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Abstract

Utilization of electron transfer methods for description of quantum transport is pop-

ular due to simplicity of the formulation and its ability to account for basic physics of

electron exchange between system and baths. At the same time, necessity to go beyond

simple golden rule-type expressions for rates was indicated in the literature and ad hoc

formulations were proposed. Similarly, kinetic schemes for quantum transport beyond

usual second order Lindblad/Redfield considerations were discussed. Here we utilize

recently introduced by us nonequilibrium Hubbard Green’s functions diagrammatic

technique to analyze construction of rates in open systems. We show that previous

considerations for rates of second and fourth order can be obtained as a particular case

of zero and second order Green’s function diagrammatic series with bare diagrams.

We discuss limitations of previous considerations, stress advantages of the Hubbard

Green’s function approach in constructing the rates and indicate that standard dress-

ing of the diagrams is a natural way to account for additional baths/degrees of freedom

when formulating generalized expressions for the rates.
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Introduction

Electron transfer processes are the heart of oxidation-reduction reactions which play impor-

tant role in chemistry and biology.1–3 Theoretical description of electron transfer rates at the

level of the Marcus theory4–10 is widely utilized for the description of variety of phenomena

from photovoltaics, batteries design and catalysis in chemistry11–16 to photosynthesis, vision

and sense of smell in biology.17–23

Interfacial electron transfer is behind many vital biological processes.24–28 Recently, bio-

molecules were utilized as building blocks in electric circuits. Biomolecular junctions are

useful as a tool to study properties of molecules and as potential bioelectronic devices. For

example, electron transport was measured through DNA,29–31 oligopeptides32,33 and electron

transfer proteins.34–36 Also, STM junctions were suggested as a convenient tool for DNA

detection and sequencing.37

Traditionally, electron transfer theory considers isolated donor-bridge-acceptor systems.

Nevertheless, this theoretical approach appears to be useful also in description of electron

transport in open molecular systems such as, e.g., redox molecular junctions.38–41 Formal

relationship between electron transfer rates and molecular conduction was discussed in the

literature.42

In both intra-system and interfacial processes in condensed phase electron transfer may

be assisted by intermediates. For example, intermediate states play important role in pho-

tovoltaic43 or long-range DNA electron transfer processes.44–46 Effects of intermediates on

electron transfer are often discussed in terms of super-exchange vs. hopping mechanism.

Clearly, the two mechanisms are limiting cases (coherent and completely incoherent) of the

same process, and attempts to unify electron transfer rate expression were done in the lit-

erature.47,48 However, these attempts are ad hoc perturbation theory considerations, and an

ordered way of rate simulations is still lacking.

Constructing generalized expressions for rates is also at the heart of kinetic equations

approaches to transport. For example, Refs. 49,50 are similar in the spirit effort to introduce
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a scheme for constructing generalized expressions for rates. Advantage of this approach is

possibility to account for higher order processes in system-bath couplings in an ordered

way of bare perturbation theory. Still, questions of, e.g., accounting for additional degrees of

freedom (such as other baths) within a particular order in the system-primary baths coupling

remains open. Also, the methodology has usual for quantum master equations restriction of

applicability only in the high temperature regime (thermal energy should be big relative to

characteristic energy of the system-bath coupling). We note in passing that in interacting

open systems kinetic schemes should be applied with caution.51

Nonequilibrium Green’s functions (NEGF)52 is a tool capable to describe both super-

exchange and hopping transport regimes, as well as smooth transition between the two

limiting cases. Diagrammatic perturbation theory is a way to account for interaction with

intermediate (or additional) degrees of freedom in an ordered form. Also, Green’s function

considerations are applicable in any temperature regime. However, identifying rates is not

possible within the standard NEGF.

Here, we show that recently introduced by us many-body NEGF flavor, the Hubbard

NEGF,53 while retaining advantages of the Green’s function methods is capable to provide

connection with kinetic schemes. So that ordered construction of generalized rates becomes

possible employing the Hubbard Green’s function diagrammatic technique. Structure of the

paper is the following. After introducing junction model we give a short overview of the

Hubbard NEGF introducing conceptual details not presented in its original introduction in

Ref. 53. After this we present connection between the Hubbard NEGF and kinetic schemes

of Refs. 49,50 showing a way to formulate rates within the Hubbard NEGF. We conclude

by discussing advantages of Green’s functions formulation and outlining directions for future

research.
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Model

We consider generic model of a junction which consists of a molecule, M , coupled to two

contacts, L and R. Depending on particular problem, molecular (system) part can describe

electronic, vibrational, optically-dressed (e.g. polariton) or any other degrees of freedom.

We assume that quantum chemistry problem for the isolated system has been solved, and

many-body eigenstates |S〉 and their energies ES are known. We note in passing that even

in systems with very big (or even infinite) number of many-body eigenstates, energetics

of the junction (bias, driving laser field, etc.) allows to identify a finite subset, which is

enough for first principles simulation of experimental data for realistic systems.54–58 Contacts

(baths) are assumed to be reservoirs of free charge carriers each at its own equilibrium.

Second quantization is utilized to treat baths’ degrees of freedom. This is minimal model

for discussion of electron transfer rates within the Hubbard NEGF. Additional baths and/or

degrees of freedom (e.g., phonons) can be added to the consideration in a straightforward

manner.

Hamiltonian of the minimal model is

Ĥ = ĤM +
∑

K=L,R

(
ĤK + V̂MK

)
(1)

ĤM =
∑
S∈M

|S〉ES〈S| (2)

ĤK =
∑
k∈K

εkĉ
†
kĉk (3)

V̂MK =
∑

S1,S2∈M

∑
k∈K

(
Vk,S1S2 ĉ

†
k |S1〉〈S2|+H.c.

)
(4)

Here ĤM and ĤK (K = L,R) are molecule and contacts Hamiltonians, and V̂MK introduces

system-baths coupling. ĉ†k (ĉk) creates (annihilates) electron in single-electron state k in the

contacts. Vk,S1S2 is matrix element for electron transfer from system to bath in which system

goes from state |S2〉 to |S1〉.
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Below we will be interested in electron flux through the junction and corresponding intra-

system electron transfer rates. Note that while we focus on charge current, the consideration

is more general and can equivalently be applied to calculation of any other intra-system rates

(e.g., related to photon or energy flux) or to multi-time correlation functions as employed

in, e.g., nonlinear optical spectroscopy.59

Hubbard NEGF

Central object of interest is the single particle Hubbard Green’s function, which is defined

on the Keldysh contour as

GS1S2,S3S4(τ, τ
′) = −i〈Tc X̂S1S2(τ) X̂†S3S4

(τ ′)〉 (5)

Here XS1S2 ≡ |S1〉〈S2| is the Hubbard (or projection) operator, Tc is the contour ordering

operator, and τ and τ ′ are the contour variables. Advantage of the Hubbard over standard

NEGF for our study is possibility to access information on many-body states of the system.

As we show below, this moment is crucial for formulating general expressions for rates within

the Green’s function methodology.

Historically, Hubbard Green’s functions where introduced for treatment of strongly cor-

related extended (lattice type) equilibrium systems in Ref. 60. Diagrammatic technique

(expansion around atomic limit) for such equilibrium Green’s functions61,62 is based on as-

sumption of equilibrium character of the uncoupled system’s density operator

ρ̂0 =
1

Z0

e−Ĥ0/kBT ; Z0 = Tr e−Ĥ0/kBT (6)

At nonequilibrium, Hubbard Green’s functions where used for transport simulations em-

ploying relations derived from equation-of-motion considerations and functional derivatives

in auxiliary fields.63–68 While the latter approach is very useful, it lacks rigor of ordered
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diagrammatic expansion and provides only vague rules about choice of auxiliary fields and

terms resulting from performing functional derivatives.

Recently, we introduced nonequilibrium version of the Hubbard diagrammatic tech-

nique53 making it applicable to nonequilibrium impurity-type (molecular junction) problems.

Contrary to original lattice type formulation, we introduce baths and utilize state represen-

tation only for the system, while bath degrees of freedom are treated within standard second

quantization. Thus, perturbative expansion in the system-baths couplings in each order

yields product of two multi-time correlation functions: one for the system and one for the

bath operators (see Ref. 53 for details). Because baths are assumed to be non-interacting,

the latter can be treated using the standard Wick’s theorem. To evaluate multi-time cor-

relation function of Hubbard (system) operators we employ usual for NEGF assumption of

steady-state being independent of initial condition at infinite past. Thus, assuming equi-

librium initial system state, Eq. (6), correlation function of Hubbard operators is evaluated

using diagrammatic technique of Refs. 61,62. As a result, Hubbard NEGF appears to be

a modified (by presence of baths and nonequilibrium character of the system) version of

the lattice diagrammatic technique (see Ref. 53 for details). The technique appears to be

quite stable over wide range of parameters,69 helpful in evaluation of electronic friction in

junctions,70,71 and useful as a convenient tool in first principles simulations of optoelectronic

devices.56–58

It is important to realize, however, that requirement of equilibrium character of the

uncoupled system density operator, Eq. (6), in principle can be relaxed. Indeed, diagram-

matic technique of Refs. 61,62 is based on commutation properties of the Hubbard operators

(interaction representation)

X̂S1S2(t) X̂
†
S3S4

(t′) = e−i(ES2
−ES1

)(t−t′)δS2,S4X̂S1S3(t
′)± X̂†S3S4

(t′) X̂S1S2(t) (7)

with sign chosen according to the operators statistics (Bose or Fermi - see Ref. 53 for details)
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and ability to interchange Hubbard and equilibrium density operators

X̂S1S2 ρ̂0 = ρ̂0 X̂S1S2 e
(ES1

−ES2
)/kBT (8)

Thus, it is clear that diagrammatic technique for the Hubbard operators can be equivalently

formulated for any form of system’s density operator as long as the latter is a function of

molecular (system) Hamiltonian only

ρ̂0 = f(ĤM) ≡
∑
S

|S〉 f(ES) 〈S| (9)

While this observation does not change numerical procedure for the Hubbard NEGF, it yields

two important conceptual consequences. First, the Hubbard NEGF can be considered as a

natural tool for expansion around results of a quasi-particle-type consideration performed

in the basis of many-body states capable to introduce states broadening and bath-induced

coherences, which were missed in the latter. For example, such quasi-particle-type consider-

ation is the Markov Redfield/Lindblad quantum master equation. In this case f(ES) in (9)

is probability PS of state |S〉 to be observed. Second, considering situation where only one

state is populated, PS = 1, nonequilibrium diagrammatic technique for Hubbard Green’s

functions provides access to traditional expressions for rates of transitions from state |S〉 to

all other states of the system. Below we discuss details of this Green’s function-to-kinetic

scheme connection.

Connection to kinetic schemes

We now turn to discuss how Hubbard NEGF can be used to define generalized expressions

for transfer rates. We explore connection to the kinetic scheme presented in Refs. 49,50,

thus identifying rate expressions in terms of the Hubbard NEGF, and indicate how the rates

expressions can be generalized.
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We start by considering equation-of-motion for the probability of state |S〉 to be observed

(Heisenberg picture)

PS(t) ≡ 〈X̂SS(t)〉 (10)

under driving by the Hamiltonian Ĥ of (1). Writing Heisenberg equation of motion for (10)

and using standard NEGF derivation (similar to the derivation leading to the celebrated

Meir-Wingreen expression for current52) one gets

d

dt
PS(t) = 2Re

∑
S1,S2,S3

∫ t

−∞
dt′(

σ>SS3,S1S2
(t− t′)G<

S1S2,SS3
(t′ − t)− σ<SS3,S1S2

(t− t′)G>
S1S2,SS3

(t′ − t) (11)

− σ>S3S,S1S2
(t− t′)G<

S1S2,S3S
(t′ − t) + σ<S3S,S1S2

(t− t′)G>
S1S2,S3S

(t′ − t)
)

Here G<(>) is the lesser (greater) projection of the Hubbard Green function (5) and σ<(>) is

the lesser (greater) projection of the self-energy due to coupling to contacts L and R

σS1S2,S3S4(τ, τ
′) =

∑
K=L,R

∑
k∈K

VS1S2,k gk(τ, τ
′)Vk,S3S4 ≡

∑
K=L,R

σKS1S2,S3S4
(τ, τ ′) (12)

where gk(τ, τ
′) = −〈Tc ĉk(τ) ĉ†k(τ

′)〉 is the Green function of free electron in single-particle

state k.

Expression (11) is exact, and our goal is to represent it in the form of rate equation,

which will allow to identify expressions for the rates. Following Refs. 49,50 we will be

interested in rates of second and fourth order in the system-baths couplings. Taking into

account that Hubbard NEGF diagrammatic technique expands in system-baths coupling

and noting that second order in the coupling already enters (11) via self-energy (12), it is

natural to expect that second order rates should result from zero order of the Hubbard GFs

expansion, while fourth order rates should be accessible from second order of the Hubbard

NEGF diagrammatic series.
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Figure 1: Diagrams of the Hubbard NEGF (5) expansion in system-baths coupling. Shown
are (a) zero and (b-j) second order diagrams. See text for details.
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Figure 1 shows diagrams of zero (panel a) and second (panels b-j) order expansion in

the system-bath coupling. Directed straight and wavy lines represent Fermion propagator

gm(τ, τ ′) and self-energy σmm′(τ, τ ′), Eq. (12), respectively. Here m ≡ S1S2 is single electron

transition between pair of many-body states |S1〉 and |S2〉, i.e. NS1 +1 = NS2 (NS is number

of electrons in state |S〉). Dashed line stands for Boson propagator gb(τ, τ
′) in the same

charging block, i.e. b ≡ S1S2 with NS1 = NS2 . Directed double line represents two-electron

propagator db(τ, τ
′), where b ≡ S1S2 with NS1+2 = NS2 . Empty circle stands for (zero-order)

spectral weight

〈F̂m1m2(τ)〉0 ≡
〈{
X̂m1(τ); X̂†m2

(τ)
}〉

0
(13)

and oval with two circles is correlation function

〈δF̂m1m2(τ) δF̂m3m4(τ
′)〉0 (14)

where δF̂mm′ = F̂mm′ − 〈F̂mm′〉0. Filled circles stand for ‘pruned’ vertices.62 Finally, red

dashed line indicates the end point of the diagram. For more details see Ref. 53.

We note that Fig. 1 presents bare diagrams. As discussed in the previous section, the Hub-

bard NEGF may be considered as expansion around results of the Markov Redfield/Lindblad

quantum master equation. Assuming we are dealing with such an expansion, each diagram

can be easily represented in terms of state probabilities. For example, lesser and greater

projections of the Fermion propagator gm(τ, τ ′) are (m ≡ S1S2 with NS1 + 1 = NS2)

g<m(t− t′) = i
PS2

PS1 + PS2

e−i(ES2
−ES1

)(t−t′) (15)

g>m(t− t′) = −i PS1

PS1 + PS2

e−i(ES2
−ES1

)(t−t′) (16)
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while its casual and anti-casual projections are

gcm(t− t′) = θ(t− t′)g>m(t− t′) + θ(t′ − t)g<m(t− t′) (17)

gc̃m(t− t′) = θ(t− t′)g<m(t− t′) + θ(t′ − t)g>m(t− t′) (18)

Similarly one can evaluate other elements of the diagrams, and represent the diagrams in

terms of states probabilities PS and time-dependent factors.

We now turn to order-by-order analysis of the diagrams. Before discussing the contri-

butions we have to stress difference in Green function (Hilbert space) and quantum master

equation (Liouville space) languages mentioned also in our previous publication:72,73 time

arrangements on the Keldysh contour called diagrams in the QME language are projections

in the language of GFs. The difference is of minor importance for the zero-order contribu-

tion, because the latter has only one diagram (see Fig. 1a). However, as is discussed later,

it becomes critical for understanding higher order contributions and connection between the

methods.

Zero-order contributions

Zero-order contribution to the Hubbard GF (5) is

G
(0)
mm′(τ, τ

′) = gm(τ, τ ′)〈F̂mm′(τ ′)〉0 (19)

Here m = S1S2 and m′ = S3S4 with NS1 + 1 = NS2 and NS3 + 1 = NS4 . We note that there

are four different projections of (19) contributing to (11) - one projection for each one of the

terms on the right side of the expression. The projections are given in Fig. 2. Note there are

eight projections when considering also complex conjugates taken into account by 2 Re . . .

in (11) - those are obtained by interchanging time positions between contour branches and

flipping arrows.
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Figure 2: Projections of the zero-order contribution, diagram in Fig. 1a, to equation-of-
motion (11): the four projections correspond to the four terms in the right side of the
expression.

13



Taking projections of Eq. (19) on the Keldysh contour, substituting zero-order expressions

for the locator and spectral weight, Eqs. (15)-(18), and utilizing the results in Eq. (11) yields

expressions for the second order transfer rates from initial state |Si〉 to final state |Sf〉 (see

Supporting Information for details)

W
(2)
Sf←Si

= i σ>SfSi,SfSi
(ESi

− ESf
)− i σ<SiSf ,SiSf

(ESf
− ESi

) (20)

As expected, these are golden rule type expressions. We note in passing that while consider-

ing contributions in Eq. (11) from different terms it is enough to account for rates appearing

in front of PSi
with Si 6= Sf , because rates of the type Si ← Si (given by second and third

projections in Fig. 2) can be obtained from the normalization condition

∑
Sf

WSf←Si
= 0 (21)

The latter is easy to check also by direct evaluation of the rates.

Second order contributions

Diagrams of second order contributions to the Hubbard GF (5) are shown in panels (b)-(j)

of Fig. 1. Their explicit expressions are (letters next to expressions correspond to diagrams
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in Fig. 1)

G
(2)
mm′(τ, τ

′) =
∑
m1,m2

∫
c

dτ1

∫
c

dτ2 σm1m2(τ1, τ2)× (22)(
− i gm(τ, τ ′) γ(m2,mm

′) gγ(τ
′, τ1) 〈F̂γm1(τ1)〉0 gm2(τ2, τ

′+) (b)

+ i gm(τ, τ2) gm1(τ2, τ1) γ(m̃1,mm̃2) gγ(τ2−, τ ′) 〈F̂γm′(τ ′)〉0 (c)

+ i gm(τ, τ1) gm2(τ2, τ1+) γ(m2,mm1) gγ(τ1, τ
′) 〈F̂γm′(τ ′)〉0 (d)

+ gm(τ, τ1) 〈F̂mm1(τ1)〉0 gm2(τ2, τ
′) 〈F̂m2m′(τ ′)〉0 (e)

+ gm(τ, τ1) 〈Tc δF̂mm1(τ1) δF̂m2m′(τ2)〉0 gm2(τ2, τ
′) (f)+(g)

+ gm(τ, τ2) 〈Tc δF̂mm̃2(τ2) δF̂m̃1m′(τ ′)〉0 gm1(τ
′, τ1) (h)

− gm(τ, τ ′) 〈Tc δF̂mm′(τ ′) δF̂m2m1(τ1)〉0 gm2(τ2, τ1)

)
(i)+(j)

Here τ− (τ+) indicates contour variable right before (after) τ in contour ordering sense,

m̃ = S2S1 for m = S1S2, and γ is defined via γ(m1,m2m3)X̂γ ≡
[
X̂m1 ; F̂m2m3

]
.

Second order brings into consideration two more contour variables, τ1 and τ2, thus increas-

ing number of projections. Moreover, Green function projections account only for ordering of

the variables on the Keldysh contour, while QME keeps track also on ordering along real time

axis. So, one Green function projection corresponds to several QME projections.72,74 With

four contour variables (τ , τ ′, τ1, and τ2) and with restriction of τ (as variable representing

the signal) being the latest time on real time axis (causality principle) one has to account

for 48 QME projections. Note, without 2 Re . . . term in (11) number of QME projections

doubles: 3! orderings of times t′, t1 and t2 on the real time axes multiplied with 24 variants

of distribution of the four variables on branches of the contour. Each of terms in the right

side of (11) yields 12 QME projections, and each QME projection has contributions from

several GF diagrams of Fig. 1(b)-(j).

Figure 3 shows the projections distributed following Ref. 50 into three topologically

different classes (A, B, C) with three groups within each class ((0), (1) and (2) - minimum
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A.(0).(s) A.(1).(s) A.(1).(t) A.(2).(t)

B.(0).(s) B.(1).(s) B.(1).(t) B.(2).(t)

C.(0).(s) C.(1).(s) C.(1).(t) C.(2).(t)

Figure 3: Projections of the second-order contributions, diagrams in Figs. 1(b)-(j), to
equation-of-motion (11). Following Ref. 50 the projections are classifies by 3 topologically
different classes (A, B, C), three groups ((0), (1), (2)) and two sub-groups ((s) and (t)).
Letters (b)-(j) correspond to second order diagrams from Fig. 1 contributing to the projec-
tions. See text for details.
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number of times on either branch of the contour) and with standalone ((s)) or triple ((t))

subgroups defined by number of different positions latest time (except t, which is always the

latest) can have relative to other times on the contour without changing projection topology.

For simplicity, in each case we draw only one projection with latest time being at the extreme

right and did not indicate directions of self-energy line corresponding to variables τ1 and τ2,

so that for the self-energy depending on directions of arrows two different projections can be

obtained from the one given in Fig. 3. As mentioned above, complex conjugate analogs of

the considered diagrams are obtained by inter-changing times between branches and flipping

directions of lines. We also indicate which of the diagrams from Fig. 1(b)-(j) contribute to

each of the classes/groups/subgroups. Substituting (22) into (11) yields expressions for the

fourth order transfer rates. Explicit expressions for the rates are given in the Supporting

Information.

Comparing Hubbard NEGF approach to building transfer rates with the kinetic proce-

dure introduced in Refs. 49,50 leads to several important observations as follows. First,

Hubbard NEGF diagrammatic technique naturally takes care of disregarding disconnected

diagrams, so that no additional special consideration is required. Second, for dressed di-

agrams (see discussion in the next section) artificial separation of the contributions into

secular and non-secular parts (depending on energy differences between pairs of states cor-

responding to transition relative to thermal energy) is not needed either. Third, fourth

order transfer rates built from bare expansion miss contributions from diagrams (e), (f),

and (j) of Fig. 1. The omission is natural because diagram (e) is responsible for deviations

from steady-state (accumulation or depletion of electrons in the system), which is absent at

steady-state considered in Refs. 49,50. Diagrams (f) and (j) contain functions (14) which

account for correlations between different states of the system. The latter are absent when

rates are derived assuming independent (one-at-a-time) state population. Fourth, diagrams

of Fig. 1 provide clear physical picture of transfer processes. For example, diagram (g) is

responsible for co-tunneling, while diagram (h) describes two-electron transport. We stress
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that it is diagrams (not projections) which are primary sources for the observed transfer

characteristics. Finally, combination of projections in order to simplify evaluation of rates

discussed in Ref. 50 is equivalent to change of consideration from QME-type projections,

where real-time ordering is important, to GF-type projections, where only ordering along

the contour matters. As indicated above, number of the latter projections is much smaller.

These observations indicate that GF based approach to building transfer rates is simpler

and more efficient. In the next section we also argue that GFs also provide an easy way to

generalizations.

Dressed rates

Standard Green function diagrammatic procedure prescribes to dress the expansion diagrams

thus collecting a bare expansion into a resumed equation-of-motion. For the Hubbard NEGF

this leads to modified Dyson equation.53,62 However, full dressing makes transfer rates lan-

guage obsolete. Thus, to go beyond bare expansion while still keeping kinetic scheme we

propose to dress those diagram projections, which were identified as contributing to rates

in the bare diagrammatic expansion. Technically, this means substituting zero-order expres-

sions, Eqs. (15)-(18) for locators, spectral weights and correlation functions in the rates, with

corresponding dressed expressions (see Ref. 53 and Supplementary Information for details).

We note that while dressing one should be careful to not introduce double counting. The

dressing can be performed with respect to the same system-bath interaction in which original

expansion was performed, or with respect to interaction with other degrees of freedom/baths,

or both. Note that GF diagrammatic technique rules allow to account for additional inter-

actions in an ordered manner. This is contrary to ad hoc extensions considered in Refs.

47,48.
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Conclusion

We present Green function perspective on utilization of electron transfer techniques in de-

scription of quantum transport. Central role in the former is played by transfer rates, which

are usually evaluated at the golden rule level of theory. Necessity top generalize such rate ex-

pressions to account for intermediates was indicated and ad hoc extension was formulated in

Refs. 47,48. Similarly, kinetic schemes employing rates beyond second order in system-baths

coupling were discussed in Refs. 49,50.

We indicate that Green’s function method is a natural way to account for intermediates

and go to any order in perturbative expansion in a well controlled way of diagrammatic

expansion. However, inability to access system state resolved information in the standard

NEGF does not allow to establish connection between its diagrammatic expansion and rates

utilized in kinetic schemes. At the same time, the Hubbard NEGF theory, recently introduced

by us,53 yields such a possibility.

Utilizing zero-order (undressed) perturbation expansion of the Hubbard NEGF up to

second order in the system-bath coupling we establish connection with expressions of second

and fourth order expressions for the rates introduced in Refs. 49,50. We discuss connection

between the two approaches and indicate advantages of Green’s function techniques in deriv-

ing expressions for the rates. Finally, we note that standard dressing of diagrams in Green’s

function expansions yields a possibility of formulating generalized (dressed) expressions for

rates capable to account for additional baths (degrees of freedom) in a well controlled or-

dered manner. Practical application of the theory to realistic simulations is a goal for future

research.
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