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ABSTRACT 

The importance of taking into account protein flexibility in drug design and virtual 
ligand screening (VS) has been widely debated in the literature, and molecular 
dynamics (MD) has been recognized as one of the most powerful tools for 
investigating intrinsic protein dynamics. Nevertheless, deciphering the amount of 
information hidden in MD simulations and recognizing a significant minimal set of 
states to be used in virtual screening experiments can be quite complicated. 
Here we present an integrated MD-FLAP (Molecular Dynamics - Fingerprint for 
Ligand and Proteins) approach, comprising a pipeline of Molecular Dynamics, 
Clustering and Linear Discriminant Analysis, for enhancing accuracy and efficacy in 
VS campaigns. We first extracted a limited number of representative structures from 
tens of ns of MD trajectories by means of the k-medoids clustering algorithm as 
implemented in the BiKi Life Science Suite.1 Then, instead of applying arbitrary 
selection criteria, i.e. RMSD, pharmacophore properties, enrichment performances, 
we let the Linear Discriminant Analysis algorithm, implemented in FLAP,2 to 
automatically choose the best performing conformational states among medoids and 
X-ray structures. Retrospective virtual screenings confirmed that ensemble receptor 
protocols outperform single rigid receptor approaches, proved that computationally 
generated conformations comprise the same quantity/quality of information included 
in X-ray structures, and pointed to the MD-FLAP approach as a valuable tool for 
improving VS performances. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

The concept of flexibility inherently permeates proteins intrinsic nature, and 
knowledge of the intrinsic dynamics of macromolecules has direct implications in 
understanding the relationship between structure and function.3,4 Against this 
scenario, the role of macromolecule flexibility in drug design and discovery has been 
widely debated in the literature, 3-8 and several studies have highlighted the need to 
properly account for protein dynamics to improve computational drug design 
predictions. 9-14 Actually, numerous evidences have revealed the limitations of the old 
lock-and-key theory and more sophisticated models have therefore been elaborated. In 
particular the plasticity of biomolecules has been accounted for by the induced fit 
hypothesis (based on the induced structural changes occurring upon ligand binding) or 
by the conformational selection hypothesis (based on the presence of a pre-existing 
equilibrium ensemble of structures).5,6,15,16  
The use of single static structures (typically provided by X-ray crystallography or 
NMR) clearly provides a limited representation of proteins nature and behavior, and is 
one of the major limitations in virtual screening experiments, where the recognition of 
active compounds is greatly affected by the receptor conformation.7  
Different strategies and recipes have been proposed to increase the success rate of VS 
campaigns.17-27 For instance, Multiple Receptor Conformations (MRC) approach 
demonstrated to give better results in cross docking and VS, even when a limited 
number of structures is selected.17-19,26-28 Taken the MRC beneficial for granted, the 
difficulty relies more in the definition of the optimal set of structures to be chosen 
among a number of conformations, in particular when running extensive MD 
simulations, which typically provide thousands of snapshots for a single receptor.29 
Regardless of the methodology used to run the simulations and of the virtual 
screening approach adopted, the key point for successful VS campaign is represented 
by the sampling accuracy and by the capability of selecting the most representative 
conformations.30,31 
Ensembles of experimental receptor structures were first used by Knegtel et al. in 
1997, who obtained good performances for ras p21 and in particular for HIV-1 
protease.22 Crystal structures provide a valuable starting point for drug design 
endeavours,27 however they rarely account for intrinsic protein flexibility, which can 
be of paramount importance to properly identify novel scaffolds and new lead 
candidates. It has been also underlined that in a real and not-retrospective screening 
study, there is no a priori way to know which the most representative conformations 
are.22 
Rueda et al. devised a recipe for conformation selection by analysing a benchmark of 
1086 X-ray structures for 99 different therapeutically relevant protein targets, and 
comparing the performances of the single and ensemble-conformation docking.27 The 
authors proved that, when possible, a ligand-guided approach represents the best 
strategy to identify the conformations better able to discriminate between binders and 
non-binders. The enrichment factors or the AUC can be used to rank a posteriori the 
different conformations to be used in independent dockings.32 They also found that 
adopting conformational ensembles does not systematically outperform the use of a 
single well-performing structure and that it is generally not possible to surpass the 
best single conformation, which is however unknown a priori.17,33 Significant 
improvements with MRC can be reached when poor structures are available, such as 
in case of homology-built models. When no ligand information is available, an 
ensemble of randomly chosen 3-5 conformations can provide better results improving 



ligand recognition with respect to a single static state, as also suggested by Verdonk et 
al.34  
Bottegoni et al. carried out a retrospective screening study against 36 X-ray targets 
comparing the Single Receptor Conformation (SRC) and the MRC VS, focusing on i) 
the different separation power, ii) the number of actives identified and the chemical 
diversity of the hits, iii) the contribution of the single receptor conformation to the 
MRC-VS overall performance.18 Their analyses proved that both the MRC-score and 
MRC-rank methodologies outperformed the SRC and that using multiple receptor 
conformations with respect to one static structure significantly increases the variety of 
the chemical scaffolds. Better performances could be likely achieved by introducing 
more different and ligand-unbiased conformations coming, for instance, from MD 
simulations. 
Again, the authors underlined that the conformational selection in absence of any 
ligand activity information still represents a challenging and major issue. 
Similar conclusions were drawn by Korb et al., who investigated the performances of 
ensemble docking in virtual screening and pose prediction, as a function of ensemble 
size, for eight X-ray solved targets using GOLD and three different scoring 
functions.35 The authors observed that MRC docking always outperformed the use of 
the worst single structure, giving, in some cases, even better results with respect to the 
best single protein structure. Better performances were also obtained in terms of 
chemotype diversity. A strong dependence of docking results from scoring functions 
and sampling accuracy was highlighted, since different performances were observed 
for the same set of structures when using different scoring functions. The pressing 
need of developing ensemble selection protocols for choosing the best conformations 
given a target and a scoring function was again finally underlined. 
In this work we propose an integrated Molecular Dynamics - FLAP approach for the 
automatic identification of the most relevant conformations to be used in VS 
experiments, when ligands activity information is available. Molecular dynamics 
simulations were run on the Purine Nucleoside Phosphorylase (PNP) enzyme, on the 
tyrosine-protein kinase ABL1, and on the transmembrane A2A in an explicit 
membrane model. A clustering algorithm was used to extract from the trajectories a 
limited number of proteins conformations. The most relevant and useful 
conformations, in the clustered structures, for the identification of active ligands 
among thousands of decoys were finally chosen by a Linear Discriminant Analysis 
(LDA) implemented in the FLAP software.2,36 Different benchmarking for comparing 
the performances of FLAP with respect to other VS tools have been already 
performed, always reporting promising results,36,37 and have been supported again 
here (see Supporting Information, Figure S1 and Table S1).  
We demonstrated that, when activity data is available, taking into account protein 
flexibility in VS simulations can successfully remove the inherent structural bias of 
static structures co-crystallized with specific ligands, allowing the identification of 
different and new chemical structures. We proved how computationally generated 
conformations can behave as well as experimentally solved ones and, finally, 
recognized the MD-FLAP approach a valuable tool for the dynamic investigation of 
highly flexible systems as kinases, and for the automatic selection of the most 
informative conformational states in virtual screening. 
 
 
 



RESULTS AND DISCUSSION 
Purine Nucleoside Phosphorylase  
The PNP protein38-40 was used as first case study to extensively investigate the 
performances of the proposed integrated MD-FLAP approach.  
PNP catalyzes the phosphorolysis of 6-oxypurine nucleosides and deoxynucleosides 
to generate α-D-(deoxy) ribose 1-phosphate and the purine base, which is then 
recycled or oxidized to uric acid.39 A deficient PNP activity has been associated to an 
elevated blood concentration of D-guanosine, and to the consequent apoptosis of 
dividing T-cells.41,42 Different PNP inhibitors have been developed and used in the 
treatment of T-cell cancers and autoimmune disorders, including psoriasis, 
rheumatoid arthritis, multiple sclerosis and some of them are in clinical trials for 
gout.43 Among others, 7-deazaguanine (PDB code 3iny), 2-fluoroadenine (PDB code 
3gb9), and transition state analogues (TSA) such as Immucillin-H  (TSA for the 
bovine PNP), DADMe-ImmH, DATMe-ImmH and SerME-ImmH (TSAs for the 
human PNP) proved their capability to strongly inhibit the target, showing Ki in the 
picomolar range.44-46  
PNP is a homotrimer bearing a HPO4

2- ion in each binding site.47 The ternary complex 
formed by PNP, DATMe-ImmH (Scheme 1, compound 1) and HPO4

2- is reported in 
Figure 1a. As shown in Figure 1b, the ligand makes several hydrogen bonds with the 
residues lining the binding site, i.e. Glu201, Asn243, and His257, and the HPO4

2- ion. 
These interactions stabilize the protein-ligand complex and, together with their TSA 
nature, justify the observed high affinity. 
Such strong inhibitors do not represent the typical initial scenario of a virtual 
screening campaign, where one generally starts with micromolar affinity scaffolds 
and target a low micromolar or nanomolar activity level. Reasonably, higher the 
affinity of the ligand towards the target, higher is the geometric/electrostatic 
complementarity of the binding site for the cognate ligand and stronger is the 
structural bias induced on the co-crystal. We will later discuss this possible bias 
towards analogous scaffolds present in a database, demonstrating that upon its 
removal, i.e. by working with a reduced dataset, our approach still grants significantly 
improved results over plain VS. 
 
We first performed standard VS experiments and then proposed a new approach 
combining the contribution of Molecular Dynamics, clustering and Linear 
Discriminant Analysis. VS experiments were carried out screening the DUD-E 
dataset, containing 225 known active ligands and 6950 decoys  
The first experiment was run using a Single Receptor Conformation approach on the 
3k8o crystal structural (hereafter named SRC-3k8o VS). This represented the baseline 
for all further results. SRC-3k8o gave a good enrichment with an AUC value of 0.85 
and a good performance also in the early stage of the screening. As reported in Table 
1 and shown in Figure 2a, at the 1% of false positives, the 40% of true positives, i.e. 
actives, were already found (1% ROC enrichment equal to 0.40). As well, almost 60% 
of positive (5% ROC enrichment equal to 0.58) were identified at the 5% of screened 
false positives. The good early performance of the SRC-3k8o VS is also shown in 
Figure 2a’, reporting the percentage of true positives found in the first screened 500 
molecules. For instance, the 40% of true positives was already found in the first 100 
screened molecules, showing that if the first 100 ranked molecules were purchased, 
then 40 of them would have been active against the target. The quality of the VS 
performances is also supported by the predicted ligands poses, which generally 



resembles the one of the co-crystallized DATMe-ImmH reported in Figure 1. As an 
example, the FLAP-predicted orientation of two active molecules into 3k8o binding 
site is reported in Figure 3. The bi-dentate interaction with Asn243 is well conserved 
in both molecules, as well as, when possible, the interactions with the phosphate, 
Glu201 and His257.  
Starting from such a good performance we focused on the following issues:  

i) accounting for protein flexibility via MD simulations to improve the 
screening performance in term of quantity (AUC and ROC enrichments) 
and quality (chemical diversity);  

ii) using and testing different X-ray structures to provide better predictions; 
iii) exploiting information coming from MD and choosing the best performing 

templates. 
 
The aim of the following experiments was to build a predictive LDA model using the 
aforementioned 3k8o X-ray structure and a number of conformations extracted from a 
MD trajectory run on the same protein. 
We run 38 ns MD for the PNP trimer (the whole backbone RMSD is reported in 
Figure S2). Upon completion of the simulation, we checked the conformational space 
explored by the loop facing the binding site, namely residues Val246-Lys266.  Figure 
4 reports the RMSD over time of the backbone atoms of the aforementioned loop for 
each PNP monomer, with respect to the first frame, i.e. the structure after the last NPT 
equilibration step. The graph shows that, consistently, the monomers explored an 
analogous space around the value of 1.5 Å, allowing a significant sampling of loop 
conformations.  
Then, a total of 10 clusters were computed and the medoids (namely the clusters 
centres; Figure S3) were used as reference structures for the virtual screening. Both 
the MD simulations box setup and the clustering38 were performed using the BiKi 
LifeScience environment.1 
To assess the diversity of the space spanned by the clustering results, we computed 
the RMSD of the different monomer loops for each cluster, with respect to the apo 
loop conformation (PDB code 1m73).48 Figure 5 shows that each monomer had a 
different conformation with respect to the apo loop, thus confirming the enrichment in 
terms of sampled structures. In particular, monomer 1 (red line) shows the minimal 
distortion with respect to the apo structure. For this reason, in order to explore the 
most diverse space with respect to the 3k8o crystal and to reduce the overall 
computational burden, we decided to perform all the subsequent VS experiments on 
monomer 1. Nevertheless, the full trimeric unit was always retained since the binding 
site is located at the dimerization interface. Figure 6 reports the super-imposed 
structures of the loops present in the clusters, including the apo form of the loop (blue 
coloured). 
In a ‘standard’ VS approach, all the frames would have been tested in order to 
identify the ones able to give the best performances in terms of enrichment.29 Here, 
instead, we first pre-filtered the trajectory by clustering, and then asked the LDA-
based protocol implemented in FLAP to automatically choose the combination of 
three different conformations among the medoids and the 3k8o X-ray structure, and of 
three FLAP scores, better able to discriminate between active compounds and decoys. 
The selected structures were the X-ray 3k8o and the medoids 7 and 9, while the FLAP 
scores were N1*O, DRY*O and H*O*N1 (see Material and Methods for a more 
detailed description of FLAP scores). 



The ROC curve given by the LDA-MRC-3k8o VS is shown in Figure 2a (dark grey 
line) and the corresponding AUC value (0.94) in Table 1. The improvement given by 
the MRC approach is quantified by the gain in the AUC value, increasing from 0.85 
in the SRC-3k8o VS to 0.94 in the LDA-MRC-3k8o VS. Nevertheless the early 
recognition did not improve appreciably as the ROC enrichments at 0.5%, 1% and 2% 
only showed a small gain. At 5% the enhancement became more evident, i.e. 0.75 
with respect to 0.59. To verify that the AUC and partial ROC enrichments were not 
only given by a subset of the FLAP probes but by the multiple conformations allowed 
during the screening procedure, we build an LDA-SRC-3k8o model using only the 
3k8o structure as template but three different scores. Lower enrichment values were 
obtained. The global AUC was equal to 0.88 and the ROC enrichment at 0.1% and 
5%, 0.21 and 0.52, respectively. Data are reported in Table 1. The graph showing the 
comparison between the 3 templates/3 scores (LDA-MRC-3k8o) and the 1 template/3 
scores approach is reported in Figure S4. 
The most significant improvements were actually recognized in terms of results 
quality and of chemical diversity of the ranked molecules, rather than in terms of 
quantity, i.e. AUC and ROC enrichments. In Table 2 the rank position obtained in the 
SRC-3k8o and in the LDA-MRC-3k8o VSs by some of the most different actives 
with respect to the co-crystallized DATMe-ImmH are reported. Main changes in the 
chemical structure are related to the nature and to the position of the substituents, as 
the base scaffold interacting with Asn243 is, generally, well conserved in all the 
active molecules. The five reported compounds were all poorly ranked in the SRC-
3k8o VS, while they occupied relevant ranking position in the LDA-MRC-3k8o VS, 
e.g. the poorest ranked was located at position 241. To further prove the capability of 
the LDA-based MRC approach to improve chemical diversity with respect to standard 
SRC approaches, active molecules and DATMe-ImmH were clusterized in classes. A 
fingerprint- and substructure-based clusterization was performed according to the 
algorithm developed by Stahl and Mauser, using parameters described in the original 
publication.49 Fourteen different classes were obtained and the average rank of each 
class components calculated for both the SRC-3k8o and the LDA-MRC-3k8o 
screenings. Results are reported in Figure 7 and show how, in general, the average 
rank of the different classes is lower when the LDA-based MRC approach is adopted. 
Only two classes were better ranked by the SRC approach, with one of them, i.e. class 
2, including the co-crystallized DATMe-ImmH. The higher probability of identifying 
chemically different molecules with the LDA-based MRC approach was then 
quantified by calculating the mean and the variance of the rankings across the 
identified ligand classes. Values of 1482±1410 and 501±463 were obtained, 
respectively, for the SRC-3k8o and the LDA-MRC-3k8o screenings, showing that on 
average the ranking is better and that, more importantly, the variability of the ranking 
is much reduced across the ligand classes for the MRC approach. This again 
supported the capability of the proposed method of enlarging the chemical space of 
the first ranked compounds.  

Choosing the right template 
As previously discussed, the availability of such a stable and good performing starting 
structure does not represent the standard situation in VS campaigns. More commonly, 
VS experiments are run using co-crystallized structures with high µM range affinity 
ligands, or apo forms of the target protein. To assess how much VS performances can 
be affected by the initial structure, we performed VS experiments in SRC and MRC 



mode using an apo form and three different structures of PNP in complex with 
different ligands.  
As reported in the Methods section, the apo structure of the trimer (not present in the 
PDB repository) was obtained by running steered molecular dynamics on each of the 
monomers of 3k8o to reach the apo form of the PNP monomer (PDB code 1m73). 
The co-crystallized ligands in the selected holo forms were: 8-azaguanine,50 
acyclovir51 and 2-mercapto-(3H)-quinazoline52 (PDB codes 1v41, 1pwy and 3d1v; 
Scheme 1, compounds 2, 3, 4, respectively), showing Kd values equal to 20, 90, 324 
µM, respectively. These structures were chosen because, first, the respective ligands 
are in the micro-molar range, thus resembling a VS-like scenario, secondly they 
exhibit a relative diversity of the co-crystallized ligands. The performances of the 
SRC VS on the apo, the 1v41, 1pwy and 3d1v complexes are reported in Table 1 and 
in Figures 2b-e (light grey lines). With the only exception of 1v41, all structures 
performed better than the original 3k8o in terms of global AUC, giving values equal 
or close to 0.90. Nevertheless, only 3d1v gave results comparable to 3k8o in terms of 
ROC enrichments at the 0.5% and 1% of screened false positives. While the 3k8o and 
3d1v structures allowed the identification of more than 30% of positives at the 0.1% 
of screened false positives, no more than 18% of positives was, in fact, detected when 
using the other structures. Better performances were given at 5% ROC enrichment by 
1pwy, detecting 57% of positives with respect to the 59% and 61% identified by 3k8o 
and 3d1v, while the apo form and the 1v41 complex only reached the 43% and 40%, 
respectively. Interestingly, the best performing structure, 3d1v, would not have been 
chosen a priori as starting structure for any SBVS because of a number of 
inconsistencies in the same structure, as missing atoms and missing bonds. 
We then tried to investigate if the MD trajectory encoded information could help in 
choosing the most proper structure or could, at least, remove the bias given by the use 
of one structure with respect to another. 
Similarly to the previously reported experiment (MRC on medoids plus 3k8o X-ray), 
we performed MRC VS experiments, using as possible structure templates the ten 
medoids and each different X-ray structure at a time. Again, we asked the LDA to 
automatically choose the best combination of the three different conformations and 
the three FLAP scores better able to discriminate between actives and decoys. Finally, 
we removed the contribution of any X-ray structure and run the LDA model by using 
as possible templates the only ten medoids extracted from the MD/clustering 
procedure. The obtained models were LDA-MRC-apo, LDA-MRC-1v41, LDA-
MRC-1pwy, LDA-MRC-3d1v, LDA-MRC-med. Results are reported in Table 1 and 
Figure 2 (dark grey lines).  
The comparison of the AUC and of the ROC enrichments reported in Table 1 
intriguingly shows that the same performances were obtained regardless the presence 
of the different X-ray structures in the panel of possible templates. Actually, the 
contribution of the aforementioned crystallographic structures was completely 
disregarded, since the same three medoids, i.e. 2, 4, 8, and the same three FLAP 
scores, i.e. H*DRY, H*N1*H, H*O*H, were chosen in all the cases. Thus, even in 
the absence of any X-ray structure (LDA-MRC-med model), the VS performances did 
not change. 
The comparison of the SRC-VS and MRC-VS performances, reported in Figure 2b-e  
(light grey and dark grey lines, respectively) highlights how better results were always 
obtained when using multiple conformations with respect to a single structure. In 
particular, very good performances were reported for LDA-MRC-apo and LDA-



MRC-1v41, with respect to SRC-apo and SRC-1v41. Better results were also given 
by LDA-MRC-1pwy, especially in the early screening stage (see Figure 2b’-e’). 
In Figure 8, the percentage of active molecules found in the first 500 screened ones by 
the LDA-MRC-3k8o, LDA-MRC-med and the LDA-MRC-Xray VSs is reported. In 
the last model, the previously screened X-ray structures, i.e. 3k8o, apo form, 1v41, 
1pwy, 3d1v, were used as possible templates. The combination represented by the 
three structures 3k8o, 1pwy and 3d1v and by the three FLAP score H*DRY, N1 and 
H*O*H was chosen as the best discriminating one. The three models performed very 
well and similarly in the very early stage of the screening up to the first 100 screened 
molecules. Then, slightly better results were provided by the LDA-MRC-3k8o, which 
still demonstrated to give the best performance (see Table 1).  
 

Removing the ligand induced bias 
The well-known induced fit theory is based on the belief that in a protein-ligand 
complex the final protein conformation is partially induced by the structure of the 
ligand. As the ligand enters the binding site, the protein adjusts itself in order to reach 
the highest possible complementarity and to generate the most stable complex. In 
contrast, theories based on conformational ensembles postulate the presence of a pre-
existing equilibrium of structures ensemble, among which the ligand chooses the most 
suitable and complementary one.5 More recent theories describe ligand binding as a 
combination of a conformer selection-stage, followed by minor adjustments within 
the binding pocket modulated by the ligand (induced-fit stage).53 
We previously commented on the possible structural bias given by the DATMe-
ImmH ligand on the 3k8o structure, considering the very high affinity and the high 
number of hydrogen bonds formed between the ligand and the residues lining the 
pocket. This high similarity could lead to an overestimation of the SRC-3k8o VS 
performances, since the dataset is populated by many active compounds structurally 
similar to the co-crystallized one.  
Aimed to remove the ligand induced bias, to have a reliable estimation of the single 
structure screening quality, and to provide a proper comparison with the MRC-based 
approach, we reduced the original dataset by removing ligands similar to DATMe-
ImmH. We thus performed a ligand-based virtual screening of the whole original 
DUD-E PNP dataset, using as template the DATMe-ImmH ligand. Molecules were 
ranked according to the FLAP distance to the template. The first ranked 1%, including 
both actives and decoys, was removed from the dataset. We then screened the reduced 
dataset against the single 3k8o structure and against the LDA model built using as 
template the same 3k8o structure and the ten medoids. The comparison of the new 
SRC-3k8o’ and LDA-MRC-3k8o’ models performance is reported in Figure 9, as 
well as the comparison of the results provided by the original SRC-3k8o and LDA-
MRC-3k8o VS. Data are reported in Table 3.  
The removal of the co-crystallized ligand did change the predictions. The so well 
performing SRC-3k8o model significantly worsened and the new SRC-3k8o’ was 
able to give a global AUC of only 0.75 (light blue line, panel a), with respect to the 
original 0.85 (light grey line, panel a). The performances in the early screening stage 
also significantly got worse since the ROC enrichment at the 0.5% of false positive 
decreased from 0.33 to 0.16. Similarly, at 5%, the ROC enrichment reached the value 
of 0.26, with respect to the original 0.59. Interestingly, the new LDA-MRC-3k8o’ 
model did not experience the same worsening and still provided appreciable 
predictions. As shown in Figure 9a, the global AUC moved from 0.94 (dark grey line, 



panel a) to 0.92 (blue line, panel a). We only observed a slight drop in the ROC 
enrichment at 0.5%, being 0.18 with respect to 0.28, which was then regained at 5%, 
moving to 0.62 with respect to the original 0.75.  
Figure 9b reports the percentage of active compounds found in the 500 ranked 
molecules by the VS run using the four aforementioned models, i.e. SRC-3k8o’ (light 
blue line), SRC-3k8o (light grey line), LDA-MRC-3k8o’ (blue line), LDA-MRC-
3k8o (dark grey line). Here too, we could appreciate the poor performance provided 
by the SRC VS once the database has been deprived of the molecules most similar to 
the co-crystallized DATMe-ImmH. The percentage of actives decreased, in fact, from 
58 to 32. Conversely, the MRC model experienced a much less pronounced 
decreasing, i.e. from 73 to 64, being able to sample different conformations and to 
recognize different scaffolds. 
The screening data obtained for the other models are represented in Table 3 and in 
Figure 5 SI. With respect to the original dataset, all SRC models gave worse 
performances, even if to a less extent than SRC-3k8o’. In the case of SRC-1v41’, 
molecules were ranked according to the H*N1 FLAP score, giving definitely better 
AUC values with respect to the distance from the template. The most different results, 
in particular, were obtained for the SRC-apo’ and the SRC-1pwy’ models, both in 
terms of global AUC and in percentage of actives ranked in the early VS range. 
Again, we did not observe any big difference when the reduced dataset was screened 
towards the LDA generated models, thus supporting the importance of considering 
the intrinsic protein dynamics, and the quality of the computationally-generated 
conformations. 
The percentage of active molecules found in the first 500 screened ones by the new 
LDA-MRC-3k8o’, LDA-MRC-med’ and the LDA-MRC-Xray’ VSs was again 
compared and is reported in Figure 10. The best results were provided by the LDA-
MRC-med’ VS (blue line), which performed better than the LDA-MRC-3k8o’ VS 
(where 3k8o X-ray was retained as LDA template; magenta line) in particular in the 
early screening stage. Interestingly, even better predictions were obtained with respect 
to the LDA-MRC-Xray’ VS (red line), suggesting that, in this case, computationally 
generated conformations can contain more useful information than experimentally 
solved structures. As in the VS performed on the whole dataset, the LDA-MRC-3k8o’ 
outperformed the LDA-MRC-Xray’ VS, but here the LDA-MRC-med’ VS gave even 
better results (Figure 8 and Figure 10). 

Looking at the phosphate as an active player 
We then considered the phosphate as an active player in VS experiments and showed 
that by including in the LDA models medoids with and without the phosphate, results 
could be further increased. 
A significant amount of active ligands are transition state analogous stabilized in the 
binding site by the formation of electrostatic interactions with the negatively charged 
HPO4

2- ion. Nevertheless, also phosphonate derivatives are known PNP inhibitors.54-56 
Their potency has been mainly attributed to the capacity of filling three discrete 
binding sites in the enzyme pocket, i.e. a guanine binding region, a hydrophobic 
pocket and a phosphate binding site.54 We can reasonably hypothesize that the 
phosphate group occupies the region where the co-crystallized HPO4

2- ion is normally 
located, as also supported by crystallographic evidences.57,58 This would imply the 
phosphate absence, or displacement, in the binding site, and a PNP not in the fully 
saturated regime.  



We included in the configurational space the possibility of a missing phosphate. In 
particular, since the DUD-E dataset used in this work contains different phosphonate 
derivatives we decided to investigate how the VS performances could change with the 
phosphate being removed from the binding pocket. We thus built the LDA-MRC-
med20 model, giving to FLAP as possible templates the medoids extracted by the 
MD/clustering approach with and without the HPO4

2- ion, i.e. twenty medoids. 
Among the twenty structures the three most able to discriminate between active 
molecules and decoys were medoids 2 and 4 in presence of HPO4

2- and medoid 3 in 
absence of HPO4

2-. The three selected FLAP scores were H*DRY, H*O*N1 and 
H*O*DRY. The comparison of the ROC curves and of the percentage of active 
molecules found in the first 500 screened ones by the previous LDA-MRC-med 
model and by the last LDA-MRC-med20 is shown in Figure 11 panels a and a’. Data 
are reported in Table 4. Despite the global AUC only increased from 0.93 to 0.96, 
extremely relevant was the increment of the partial ROC enrichments. The percentage 
of actives at 0.5% of screened false positives moved from 32% to 46%, while at ROC 
5% 80% of actives were identified, with respect to the previous 66%. Panel a’ in 
Figure 11 clearly shows how the actives percentage raised in the early screening 
stage. Similar results were obtained when the model was used to screen the reduced 
dataset. While the global AUC moved from 0.92 to 0.95, at ROC 5% we were able to 
identify 80% of active compounds with respect to 62%.  
Again the MD-clustering-LDA approach allowed us to choose the most informative 
structures, not only in terms of pocket flexibility but also of binding site architecture, 
and to accommodate within the binding site the most diverse ligand types with and 
without a phosphate group.  
The most interesting aspect is that the best performing protein conformations among 
the chosen templates are both composed of PNP with and without the HPO4

2- ion into 
the binding site, which may suggest that considering the cofactors as an integral part 
of the approach can further increase the explored configurational space and the VS 
performance.  

Models robustness and validation 
All the previously reported LDA models were calculated on the same datasets used 
for VS predictions. No overfitting was expected because of the low number of 
variables (3 templates and 3 scores), with respect to the number of samples, i.e. 7229 
for the whole dataset and 7080 for the reduced one.   
To prove this assumption, we randomly separated the compounds in a training and 
test set, equally dividing the original dataset. The LDA-MRC-PNP model was 
calculated on the training set, using again 3 templates and 3 scores, and validated on 
the test set. The result of the screening is reported in Figure 12 (panel a, purple line) 
and has been compared with the enrichment obtained screening only the test set 
towards the single receptor conformation, i.e 3k8o, (panel a, pink line). AUC and 
partial ROC enrichment values are reported in Table 5. Again, better results were 
obtained when using an LDA-MRC approach with respect to a SRC methodology. In 
particular, a significantly better ROC enrichment of 0.81 was obtained at 5%, with 
respect to an original value equal to 0.67. To prove that the enrichment gain was 
mainly given by the use of different protein conformations and not by the 
combination of multiple FLAP scores, we built an LDA-SRC-PNP model using the 
only 3k8o structure but three different scores (panel a, magenta line). The total AUC 
did not change with respect to the SRC VS, i.e. 0.81. Slight changes occurred in the 



ROC curve but no significant gain could be observed, in particular, in the early 
enrichment phase. 
Also, to design a more realistic scenario, in which only a few similar actives are 
known, we selected the 48 active compounds populating the same class of the original 
co-crystallized ligand and used them, plus 50% of decoys, to build a further LDA-
MRC model. This model was validated on the corresponding test set, containing all 
the remaining actives and the remaining 50% of decoys, and used to screen the test 
set. In this case the LDA selected only medoid 7 as the template giving the best 
performance. The obtained AUC and ROC enrichment values were comparable to 
those given by the previous LDA-MRC-PNP model, in particular in the very early 
enrichment. The global AUC was 0.91 with respect to 0.92, while the ROC 
enrichments at 0.5%, 1%, 2% and 5%, respectively 0.24, 0.30, 0.35 and 0.60, with 
respect to 0.27, 0.38, 0.69, 0.81.  

Exploring the versatility of the MD-FLAP approach 
The integrated MD-FLAP approach was then applied to other two cases to better test 
its capability of improving VS performances on totally different targets. In particular, 
the tyrosine-protein kinase ABL1 and the adenosine A2A receptor (here abbreviated as 
ABL1 and A2A, respectively) were chosen as representative test cases. The 
corresponding actives/decoys datasets were retrieved from the DUD-E database. 
ABL1. The tyrosine-protein kinase ABL1 is involved in different cell differentiation 
processes as cell division and adhesion. Mutations in the ABL1 gene are mainly 
associated to chronic myeloid leukemia (CML), caused by the overactivation of the 
tyrosine kinase c-ABL due to the presence of the BCR-ABL fusion gene.59 
Kinases are well-known highly flexible targets, whose activation is mainly controlled 
by conformational changes in three conserved structural motifs at the active site: the 
activation loop (A-loop), the Asp-Phe-Gly (DFG) motif, and the αC -helix.60 This 
structural flexibility has assumed particular importance in the development of specific 
kinase inhibitors able to target kinase-specific conformations. For ABL1, in 
particular, four different conformations were identified for the DFG motif: the DFG-
in active conformation, the DFG-out inactive conformation, the DFG-flipped 
conformation and the Src-like inactive conformation.61 In the active state, the 
aspartate residue of the DFG motif points toward the active site (DFG-in), where it 
coordinates a catalytic magnesium ion. In the inactive conformation, the aspartate 
moves outside the active site while the phenylalanine moves inward. This DFG-out or 
DFG-flipped conformation is incompatible with Mg2+ binding and catalysis. The 
well-known imatinib, for instance, binds the DFG-out conformation, originally 
proposed to account for imatinib specificity towards ABL1.62,63 
The ABL1 structure deposited in the DUD-E database corresponds to the DFG-
flipped conformation (PDB code 2hzi61). The DUD-E ligand dataset for ABL1 
contained 295 actives and 10884 decoys. These were randomly separated in a training 
and a test set composed, respectively, by 5584 and 5595 compounds, with a similar 
actives/decoys ratio.   
The SRC-ABL1 virtual screening was performed on the single reference X-ray 
structure. The corresponding ROC curve is shown in Figure 12 (panel b, pink line), 
while data are reported in Table 5. The global AUC reached a value of 0.69, with very 
poor partial enrichments in the early screening stage. The ROC enrichment at 0.5%, 
in fact, was equal to 0.03 (the lowest value ever found in all the VS here reported), 



which means that only the 3% of actives was identified at 0.5% of screened false 
positives. No significant improvements were observed at 1% ROC enrichment; at 5% 
a poor value of 0.23 was obtained. With respect to the PNP case, the overall AUC, 
and in particular, the early recognition showed a significant worsening in 
performance. This could be reasonably due to the highest level of flexibility 
experienced by ABL1 in comparison to PNP and, likely, by the capability of the 
dataset ligands to bind significantly different target conformations. 
To identify these possible conformations and apply the proposed MD-FLAP 
approach, we run a 100 ns scaled MD simulation on ABL1, similarly to what 
performed in a recent work.64 In the referred paper we used an enhanced sampling 
technique to improve the sampling of the binding site together with the ligand, 
whereas here we accelerated the phase space sampled by the kinase activation loop. 
Ten representative conformations were then extracted by clustering the trajectory on 
the activation loop (see the Methods section for further details). Then we let the LDA-
based protocol choose the combination of three different conformations among the 
medoids and the 2hzi X-ray structure, and of three FLAP scores, better able to 
discriminate between active compounds and decoys on the training set. The obtained 
model was validated on the test set, and used to screen the same test set to get the best 
performances in prediction. The selected structures were medoids 1, 4 and 6 (the X-
ray structure was not chosen as template), while the FLAP scores were H, DRY and 
DRY*O.  
The ROC curve given by the LDA-MRC-ABL1 VS is shown in Figure 12 (panel b, 
purple line) and the corresponding data are reported in Table 5. The improvement 
given by the MRC approach is quantified by the gain in the AUC value, increasing 
from 0.69 in the SRC-ABL1 VS to 0.85 in the LDA-MRC-ABL1 VS, but, in 
particular, by the ROC enrichments better accounting for the method improved 
performances in the early screening stage. Thus, the ROC enrichment at 0.5% moved 
from 0.03 to 0.22 (a seven fold performance increase) while at 5% a value of 0.55 was 
obtained with respect to 0.23 originally provided by the SRC-ABL1 VS. The LDA-
SRC-ABL1 model (panel b, magenta line), built using as template the X-ray structure 
and three different FLAP scores, did not show any significant improvement with 
respect to the SRC-ABL1 model, in particular in the early screening stage. Slight 
improvements can be observed in the central and final region of the curve. These 
observations again supported the importance of including more conformations in VS 
campaigns when dealing with flexible targets. 
A2A. The adenosine A2A receptor belongs to the family of G-protein coupled 
receptors (GPCRs), known to respond to an impressive plethora of different stimuli. 
A2A, in particular, is ubiquitously expressed in humans and is recognized as a major 
mediator of anti-inflammatory responses. Also it has been identified as a promising 
pharmacological target for the development of agonists for myocardial perfusion 
imaging and as anti-inflammatory agents, and antagonists for the treatment of 
neurodegenerative disorders, such as Parkinson's disease.65 
As for all GPCRs, the computational simulation of the receptor dynamics in the cell 
membrane is far from trivial. The complexity of building a reliable model for in silico 
membrane protein simulations resides in the varying nature of the membrane 
composition, and in the difficulty of providing an accurate parametrization of the 
different membrane components in the force field.66 In this perspective simplified 
models using single species lipid bilayers have been generally adopted.67,68 More 
recently bilayers containing two or more different lipids have been used.66,69 Here we 
built a POPC bilayer and run a 100 ns MD trajectory. 



As better described in the Methods section, the A2A model used in MD simulations 
was built starting from PDB codes 3uzc70 and 4eiy71 for modelling, respectively, the 
trans membrane region and the extracellular and sodium ion. 4eiy structure was used 
instead of the 3eml72 structure deposited in the DUD-E dataset, because of the 
presence of the same co-crystallized ligand and of a better resolution.  
Ten representative conformations were extracted by clustering the trajectory on the 
Phe168 and Leu249 residues, having a specific role in defining the shape of the 
transmembrane receptor pocket.   
The DUD-E dataset for A2A contained 842 actives and 32026 decoys, which were 
randomly separated in training and test set containing, respectively, 16422 and 16446 
compounds. The training set was used to build the LDA-MRC-A2A model, using 
again a 3 templates/3 scores approach. The original X-ray structure, medoids 2 and 6 
were chosen as templates while N1*O, DRY and H*O*DRY were identified as the 
most representative FLAP scores.  
The comparison of the SRC-A2A and of the LDA-MRC-A2A VS is reported in 
Figure 12 (panel c, pink and purple lines, respectively) and the corresponding data in 
Table 5. The SRC-A2A VS gave a very good AUC value of 0.81 and quite good 
partial enrichments also in the early screening phase, being able of identifying 41% of 
actives at the 5% of screened false positives (5% ROC enrichment). Very slight 
improvements were observed in the global AUC when the VS was performed using 
the LDA-MRC-A2A, i.e. 0.86 with respect to the previous 0.81, and in the partial 
ROC enrichments, with 49% of actives found at 5% ROC enrichment, with respect to 
41%. With respect to PNP and ABL1, the A2A receptor might, in fact, experience a 
lower conformational flexibility, if we consider the packing effect of the membrane 
bilayer and the almost total  α-helix nature of the transmembrane receptor. 
The screening performed with the LDA-SRC-A2A model showed no better 
performances with respect to the SRC-A2A one, confirming that the slight 
improvement observed in the MRC screening was given by the use of multiple 
receptor conformations. Also, we have to note that no water molecule was included in 
VS calculations. Nevertheless their importance in mediating receptor-
agonist/antagonist interactions, the prediction of waters network behaviour in GPCRs 
still remains rather challenging and time-consuming in VS campaigns. Recent higher 
levels of theory predictions showed the importance of water molecules when dealing 
with triazine compounds within A2A.73 
 

Assessing MD enhanced Virtual Screening 
In a recent work, Nichols and collaborators29 assessed the performance of virtual 
screening in presence of configurations sampled from molecular dynamics 
trajectories. The authors used a full set of MD snapshots and assessed the change in 
performance in terms of AUC and ROC enrichments. They reported that MD 
snapshots on average helped improving VS results but still, most of the snapshots 
gave worse performances with respect to X-ray structures. In addition, clustering 
alone did not seem enough to improve VS performances.  
The approach here proposed combines together an unsupervised and a supervised 
selection of the most representative protein conformations. We first found the 
significant free energy basins by clustering (unsupervised selection) and then, using 
the LDA methodology (supervised selection), we identified the protein conformations 
able to better separate actives from decoys. This double filtering allowed us to retain 



from the dynamics only the most potentially useful and effective information for 
improving VS figures.  
This strategy could be significantly useful for any VS campaign willing to include 
receptor flexibility in presence of ligand activities. Regardless the nature of the 
flexibility information, being experimentally or computationally determined, the LDA 
could be able to identify the most informative structures and to improve virtual 
screening performances by considering protein dynamics. It has been reported in 
literature that, sometimes, including flexibility in docking or VS analyses could add 
noise rather than real information,17 in addition to a higher cost in terms of calculation 
time. This could be due to different reasons: i. the protein target is not experiencing 
significant conformational adjustments; ii. the conformational space is not properly 
sampled; iii. too many conformations have been considered in the simulations.  
In this perspective the integrated MD-FLAP approach could verify if the protein 
undergoes fruitful adjustments for VS (if different X-ray structure are available) or if 
the explored conformational space does not convey any useful information. If no 
enrichment improvement could be achieved by allowing different binding site 
conformations, a model considering only one template will give the same 
performances of a model built using more structures. No better performances will be 
obtained by increasing the number of templates upon a certain level, where only the 
calculation time would increase.  
 
 
METHODS 
In the following section we discuss the details of the overall Virtual Screening 
protocol. The methodology consists in enhancing the virtual screening performance 
by generating feasible configurations of the targets orthosteric binding site, via plain 
or scaled molecular dynamics. In particular, to collect the most representative 
structures, we clusterized the molecular dynamics trajectories and selected the most 
probable conformations belonging to free energy basins. Along with these structures, 
for the PNP case, we collected additional crystallographic structures available in the 
PDB repository, to possibly enhance the screening performance and investigate the 
contribution given by either experimental or computationally generated structures. All 
the simulation setup was carried using the BiKi LifeScience software suite.1 

Molecular dynamics guided conformational sampling and clustering 
PNP. The structure of PNP complexed with DATMe-Immucillin H (PDB code 
3k8o39) was retrieved from the Protein Data Bank (www.pdb.org); the ligands were 
removed and the phosphate ions located in the binding sites treated as mono-
protonated.38,47 
The protein was parameterized by Amberr99SBildn force field74 whereas the 
phosphate group was parameterized according to,38 where an ab-initio RESP charges 
fitting was performed. Gromacs 4.6.1 was used to run MD simulations.75 The water 
model employed was TIP3P and the final box size was 111 x 102 x 111 Å in the X, Y 
and Z directions, respectively. The solvated system was preliminary minimized by 
5000 steps of steepest descent. As in the subsequent equilibration the integration step 
was equal to 2 fs. The Verlet cut-off scheme, the Bussi-Parrinello thermostat,76 
LINCS for the constraints (all bonds), and the Particle Mesh Ewald for electrostatics, 
with a short range cut-off of 11 Å, were applied.  

http://www.pdb.org/


The system was equilibrated in four subsequent steps: 100 ps in NVT ensemble at 100 
K, 100 ps in NVT ensemble at 200 K, 100 ps in NVT ensemble at 300 K and, finally, 
a 1 ns long NPT simulation to reach the pressure equilibrium condition. In the first 
two equilibration steps harmonic positional restraints were set on the backbone of the 
protein with a spring constant of 1000 kJ/mol/Å2. The production run was carried on 
in the NVT ensemble at 300 K, without any restraint for approximately 40 ns. 
Upon completion of the simulation we run a clustering process on the molecular 
dynamics trajectory. We employed the algorithm proposed in38 and used the backbone 
RMSD with optimal alignment (Kabsch algorithm)77 between frames as metric for 
distance computation. The clustering was performed on the whole protein backbone. 
In order to carry out the experiments in a reasonable amount of time, combining speed 
and accuracy, the following VS analyses were performed only on monomer 1, also 
according to the lower RMSD variation of the loop facing the binding site with 
respect to the apo form (Figure 5, red line). 
Considering that in the PDB repository a full homotrimeric PNP apo structure was not 
available we performed a steered molecular dynamics on each of the monomers of the 
3k8o structure, to obtain the apo form of the PNP monomer (PDB code 1m73). For  
this aim we used Gromacs 4.6.1,75 Plumed278 and the RMSD collective variable. We 
run a 1 ns simulation in NVT ensemble and steered the heavy atoms of residues in the 
flexible loop/alpha-helix facing the binding site, namely from Val246 to Lys266. An 
equal weight was given to the atoms during the steering process and a target value of 
0 in RMSD was employed. 
Together with this structure, the structures of PNP complexed with 8-azaguanine,50 
acyclovir51 and 2-mercapto(3H) quinazoline52 were retrieved from the PDB (PDB 
codes 1v41, 1pwy and 3d1v, respectively) and aligned to the PNP-DATMe-
Immucillin H complex, to enrich the set of conformations to be used in the virtual 
screening campaign.  

ABL1. The chain A of the PDB code structure 2hzi was used as ABL1 model. We 
followed the same equilibration protocol as for PNP. To run the production simulation 
we scaled the MD potential energy with a factor of 0.5. At the same time, to only 
accelerate the activation loop (Asp381-Glu409) and maintain the overall fold of the 
protein, we restrained all the protein backbone except the activation loop with an 
harmonic positional restraint (spring constant equal to 50 kJ/mol/nm^2). Some of the 
authors recently employed an analogous strategy to accelerate protein-ligand 
unbinding and study the unbinding kinetics.64 The simulation was run for 100 ns. This 
acceleration significantly increased the diversity of the sampled configurations and 
allowed the binding site to accommodate both type I and type II inhibitors. Strictly 
speaking the sampled configurations are at high temperature and thus, from a 
thermodynamics point of view, we should reweight their occurrences. However here 
we were more interested in the sampling itself, regardless of the relative free energy 
difference between the basins. Interestingly, this acceleration method can be easily 
applied to several computational pipelines and will be further investigated in future 
works. The clustering was done setting 10 clusters and using as metric the RMSD 
between the different conformations. 

A2A. The A2A model was built starting from PDB codes 3uzc and 4eiy. We used the 
3uzc structure because of the absence of the apocytochrome b(562)RIL present in 
4eiy and employed to obtain the crystal. Ala277, being in the nearby of the binding 



site, was back-mutated to serine. At the same time the resolved extracellular loop and 
the sodium ion were recovered from structure 4eiy. We built a POPC membrane 
bilayer with 75x75 Å size and with a water layer of 30 Å on each side. To assemble 
the bilayer we used the CharmmGUI Server 79,80 and we pre-equilibrated the template 
via NAMD.81 To define the pose and to perform the physical insertion of the protein 
within the membrane we applied the Protein Membrane tool present in BiKi 
LifeScience.1 The equilibration protocol was analogous to the one previously 
described. The production was run for 100 ns in NPT ensemble and the pressure was 
kept anisotropic (X,Y plane).  
All molecular dynamics simulations were run on a Intel Xeon CPU E3-1245 v3 
@3.40GHz workstation equipped with two NVIDIA GeForce GTX 780, running a 
RedHat Linux operating system based on kernel 2.6.32-431 x86_64. 
 

The DUD-E compound datasets 
The database containing active ligands and decoys for the three different targets, PNP, 
ABL1 and A2A were retrieved from the DUD-E dataset (http://dude.docking.org/),82 
an advanced version of the DUD dataset,83 containing also tautomers and protomers. 
In the case of PNP 225 active ligands (clustered into 103) and 6950 decoys were 
present. For ABL1 the dataset contained 409 actives (clustered in 182) and 10885 
decoys, while for A2A the dataset included 842 actives (clustered in 482) and 32026 
decoys. Each dataset was then processed by FLAP and up to 25 conformers for each 
compound built, using the default RMSD threshold equal to 0.30. Molecular 
Interaction Fields were then calculated for each conformer and stored in the FLAP 
database used to perform the subsequent virtual screening analyses. 

Virtual Screening 
FLAP. The virtual screening experiments were performed with FLAP (Fingerprints 
for Ligands and Proteins),36,84 developed and licensed by Molecular Discovery Ltd. 
(www.moldiscovery.com). Several VS campaigns have been successfully performed 
with FLAP and reported in literature.85-88  
FLAP describes small molecules and protein binding sites in terms of 4-point 
pharmacophoric fingerprints, extracted from the Molecular Interaction Fields (MIFs) 
calculated by GRID.89,90 Typically, the used probes are H (mapping the shape), DRY 
(evaluating hydrophobic affinities), O and N1 (mapping H-bond donor and acceptor 
regions, respectively). The information contained in the MIFs is extracted and 
condensed in quadruplets of pharmacoforic points, used to compare, align and 
superimpose different chemical entities, which can be either small molecules or 
macromolecules, usually described in terms of pockets. This procedure allows the 
selection of the most interesting candidates with chemical and structural 
complementarity with the receptor binding site (SBVS), or similarity with known 
ligands (LBVS). In SBVS studies, the algorithm calculates the receptor GRID-MIFs 
and describes the binding pocket in terms of MIF points quadruplets. As well, for 
each screened compound, atoms are combined in quadruplets. Matching quadruplets 
belonging to the pocket and to the ligands are used to overlay the compounds onto the 
receptor model during the screening process. This superimposition is quantitatively 
scored by considering the corresponding MIFs similarity, which is collapsed in 
eighteen different scores.  



Probe scores are calculated for a given superimposition by directly comparing the 
volumes of the oriented MIFs, both on a probe-by-probe basis, as well as for probe 
combinations. For every solution being scored, FLAP first calculates scores which 
represent the degree of volume overlap for each of the probes (and of the 
corresponding generated MIFs) being used individually, i.e. H, DRY, O and N1, and 
then combines these scores in order to produce probe-combination scores. For 
instance, the DRY*O score corresponds to the product of the DRY and O MIFs 
overlap. In addition, FLAP also calculates two Global scores, the Global Sum, which 
is produced by summing all the scores of the individual probes together, and the 
Global Product, produced by multiplying all the scores of the individual probes 
together. The Global Product score is corrected when one of the terms is zero, to 
avoid a score equal to zero if three of four fields matched perfectly. The Probe Score 
finally saved for every individual probe and for every probe combination is the one 
giving the highest similarity.  
Once the Probe scores for the individual probes and their combinations have been 
calculated, including the Global Sum and Global Product, FLAP will calculate a 
Distance Score, representing the overall similarity derived by a combination of the 
overlap degree between the single H, DRY, O and N1 MIFs computed for the 
candidates and the template, that is, the protein binding site.84  
All these different scores can be used to rank the compounds with respect to the 
template. 
PNP VS. In the case of the SBVS performed on the different single X-ray structures 
of PNP, compounds were ranked according to the FLAP Distance from the 
template.84 In all the screenings the binding site was identified by the ligand DATMe-
Immucillin H extracted from the complex with PNP (PDB code 3k8o). All the other 
X-ray structures and the MD-generated medoids were aligned with the 
aforementioned complex. To take into account protein flexibility the ten medoids 
extracted from the whole MD trajectory by the clustering algorithm were also used as 
possible templates in the VS simulations, as well as the X-ray structures.  
The Linear Discriminant Analysis approach implemented into FLAP was used to 
select the most representative templates among the medoids and the X-ray structures. 
The template selection is performed to maximize the capability of the corresponding 
probe scores linear combinations to discriminate between actives and decoys. 
LDA analyses are commonly used to define the relationship between a non-metric 
dependent variable (Y) and metric independent variables (X), being respectively Y 
the class assigned to each ligand (activity or inactivity) and X the templates and the 
probe scores produced by FLAP.  
The effectiveness of a discriminating model relies on its capability to predict which 
class an object belongs to, by defining a new variable called the discriminant function 
score. Linear discriminant function scores are computed by determining the 
coefficients for the independent variables able to maximize the distance between the 
classes (actives and inactives) corresponding to the dependent variable. 
Mathematically the linear discriminant function is similar to a linear regression 
equation in which the independent variables are multiplied by the aforementioned 
coefficients and then summed to produce a score. From a geometrical point of view, 
assuming data is D-dimensional, a linear discriminant function define (D-1) 
dimensional hyperplanes to discriminate the objects in different classes and define the 
boundary between these groups. 
FLAP produces a multitude of LDA models by making all possible combinations 
between the specified number of probe scores for every possible combination of the 



specified number of template candidates (independent variables). Each model is then 
evaluated, in fitting and in prediction, using the Leave One Out (LOO) approach. 
Once a large number of LDA models have been generated and validated, the user can 
select the model to be used in the following VS analyses. When carrying out virtual 
screening using an LDA model, FLAP will produce "Activity Class" predictions for 
each investigated molecule, besides the usual output forms, and a corresponding 
LDA-R score ranking the compounds from the most active (highest score) to the most 
inactive (lowest score). When the inclusion of multiple structures improves VS 
predictions, the LDA-R score ranking gives the highest enrichment. 
For the PNP test case different LDA models were calculated using, each time, the ten 
medoids extracted from the MD trajectory by the clustering algorithm and a different 
X-ray structure, i.e. LDA-MRC-3k8o (3k8o X-ray structure + 10 medoids); LDA-
MRC-apo (apo generated structure + 10 medoids); LDA-MRC-1v41 (1v41 X-ray 
structure + 10 medoids); LDA-MRC-1pwy (1pwy X-ray structure + 10 medoids); 
LDA-MRC-3d1v (3d1v X-ray structure + 10 medoids). LDA models were also 
calculated for the ten medoids only and for the five analyzed X-ray structures, i.e. 
LDA-MRC-med (ten medoids) and LDA-MRC-Xray (3k8o, apo, 1v41, 1pwy, 3d1v). 
A 3 templates/3 scores approach was used for all the LDA models. 
The related VS were then performed using as templates the aforementioned models, 
i.e. MRC-VS-3k8o; MRC-VS-apo; MRC-VS-1v41; MRC-VS-1pwy; MRC-VS-3d1v; 
MRC-VS-med; MRC-VS-Xray. 
The LDA-MRC-med20 models were built using the ten medoids extracted by the 
BiKi clustering with and without the HPO4

2- ion. Again, a 3 templates/3 scores 
approach was used. 
A ligand-based VS was run in order to reduce the original DUD-E dataset and remove 
compounds most similar to the co-crystallized DATMe-Immucillin H ligand. The 
ligand was used as template and the dataset compounds were ranked according to the 
FLAP Distance from the template. The first 1% of ranked molecules was removed 
from the dataset, irrespectively if they were actives or decoys. 
The original DUD-E datasets was then randomly separated in training and test sets, by 
using the random option implemented in "sort" (GNU coreutils, version 8.17). The 
same procedure was applied to generate training and test sets for the other two cases, 
ABL and A2A. 
An LDA-MRC-3k8o model (simply named LDA-MRC-PNP in Table 5 and within 
the text) was then calculated for the training set. Again a 3 templates/3 scores 
approach was used. The model was then validated on the test set and the 
corresponding MRC-VS performed on the test set to get the best AUC in prediction. 
The LDA-SRC-PNP model, reported in Table 5 and used to evaluate the contribution 
of multiple FLAP scores with respect to a standard SRC model, was built using as 
template the only X-ray 3k8o structure, but allowing the use of three different scores. 
Similarly, the model was built on the training set and validated on the test set, and the 
corresponding VS run to get the best AUC in prediction 
ABL1 VS. In the case of tyrosine-protein kinase ABL1 the SRC VS was performed on 
the X-ray reference structure 2hzi upon removal of the co-crystallized PD180970 
ligand. Compounds were ranked according to the DRY*N1 score, giving the best 
performances and corresponding to the product of the DRY and N1 MIFs overlap. 
Considering the high level of flexibility allowed by the scaled MD simulation and 
generally experienced by kinases, the binding site of the X-ray structure and of the 



MD-generated medoids was identified by automatically calculating the pocket volume 
and shape with the flapsite algorithm implemented into FLAP.91 Thus, differently 
from the PNP and A2A cases, no co-crystallized ligand was used to define the binding 
site to avoid any user-dependent pocket definition. 
The reference X-ray structure, and the ten medoids extracted from the scaled MD 
trajectory were used as possible templates to calculate the LDA-MRC-ABL1 model 
using, again, a 3 templates/3 scores approach. The LDA-MRC-ABL1 model was built 
on the training set and validated on the test set. The MRC-VS was performed on the 
test set in order to have the best AUC in prediction. The LDA-SRC-ABL1 model was 
built on the training set using one template, i.e. the reference 2hzi X-ray structure, and 
three FLAP scores. The model was validated on the test set and, again, used to have 
the best AUC in prediction 
 
A2A VS. For the adenosine A2A receptor the SRC VS was run on the model used to 
setup and perform MD simulations. For further details about the structure preparation 
see the previous “Molecular dynamics guided conformational sampling and 
clustering” section.  
As in the PNP case, compounds were ranked according to the FLAP Distance from 
the template, i.e. the protein binding site. The co-crystallized ligand was used to 
define the binding site of the original X-ray structure and of the MD-generated 
conformation upon alignment with the X-ray structure.  
Again, the X-ray structure and the ten medoids extracted from the plain MD trajectory 
were used as possible templates to calculate the LDA-MRC-A2A model using a 3 
templates/3 scores approach. The LDA-MRC-A2A model was built on the training set 
and validated on the test set. The MRC-VS was performed on the test set in order to 
have the best AUC in prediction. The LDA-SRC-A2A model was built on the training 
set using one template, i.e. the model structure used in MD simulations, and three 
FLAP scores. The model was validated on the test set and, again, used to have the 
best AUC in prediction 
 
The description of the benchmarking performed with AutoDock Vina92 and Glide,93,94 
with respect to FLAP, on the PNP case is reported in the Supplementary Information. 
Virtual screening analyses and any other FLAP calculation were run on a 8-cores Intel 
i7-3632QM @2.20GHz with 8GB 1600MHz of RAM, and a Linux operating system 
based on kernel version 3.13.6-200 x86_64. 
 
Figures of merit 
Different metrics can be used to evaluate the efficacy of docking/screening 
methodologies to discriminate between actives and decoys.  
We adopted here the Receiver Operating Characteristic curve (ROC), able to 
graphically display the trade-off between the true positive rate (TPR, positives 
correctly classified/total positives) and the false positive rate (FPR, negatives 
correctly classified/total negatives) of the used classifiers. The area under the ROC 
curve (AUC) numerically quantifies the performance of a classifier, i.e. a score or 
combinations of them. 
A ROC curve can be calculated using the following equation: 

 

 

ROC =
1

(nN )
Fa (k)[Fi (k) −

k =2

N

∑ Fi (k − 1)]



where n corresponds to the number of actives, N to the total number of molecules in 
the database, Fa (k)  is the accumulation curve, representing how many true binders 
obtained a rank better or equal to a given one in a docking run, and the subscript i 
stands for inactive molecules. 95 
In order to better discriminate the different VS methods performances in the early 
recognition stage we used the ROC enrichments, quantifying the area covered by the 
curve at the 0.5%, 1%, 2% and 5% of the screened false positives. 
 
CONCLUSIONS 
In the current paper we showed that a pipeline composed of Molecular Dynamics for 
sampling, clustering for filtering, and LDA to build a predictive model can 
substantially improve VS performances. Experimental results on Purine Nucleoside 
Phosphorylase, tyrosine-protein kinase ABL1 and adenosine A2A receptor confirmed 
the effectiveness of the approach. Additional analysis allowed us to take into account 
ligand-induced structural biases, as well as the possible advantage of performing 
configurational space sampling by alternatively keeping or removing cofactors in the 
binding site. It resulted that the supervised inclusion of MD information significantly 
improves VS performance in particular when dealing with highly flexible targets, and 
overcomes the possible drawbacks associated to the choice of a single, possibly bad-
performing, structure. Lastly the MD-clustering-LDA integrated pipeline allowed a 
proper and rapid (via current GPU based MD) extraction of MD-generated 
conformations.  
 
 
ABBREVIATIONS 
A2A, adenosine A2A receptor; ABL1, tyrosine-protein kinase ABL1; AUC, area under 
the ROC curve; ImmH, Immucillin-H; LBVS, ligand-based virtual screening; LDA, 
linear discriminant analysis; LOO, leave one out; MD, molecular dynamics; MRC, 
multiple receptor conformations; PNP, purine nucleoside phosphorilase; ROC, 
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single receptor conformation; TSA, transition state analogues; VS, virtual screening. 
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Scheme 1. 1. DATMe-Immucillin H. 2. 8-azaguanine. 3. Acyclovir. 4. 2-
mercapto(3H) quinazoline 
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Figure 1.  
 
 
 

 

 
 
 
 
 
Figure 1. a. Overall 
folding of the PNP homotrimer. The DATMe-Immucillin H ligand bound to monomer 
one and the phosphate ion are shown in capped sticks. b. Close up of the binding site. 
The ligand, the phosphate and the residues lining the binding site are shown in capped 
sticks. The hydrogen bonds formed between the ligand and the pocket residues are 
displayed in black dash lines. 
 
 
 
 
 
 
 
 
 
 
Figure 2. 
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Figure 2.  Comparison of the ROC curves (left panels) and of the percentage of active 
molecules found in the first 500 ranked molecules (right panels) for the single-
structure-VS and for the MRC-VS.  
ROC curves (a) and active molecules % (a’) of the SRC-3k8o VS  (light grey line) 
and of the LDA-MRC-3k8o VS (dark grey line). ROC curves (b) and active 
molecules % (b’) of the SRC-apo VS (light grey line) and of the LDA-MRC-apo VS 
(dark grey line). ROC curves (c) and active molecules % (c’) of the SRC-1v41 VS 
(light grey line) and of the LDA-MRC-1v41 VS (dark grey line). ROC curves (d) and 
active molecules % (d’) of the SRC-1pwy VS (light grey line) and of the LDA-MRC-
1pwy VS (dark grey line). ROC curves (e) and active molecules % (e’) of the SRC-
3d1v VS (light grey line) and of the LDA-MRC-3d1v VS (dark grey line).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Orientation of two active molecules, i.e. a. CHEMBL55675 b. 
CHEMBL542704, into PNP binding site, as predicted by FLAP in the SRC-3k8o VS. 
The ligand, the phosphate and the residues lining the binding site are shown in capped 
sticks. The hydrogen bonds formed between the ligand and the pocket residues are 
displayed in black dash lines. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 
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Figure 4. RMSD of the backbone atoms of the binding site frontal loop with respect 
to the first production frame. Each color encodes a specific loop, one for each binding 
site. 
 
 
 
 
 
 
 
 
 
Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. For each monomer loop (each color is a different monomer, monomer 1 in 
red line, monomer 2 in green, monomer 3 in black) and for each cluster the RMSD 
value between the cluster medoid (the center) and the apo structure is represented. 
Data show that MD allowed a sufficiently diverse sampling.  
 
 
 
 
 
 
 
 
 
 



 
 
Figure 6.  
 

 
 
 
Figure 6. Over-imposition with respect to the RMSD of the clusters medoids 
conformations of the binding site loop. In blue the apo structure, the other colors map 
the monomers as per the previous figure. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
Figure 7. Average rank value for each active clusterized class, calculated for the 
SRC-3k8o (black diamonds) and the LDA-MRC-3k8o (grey squares) screenings. The 
vertical lines represent the range of ranking values for each different class in the two 
virtual screenings. 
 
 
 
 
 
 
 
 
Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Comparison of the percentage of active molecules found in the first 500 
ranked molecules by the models LDA-MRC-3k8o (magenta line), LDA-MRC-med 
(blue line) and LDA-MRC-Xray (red line).  
 
 
 
 
 
 
 
 



 
Figure 9. 
 

 
 
Figure 9. Comparison of the ROC curves (left panel, a) and of the percentage of 
active molecules found in the first 500 ranked molecules (right panel, b) by the 
models SRC-3k8o and LDA-MRC-3k8o (light grey and dark grey lines, respectively) 
when screening the entire dataset, and by the models SRC-3k8o’ and LDA-MRC-
3k8o’ (light blue and blue lines, respectively) when screening the reduced dataset.  
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Figure 10. Comparison of the percentage of active molecules found in the first 500 
ranked molecules by the models LDA-MRC-3k8o’ (magenta line), LDA-MRC-med’ 
(blue line) and LDA-MRC-Xray’ (red line). The VS were performed against the 
reduced dataset. 
 
 
 
 
 
 
 
 
 
Figure 11. 
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Figure 11. Comparison of the ROC curves (left panels) and of the percentage of 
active molecules found in the first 500 ranked molecules (right panels) molecules by 
the models LDA-MRC-med (grey lines panels a and a’), LDA-MRC-med20 (red 
lines panels a and a’), LDA-MRC-med’ (grey lines panels b and b’) and LDA-MRC-
med20’ (dark red lines panels b and b’). 
 
 
 
Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Comparison of the ROC curves obtained with the SRC, LDA-SRC and 
LDA-MRC models (pink, magenta and purple lines, respectively) when screening the 
test sets of PNP (a), ABL1 kinase (b) and A2A receptor (c).  
 
 
 
 
 
 
Table 1. Total AUC and ROC enrichments calculated for the SRC and MRC 
virtual screenings performed on the entire databasea  
 

VS AUC 0.5 % 1 % 2 % 5 % 

a 

b

 

c

 



SRC-3k8o 0.85 0.33 0.42 0.50 0.59 
SRC-apo 0.89 0.18 0.25 0.33 0.43 
SRC-1v41 0.79 0.13 0.22 0.30 0.40 
SRC-1pwy 0.89 0.16 0.24 0.46 0.57 
SRC-3d1v 0.89 0.33 0.38 0.48 0.61 

LDA-MRC-3k8o 0.94 0.29 0.46 0.57 0.75 
LDA-SRC-3k8o 0.88 0.21 0.26 0.35 0.52 
LDA-MRC-apo 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-1v41 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-1pwy 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-3d1v 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-med 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-Xray 0.92 0.32 0.36 0.50 0.68 

 
aROC enrichments were estimated at 0.5%, 1%, 2% and 5% of screened false 
positives.  
 
 
 
 
 
 
Table 2. Ranking positions in the SRC-3k8o and LDA-MRC-3k8o VSs of 
selected active compounds 

compound chemical structure 
SRC-3k8o VS  

ranking 
position 

LDA-MRC-
3k8o VS 
ranking 
position 

CHEMBL159266 

 

4202 16 

CHEMBL350773 

 

2976 114 

CHEMBL301203 

 

672 120 



CHEMBL407776 

 

1926 56 

CHEMBL83158 

 

606 241 

 
 
 
 
 
 
Table 3. Total AUC and ROC enrichments calculated for the SRC and MRC 
virtual screenings performed on the reduced databasea   

VS AUC 0.5 % 1 % 2 % 5 % 
SRC-3k8o’ 0.75 0.16 0.16 0.18 0.26 
SRC-apo’ 0.84 0.12 0.14 0.18 0.24 

SRC-1v41’b 0.73 0.12 0.16 0.24 0.32 
SRC-1pwy’ 0.83 0.08 0.10 0.28 0.38 
SRC-3d1v’ 0.85 0.22 0.26 0.36 0.50 

LDA-MRC-3k8o’ 0.92 0.18 0.32 0.42 0.62 
LDA-MRC-apo’ 0.92 0.28 0.40 0.46 0.62 
LDA-MRC-1v41’ 0.92 0.28 0.40 0.46 0.62 
LDA-MRC-1pwy’ 0.92 0.28 0.40 0.46 0.62 
LDA-MRC-3d1v’ 0.92 0.28 0.40 0.46 0.62 
LDA-MRC-med’ 0.92 0.28 0.40 0.46 0.62 
LDA-MRC-Xray’ 0.88 0.26 0.26 0.36 0.56 

 
aROC enrichments were estimated at 0.5%, 1%, 2% and 5% of screened false 
positives. 
bFor the SRC-1v41’ model, the H*DRY score was used to have the best enrichment. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
Table 4. Total AUC and ROC enrichments calculated for the MRC virtual 
screenings performed on the total (LDA-MRC-med and LDA-MRC-med20 
models) and on the reduced database (LDA-MRC-med’ and LDA-MRC-med20’ 
models)a  

 
VS AUC 0.5 % 1 % 2 % 5 % 

LDA-MRC-med 0.93 0.32 0.41 0.50 0.66 
LDA-MRC-med20 0.96 0.46 0.53 0.70 0.80 
LDA-MRC-med’ 0.92 0.28 0.40 0.46 0.62 

LDA-MRC-med20’ 0.95 0.42 0.48 0.66 0.80 
 
aROC enrichments were estimated at 0.5%, 1%, 2% and 5% of screened false 
positives.  
 
 
 
 
Table 5. Total AUC and ROC enrichments calculated for the SRC, SRC-LDA 
and MRC-LDA virtual screenings performed on the test sets for PNP, ABL and 
A2Aa  

VS AUC 0.5 % 1 % 2 % 5 % 
SRC-PNP 0.86 0.40 0.42 0.56 0.67 

LDA-SRC-PNP 0.86 0.23 0.31 0.37 0.58 
LDA-MRC-PNP 0.92 0.27 0.38 0.69 0.81 

SRC-ABL1 0.69 0.03 0.07 0.10 0.23 
LDA-SRC-ABL1 0.73 0.03 0.05 0.10 0.18 
LDA-MRC-ABL1 0.85 0.22 0.30 0.39 0.55 

SRC-A2A 0.81 0.15 0.19 0.28 0.41 
LDA-SRC-A2A 0.81 0.08 0.10 0.17 0.32 
LDA-MRC-A2A 0.86 0.13 0.20 0.30 0.49 

 
aFor LDA-SRC models only the original X-ray was used as template while three 
FLAP scores were allowed. For LDA-MRC models a 3 templates/3 scores 
combination was adopted. All LDA models were built on the training sets and 



validated on the corresponding test sets. ROC enrichments were estimated at 0.5%, 
1%, 2% and 5% of screened false positives.  
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