dataset (ID# 58), only a single full-valley cluster corresponding to the 

molecular feature was found (Figure S9), but this cluster resembled the angled clusters discussed above 

much more than the main plateau clusters identified in the other 41 datasets. This is therefore the second 

OPV3-2BT-X dataset that we excluded from subsequent analysis because this cluster does not appear to 

belong in the same category as the other 41. No qualitative change to our conclusions would have resulted 

from inclusion of this dataset.  

 
Figure S9. The only full-valley cluster from dataset #58 (see Table S2) which corresponds to the molecular 

feature in the 2D histogram. Because this feature seems to match the “secondary”, angled clusters in 

Figure S8 more than all other chosen main plateau clusters, it was excluded from subsequent analysis. 

 

It is intriguing to note that the higher-conductance, more-angled clusters discovered in the 11 datasets 

discussed above appear qualitatively similar to the “class 2” traces identified by Cabosart et al. for a 
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structurally similar molecule using a completely different clustering approach. In an additional similarity, 

Cabosart et al. also found a lower-conductance, flatter cluster (“class 3” traces) which they assign to the 

“standard” binding configuration and find to be a consistent representation of the molecular 

conductance.10  This perhaps suggests that these two features might be a conserved motif of rod-like 

conjugated molecules, and full atomistic calculations are needed to investigate this question in more detail. 

On a more general level, the fact that significantly different clustering methods identify similar molecular 

features supports the view that clustering analysis is an appropriate means of revealing intrinsic data 

structure. 

S.8 Peak Fitting 

In order to have a point of comparison to our main plateau cluster peak fits, we pursued the standard 

approach of fitting the molecular peak in each raw 1D histogram with a single Gaussian. However, due to 

the complex and asymmetric peak shape, fitting within the conductance range surrounding the molecular 

peak typically leads to unreasonable results (e.g. dotted green line in Figure S10), and moreover can 

strongly depend on exactly how this conductance range is defined. Therefore, to fit the raw 1D histogram 

molecular peaks for our OPV3-2BT-H datasets, we used an iterative approach to set the conductance 

bounds for fitting. Each histogram is first fit with a single Gaussian peak while only considering the 

conductance range -5.5 G0 to -2.5 G0 (e.g. the dotted green line in Figure S10). Ten more restricted fits 

are then performed, with the conductance bounds modified each time based on the results of the previous 

fit. At each iteration, the conductance bounds are centered around the peak value from the previous fit, 

and the width of this fitting region is 2 decades for the first two iterations, 1.5 decades for the next four, 

and 1 decade for the last four. This process was empirically found to produce reasonable fits for the eight 

OPV3-2BT-H datasets we applied it to (e.g. dashed red line in Figure S10), and the peak value always 

fully converged by the tenth iteration.   
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Figure S10. Raw 1D histogram for the OPV3-2BT-H dataset from Figure 1 (blue), along with a single 

Gaussian fit to only the range -5.5 G0 to -2.5 G0 (dotted green), and the result of an iterative process 

described in the text for determining the fitting range (dashed red).  

 

For fitting the distributions of conductance values from specific clusters, in every case we used a single, 

unrestricted Gaussian fit. In the majority of cases, these distributions matched a Gaussian peak shape 

extremely well (e.g. Fig. 5). Some of the distributions displayed minor asymmetry or increased kurtosis, 

and thus fit a Gaussian peak shape less well; Figure S11 shows the worst examples from the OPV3-2BT-

X datasets. However, even in these cases, the single unrestricted Gaussian fit provided very reasonable 

approximations to the peaks and peak centers. A more complex fitting function would likely tighten the 

distributions of peak values in Figure 7; for example, adding a second fitting peak for the OPV3-2BT-Br 

and OPV3-2BT-Cl main plateau cluster distributions shown in Figure S11c and Figure S11e, 

respectively, would increase the conductance of the “main” peak, and these two datasets are both mild 

outliers on the low side in Figure 7.  
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For all histogram fitting in this work, the histogram bin width was determined based on the Freedman–

Diaconis rule.  

 
Figure S11. Main plateau cluster distributions (blue) and their respective unrestricted Gaussian fits 

(dotted red) for the six OPV3-2BT-X datasets in which these distributions were least Gaussian-shaped. 

The substituent, -X, and the ID# (from Table S2) for each dataset are inset for each plot. 

 

S.9 Investigating OPV3-2BT-X Main Plateau Cluster Lengths 

To help support our hypothesis that the main plateau cluster for each OPV3-2BT-X dataset represents 

the primary molecular feature, we investigated the maximum junction gap sizes implied by these clusters 

with two similar approaches. In the first method, we focus only on the actual trace pieces represented by 

the segments in the main plateau cluster. The end points of these trace pieces represent the maximum 

extent of each identified molecular plateau. However, it is possible that the linear features identified by 

Segment Clustering do not represent the entire time the molecule spent in the junction (e.g. the 

conductance may vary significantly during the detachment process). Therefore, in the second method we 

consider each entire trace containing a segment assigned to the main plateau cluster. The last time each 
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trace drops to a low value well below the conductance of the molecule (here the value of 5∙10-6 G0 is used) 

is an alternative way to represent the distance at which the molecule fully breaks off. Both methods are 

demonstrated for an example OPV3-2BT-H dataset in Figure S12a-d.  

 
Figure S12. Examples of distance investigation methods using the OPV3-2BT-H dataset from Figure 1c. 

(a) 2D histogram of just the trace pieces whose linear segments were assigned to the main plateau cluster. 

(b) 1D histogram of the endpoints of the trace pieces in (a), fit with a single Gaussian peak (red). (c) 2D 

histogram of all traces containing segments which were assigned to the main plateau cluster. (d) 1D 

histogram of the distances at which each trace in (c) last crossed below the conductance value 5∙10-6 G0, 

fit with a single Gaussian peak (red). (e) 2D histogram of all traces in the dataset. (f) Analogous to (d), 

but for the traces shown in (e); fit with two Gaussians (purple and red, total fit in gray).  

 

For comparison, we also show the results of applying the “trace-cross” method to all traces in the dataset 

(Figure S12e,f). This entire-dataset distance distribution exhibits two peaks, typically attributed to the 

break-off of tunneling traces and to molecular traces respectively.11–14 As shown in Table S5, both 

distance distributions for the main plateau cluster are quite similar to the second peak in the entire-dataset 

distribution, providing clear evidence that what we label the “main plateau cluster” corresponds to what 

is generally considered to be the “primary” molecular feature. Similar results were obtained for the other 

OPV3-2BT-X datasets considered in this work. The moderate variation that was observed between 
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datasets is likely due in large part to small systematic errors in attenuation ratios, and the overall pattern 

did not suggest any systematic differences in length between different substituents.  

The fairly broad distributions seen in Figure S12b,d indicate that not all junctions reach the same degree 

of elongation before breaking off. The distribution peaks are somewhat shorter than what would be 

expected for fully-elongated molecular junctions, which is consistent with previous results for molecules 

with –BT linker groups.15 This suggests that molecules with this linker group may in general not reach 

full extension. 

Table S5. The peak and half-width at half-maximum (HWHM) values for the red Gaussian fits shown in 

Figure S12 panels b, d, and f, respectively.  

 Peak (nm) HWHM (nm) 

Segment End Points 0.91 0.27 

Segment-Containing Trace Crosses 1.06 0.41 

All Trace Crosses 0.95* 0.33* 
*For the higher-distance of the two Gaussian fits (red in Figure S12f).  
 

S.10 Selection of Main Plateau Clusters for OPV2-2BT and C6-2SMe 

Figure S13 shows all of the full-valley clusters discovered in the OPV2-2BT dataset from Figure 8d. 

The cluster in Figure S13i can be unambiguously chosen as the main plateau cluster for the high-

conductance feature. None of the full-valley clusters corresponds well to the low-conductance feature in 

this dataset (the cluster in Figure S13f is the closest, but does not align well with the low-conductance 

feature on either axis in the 2D histogram). Similar main plateau clusters were identified in the other four 

OPV2-2BT datasets considered in this work (Table S3).  
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Figure S13. (a) Reachability plot for the OPV2-2BT dataset from Figure 8d with all full-valley clusters 

hierarchically filled in. (b-i) Segment clusters for each color coded valley from (a), with the cluster in (i) 

unambiguously identified as the main plateau cluster.  

 

Figure S14 shows full-valley clusters for the C6-2SMe dataset from Figure 8a. The cluster in Figure 

S14l can be unambiguously chosen as the main plateau cluster for this dataset. While the cluster in Figure 

S14k bears a superficial resemblance to the molecular feature, closer inspection reveals that it is much 

smaller and is composed of very angled segments which are unlikely to correspond to clean molecular 
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plateaus. A similar main plateau cluster to Figure S14l was identified in the other C6-2SMe dataset 

considered in this work (Table S3).  

 
Figure S14. (a) Reachability plot for the C6-2SMe dataset from Figure 8a with all full-valley clusters 

hierarchically filled in. (b-l) Segment clusters for most of the color coded valleys from (a) (less-

important clusters omitted for clarity), with the cluster in (l) identified as the main plateau cluster. 

 

S.11 Cluster Selection for OPV2-2BT/C6-2SMe 1:1 Synthetic Mixture #1 

When finding all full-valley clusters for a dataset, the minimum valley size should be set according to 

the specific context and what types of clusters the user is interested in. For the pure molecular datasets 

considered in this work, we found that a minimum valley size of 1% of the total number of data points 

worked well. However, in our synthetic mixture datasets each molecular feature is “diluted” by a factor 

of two. Moreover, because the C6-2SMe feature is so short, it represents a relatively small number of data 

points. Therefore, in this context a smaller minimum valley size is appropriate. To demonstrate this, 
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Figure S15 shows full-valley clusters from the “Mixture #1” dataset from Figure 8g with a minimum 

valley size of 1%. Although a main plateau cluster can be easily identified (Figure S15o), this cluster 

contains features from both molecules. However, if the minimum valley size is lowered to ~0.5%, then 

the hierarchical structure produced by Segment Clustering reveals that the cluster from Figure S15o is 

composed of two main sub-valleys (Figure S15p). These two sub-valleys represent the clusters shown in 

Figure 8h, and, as discussed in the main text, correspond to the two different molecular features.  

 
Figure S15. (a) Reachability plot for the Mixture #1 dataset (Fig. 8g) with all full-valley clusters 

hierarchically filled in. (b-o) Segment clusters for most of the color coded valleys from (a) (less-
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important clusters omitted for clarity). The red cluster in (o) is a composite plateau cluster for both 

molecular features. (p) By lowering the minimum valley size, the cluster in (o) is found to have 

substructure consisting of two separate valleys, corresponding to the two clusters plotted in Figure 8h. 

 

S.12 Clustering of Additional Synthetic Mixtures 

In addition to the OPV2-2BT/C6-2SMe mixture dataset discussed in the main text, 7 additional 1:1 

synthetic mixture datasets (for a total of 8) were constructed (see Table S4 for details) and analyzed in 

the same way. In seven of these eight total cases, two full-valley clusters were identified that correspond 

to the main OPV2-2BT and C6-2SMe molecular features (Figure S16). Just as with mixture #1 (see 

section S.11), in each of these cases a “composite” main plateau cluster was first unambiguously identified 

at the 1% valley size cut-off (analogous to Figure S15o), and then lowing of this cut-off revealed two 

primary sub-valleys (analogous to Figure S15p) corresponding to the two molecular features. The clusters 

identified in this way are shown in Figure S16, and their sizes are listed in Table S6. The one exception 

was Mixture #6, where the plateau cluster contained both molecular features did not possess any 

hierarchical sub-structure (Figure S16f). This illustrates the potential drawback of density-based 

clustering methods mentioned in the main text that dissimilar groups of data may in some cases end up in 

a single cluster if there is a continuous spread of data between them. We speculate that this issue occurs 

for this dataset because an error in the attenuation ratios results in similar apparent lengths for both 

molecules.  
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Figure S16. (a-h) Identified molecular plateau clusters for synthetic mixtures #1-8, respectively. In each 

case, a composite molecular plateau cluster analogous to Figure S15o was unambiguously identified 

(not shown). In 7 out of 8 cases, the valley for that composite cluster was found to contain two sub-

valleys, analogous to Figure S15p, which were assigned as the OPV2-2BT plateau cluster (pink) and 

the C6-2SMe plateau cluster (yellow). As shown in Figure S17 and Table S6, these assignments proved 

to be quite accurate, demonstrating the robustness of Segment Clustering’s ability to separate 

overlapping molecular features. The composite cluster for mixture #6, shown in red in (f), did not 

contain any hierarchical sub-structure, and so could not be separated. 

 

Just as with Mixture #1 in the main text, each of the OPV2-2BT (C6-2SMe) clusters in Figure S16 was 

evaluated for accuracy by calculating how many of the data points assigned to it were from the traces 

belonging to the OPV2-2BT (C6-2SMe) half of the mixture (Table S6). This demonstrates that these 

separations of overlapping features were successful. While the C6-2SMe clusters again appear to display 

higher “error rates”, as explained in the main text, this is unsurprising given the shorter plateaus for this 

molecule; the fact that a cluster of short C6-2SMe-like segments is not found in any of the pure OPV2-

2BT datasets demonstrates that the source of the “erroneously” included segments is random chance, not 

mistaken feature identification by the algorithm. Finally, to summarize all of these mixture separation 

results, Figure S17 compares the peak conductance values for the two identified molecular clusters from 

each mixture dataset with the peak conductance values from the main plateau clusters in the pure OPV2-

2BT and C6-2SMe datasets.  
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Figure S17. Peak conductance values for the main plateau clusters for the 5 different pure OPV2-2BT 

datasets considered in this work (red) and the two pure C6-2SMe datasets considered in this work 

(green). For comparison are plotted the peak conductances of the OPV2-2BT (pink) and C6-SMe 

(yellow) clusters identified in the seven successfully separated 1:1 synthetic mixture datasets shown in 

Figure S16.  

 

Table S6. For each of the eight mixture datasets considered in this work, the size of the identified C6-

2SMe and OPV2-2BT clusters (as a percentage of total data points) and the “accuracy” of each cluster 

(i.e. how many data points belonging to the cluster come from traces collected in the presence of the 

molecule that the cluster is assigned to). Each value represents the median from among the twelve different 

clustering outputs (using different values of the minPts parameter) for each dataset. Separate C6-2SMe 

and OPV2-2BT clusters could not be identified for mixture #6 

Mixture # 
Data Points Contained in Cluster Data Points from Correct Half of Dataset 

C6-2SMe OPV2-2BT C6-2SMe OPV2-2BT 

1 0.5% 3.2% 84% 97% 

2 1.4% 1.6% 84% 99% 

3 1.4% 0.3% 60% 91% 

4 0.4% 0.9% 67% 98% 

5 1.0% 0.4% 69% 90% 

6 NA NA NA NA 

7 0.8% 0.7% 59% 96% 

8 0.5% 1.8% 76% 95% 

AVERAGE 0.9% 1.3% 71% 95% 
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