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Abstract

The booming field of molecular electronics
has fostered a surge of computational research
on electronic properties of organic molecular
solids. In particular with respect to a mi-
croscopic understanding of transport and loss
mechanisms theoretical studies assume an ever
increasing role. Owing to the tremendous di-
versity of organic molecular materials a great
number of computational methods have been
put forward to suit every possible charge trans-
port regime, material and need for accuracy.
With this review article we aim at providing
a compendium of the available methods, their
theoretical foundations, and ranges of validity.
We illustrate these through applications found
in the literature. The focus is on methods avail-
able for organic molecular crystals, but mention
is made wherever techniques are suitable for use
in other related materials such as disordered or
polymeric systems.
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1 Introduction

Organic molecular solids have attracted much
interest in the last two decades in diverse dis-
ciplines ranging from the medical sciences to
semiconductor industry. Due to the exces-
sive range of possible molecular constituents,
molecular solids can show an exceptional va-
riety of properties. In pharmacology, for in-
stance, molecular solids have for a long time
been of great importance due to the fact that
most medical drugs are delivered in the form
of molecular crystal powders. Thus, structure,
isomorphism and solubility of the molecular
drug components are the main points of interest
and under active research both experimentally
and theoretically. Much more recently though,
organic solids have been discovered for use as
electronic components ushering in the advent of
the field of molecular electronics. With organic
molecules as their main component, molecular
electronics holds great promise with regards to

a favorable economic footprint and novel ma-
terials properties.1–6 At present, applications
of organic solids are mainly divided into three
different branches of electronics. First, classi-
cal electronics in the form of organic field ef-
fect transistors (OFETs), which for some ap-
plications can replace standard inorganic com-
ponents based on silicon. The second big field
of interest is the use of molecular electronics
in light harvesting and power conversion ap-
plications in the form of organic photovoltaics
(OPVs). And last, not least the inverse process,
i.e. the emission of light under the action of an
electric current. This has been successfully de-
ployed to the markets in the form of organic
light emitting diodes (OLEDs).

Supplementing experiments, computational
theory can play a major role in studying, un-
derstanding and exploring new organic molec-
ular compounds in all these application fields.
Theoretical approaches can thereby broadly be
classified as follows:

1. Material optimization: The objective
is to determine in detail the mechanisms
at play in order to identify efficiency-
limiting loss processes. Based on a thor-
ough understanding of one material one
can try to eliminate losses through modi-
fications of the material at hand.

2. Materials screening: Given the avail-
ability of a good descriptor, which corre-
lates well with the desired property of the
material, the objective is to screen dif-
ferent materials for their suitability in a
certain application. Considering that the
space of possible molecular compounds is
many orders of magnitude larger than the
range of organic solids hitherto charac-
terized this often requires an additional
crystal structure prediction step—which
remains a major challenge to this day.

Both kinds of approaches rely to varying de-
grees on a sufficiently accurate theoretical de-
scription of the underlying atomic-scale pro-
cesses involved in the desired property. Yet,
simultaneously they have to be able to yield
experimentally accessible observables to be of
practical use.
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An important figure of merit in all three elec-
tronic applications of organic solids—OFETs,
OPVs, and OLEDs—is the electric conductiv-
ity σ. Simplistically, it is defined in terms of
Ohm’s classic law

I = σV , (1)

where I is the current and V the applied volt-
age. Any predictive-quality theoretical ap-
proach needs to determine σ (or indeed at least
any of its constituent parameters as outlined
below) as a function of the microscopic struc-
ture and dynamics of the molecular solid. In
doing so one is generally confronted with severe
challenges. Among these, notably the nature of
charge carriers and their transport mechanism
still remains unclear in many molecular materi-
als. Furthermore, a correct description of struc-
ture and thermal fluctuations of the molecules
requires accurate molecular models, while the
calculation of material properties often necessi-
tates system sizes beyond the reach of modern
computational capabilities.

While earlier reviews detailed in great length
specific aspects of simulation methodology—
e.g. for specific systems,7–14 in this work we
aim to give a comprehensive overview of the-
oretical methods that are presently established
to tackle these problems and thus enable the
computation of charge conduction in molecular
solid semiconductors. Different methods have
been established, depending on the prevail-
ing transport mechanism within the material.
One generally distinguishes the three regimes
of charge hopping, band transport and interme-
diate cases. For each of these regimes we out-
line the methods put forward to compute the
respective parameters from first principles, as
well as tight-binding and semi-empirical meth-
ods. We review their theoretical underpinnings
and point out similarities and differences. We
illustrate, where possible, each approach with
instructive examples and give an overview over
applications of the respective methods found in
literature. Hereby, we mainly focus on ordered
organic solids, but will point out below, which
of the methods discussed are also applicable to
disordered systems like organic polymer blends.

Finally, one has to appreciate the importance
of accurate structural models as a basis for all
of the following atomic-scale simulation tech-
niques. There can be no atomistic simula-
tion of charge-carrier transport without a de-
tailed knowledge of the position of all atoms in-
volved. In the context of ordered organic crys-
tals, especially considering material screening
studies, this leads to two distinct approaches.
On one hand, structural models can be taken
from experimental measurements, collated for
example in the Cambridge Structural Database
(CSD),15 and used in computational screening
studies.16 On the other hand, for systems that
have either not yet been synthesized or struc-
turally resolved through experiment, one can
attempt to gain structural models from purely
theoretical considerations. Such structure pre-
diction approaches, based on either specially
parametrized force fields or electronic structure
methods, have shown tremendous progress over
the recent years as evidenced e.g. by the crys-
tal structure prediction (CSP) blind test se-
ries of publications.17–22 While all CSP meth-
ods are based on global geometry optimiza-
tion approaches,23,24 different approaches to re-
solve the material structure have to be utilized
for disordered systems, such as e.g. polymer
blends. There, structures are generally taken as
snapshots from high-temperature molecular dy-
namics (MD) simulations, at present predomi-
nantly performed on the level of classical force
fields.25–28 In the following we will concentrate
on methodological approaches for the simula-
tion of the charge carrier dynamics given spe-
cific geometries as is appropriate for crystalline
molecular solids. A generalization to the appli-
cation to individual geometry snapshots is con-
ceptually straightforward.

In compiling a review such as this one, one
quickly realizes that the number of ways in
which the problem of conductivity in organic
molecular crystals has been approached is quite
overwhelming. While it is to some extent possi-
ble to show that the multiple definitions of say
a basic quantity like the mobility are all equiva-
lent, the computational as well as experimental
methods to determine it are diverse, numerous
and partly beyond comparison.10 There is def-
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initely no single “best” way to approach this
problem. Instead there is a rather complete
(and partially even redundant) “toolbox” of
methods one has to choose from for each given
problem at hand. With the present manuscript
we aim to provide a helpful overview over this
toolbox, which aids the reader with choosing
the theoretical approach best suited to their re-
spective needs.

2 Theoretical background

Regardless of the underlying mechanism of
charge transport, the conductivity of any ma-
terial σ—which in general is a tensor of rank
two—is generally determined by the density ρc

of mobile charge carriers and their mobility µ

σ = qρcµ , (2)

where q denotes the charge of the carrier.
The detailed transport mechanism enters then
through the different dependence of ρc and µ
on elementary parameters such as temperature
or doping. A thorough computational assess-
ment of charge transport properties of a molec-
ular material thus has to include an estimate of
both parameters.

Concerning notation: throughout this review
we use bold letters r to denote vectors and
bold underlined letters σ represent second rank
(3 × 3) tensors, where columns and lines enu-
merate the three spatial coordinates. Letters in
blackboard bold H, finally, denote second rank
tensors of higher dimensionality, i.e. basis set
expanded matrices of operators.

2.1 The charge carrier density

In the absence of optical excitations, the den-
sity of mobile charge carriers in a solid can es-
sentially be separated into two contributions,
ρc = ρin + ρex. First, the so-called intrinsic
carrier density ρin originating from the ther-
mally excited states of the band structure of
the ideal material; and second, a density of
mobile carriers ρex due to extrinsic defects in
the periodic structure of the material. The
latter include all kinds of non-periodicities,

ranging from point defects such as vacant lat-
tice sites (due to a missing molecule) or in-
terstitial molecules (e.g. solvent molecules left
over from the crystallization process), to larger
higher-dimensional defects such as interfaces
with another material.29 Additionally, doping
with atoms30,31 or molecules32,33 with different
electronic energy level alignment contributes to
the extrinsic density of charge carriers.

From a computational point of view the den-
sity of intrinsically mobile charge carriers can
simply be determined from the ideal system’s
Fermi level, εF, and electronic density of states
(DOS), ρ(ε). The latter is a measure of the
states existing in the system at a given energy
ε, while the former is defined as the chemical
potential of electrons in the solid. The densi-
ties of mobile electrons ρe

in in the conduction
band and electron-holes ρh

in in the valence band
are given by34

ρe
in =

∫ ∞
εF

dε ρ(ε)f(ε;T ) (3a)

ρh
in =

∫ εF

−∞
dε ρ(ε)f(ε;T ) , (3b)

where

f(ε;T ) =
1

e−(ε−εF)/kBT + 1
(3c)

is the Fermi-Dirac distribution function for
fermionic (quasi-)particles such as electrons and
holes. Here, T denotes the temperature and
kB is Boltzmann’s constant. A sketch outlining
the thermal effects on the availability of mobile
charge carriers is given in Fig. 1.

Extrinsic contributions to the carrier den-
sity, on the other hand, are not necessarily as
straightforward to include in a computational
model. Without explicitly accounting for the
dopant or defect electronic levels, a minimalis-
tic description is simply through a change of the
Fermi-level position. Depending on the sign of
the change this then results in a higher electron
or electron-hole carrier density as described by
eqs. (3) and schematically illustrated in Fig. 1.
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Figure 1: Sketch of the effect of finite tempera-
tures on the distribution of occupied electronic
states. Shown are representative densities of
states for both spin-up (blue line) and spin-
down electrons (red line) for an artificial system
with a bandgap of ≈ 0.2 eV. At non-zero tem-
peratures thermal excitation described by the
Fermi distribution (black line) can lead to the
appearance of occupied states above and unoc-
cupied states below the Fermi level.

2.2 The charge carrier mobility

The charge mobility µ is defined as the veloc-
ity response of a charge carrier to an external
electric field35,36

µij =
〈v〉i
Ej

, (4)

where 〈v〉i denotes the ith component of the
time-averaged velocity 〈v〉 of the carrier and
Ej is a component of the electric field vector
E. In condensed systems, both 〈v〉 and E need
generally to be explicitly described as three-
dimensional vectors, which thus yields a (3×3)
tensorial mobility µ. Only in isotropic media,
such as liquids or fully disordered solids, the ve-
locity response can be isotropic as well. If ad-
ditionally the carrier velocity response in any
direction i is independent of the applied field in
all directions but i, the mobility can be reduced
to a simple scalar quantity µ = 〈v〉

E
, involving

the magnitudes 〈v〉 = ‖〈v〉‖ and E = ‖E‖.
Note that the average velocity is not gener-

ally a linear function of the field. This means
in turn that the mobility as defined by eq. (4)
is typically a function of the applied electric
field. As discussed in more detail in Sections
3-5, the mobility can in fact vary strongly with
E. Given inaccuracies in both experimental and
theoretical studies of the mobility, this can fur-

ther complicate a direct comparison. For such
a comparison it is therefore often useful to lin-
earize 〈v〉 with respect to the field37

µij =
〈v〉i
Ej
≈ 1

Ej

∂〈v〉i
∂Ej

Ej =
∂〈v〉i
∂Ej

. (5)

Note that both definitions of µ, eqs. (4) and (5),
remain finite even for vanishing field, since as
E → 0 so does the average drift velocity. Yet,
for numerical reasons it can be advantageous
to employ eq. (5) in low-field regimes (vide in-
fra).38

Experimentally, the charge carrier mobility is
accessed by obtaining the response of the carrier
drift velocity to an external electric field. Ar-
guably the most direct method to measure bulk
mobility is thereby the time-of-flight (TOF)
technique39–43 introduced already in the late
1960s.44 In this method the transit time τtr of
a charge carrier through a solid is measured by
analyzing the transient behavior of the current
as the electric field is switched on. For the one-
dimensional case, the mobility is then simply
given as µ = L/(τtrE), where L is the exten-
sion of the solid.45

There are, of course many more experimental
approaches available to measure carrier mobili-
ties, each differing in experimental setup as well
as accessible charge transport regime.46 Next
to TOF measurements other, partly even more
prominent examples are the measurement of the
Hall effect mobility,47,48 the analysis of field ef-
fect transistors,49 the family of space charge
limited current techniques,50 time-resolved mi-
crowave conductivity measurements,51 and fi-
nally the method of charge extraction with a
linearly increasing voltage.52,53 An in-depth re-
view of these techniques is beyond the scope
of this review but exhaustive discussions can
be found e.g. in reviews by Tiwari and Green-
ham,46 Coropceanu et al. ,10 or a paper by
Shuttle and co-workers.49

Finally, an important connection between the
general concept of a charge carrier mobility of
eq. (4) and classical kinetic theory is given by
the Einstein-Smoluchowski (ES) equation

µES
ij =

Dij(E)q

kBT
, (6)
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which relates the mobility of a charged par-
ticle to its—generally field dependent and
anisotropic—diffusion coefficient D and the
thermal energy kBT . In principle, this is an
exact classical connection based on a statis-
tical treatment of the carrier particle’s ran-
dom walk through the medium.54 Possible ap-
proximations occur in estimating D, e.g. based
on the underlying charge transport mechanism
(see below). The definition of the elements Dij

of the diffusion tensor in anisotropic media fol-
lows from a generalization of Fick’s law55,56

Dij =

∫ ∞
t=0

dt 〈vi(t)vj(0)〉 , (7)

where vi(t) is the i-th component of the particle
velocity vector v at time t. Equation (7) is
the anisotropic generalization of the well known
Green-Kubo equation for isotropic media54

D =
1

n

∫ ∞
t=0

dt 〈v(t) · v(0)〉 , (8)

where n is the spatial dimensionality. In the
long time limit it reduces to the familiar defini-
tion of the diffusion constant as the time deriva-
tive of the mean square displacement (MSD) of
the charge carrier57

D =
1

2n
lim
t→∞

dMSD(t)

dt
. (9)

Note that this isotropic case is given here only
for comparison. It rarely applies to molecular
crystals due to the different relative orienta-
tions of the molecules along the crystallographic
axes. Yet, instead of the full (3 × 3) diffusion
matrix it is often instructive to transform D
into the diagonal principal axis representation.
This is always possible because the diffusion
tensor is by definition positive definite and sym-
metric. In the low-field regime these diagonal
components of the diffusion tensor can be ex-
pressed as the product of mean free path l and
the thermal velocity of the carrier particle vth

i ,37

Dii = liv
th
i . (10)

To illustrate the connection between the Ein-
stein mobility and eqs. (4) and (5) we depict in

E

Figure 2: Comparison of definitions of the
charge carrier mobility for a one-dimensional
Marcus hopping model ( vth = l k with k ∝
‖Hab‖2 × exp(−(λ − qEd)2/λkBT ), cf. Section
3 for a full definition) for parameters Hab =
50meV and λ = 150meV, representative for
many organic solids. The Einstein mobility plot
is based on eqs. (6) and (10), where the latter
holds in the case of vanishing fields. Compared
to the full mobility expression (eq. 4) and the
linearized expression (eq. 5), this is clearly not
valid for higher field strengths.

Fig. 2 the resulting mobilities as a function of
the external field for a simple one-dimensional
hopping model (vth = l k, with k the hopping
rate, vide infra). Note that the equality of
all three definitions for E → 0 is here indeed
not a coincidence, but rather an exact prop-
erty of the employed hopping model. In gen-
eral, such a perfect coincidence is not guaran-
teed though for all regimes of condensed-phase
charge transport. As such the choice of mobility
definition has to be treated with care and pos-
sibly be adapted to specific experimental ref-
erences. Thereby the full or linearized defini-
tions are most often used in the context of the
TOF technique41,42 and the Einstein expression
most strongly associated with, e.g., field effect
transistor measurements.46,49 Of the two field-
dependent definitions eqs. (4) and (5) one can
expect the linearized version to perform better
in numerical simulations at very low fields due
to the E−1 term appearing in the general mo-
bility definition.

2.3 Transport regimes

While the definition of charge carrier mobil-
ity given in eq. (4) is general, the computa-
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tional approaches to determine it vary depend-
ing on the transport mechanism prevailing in
the material under consideration. In terms of
this mechanism three regimes are typically dis-
cussed, which differ in the degree of the car-
rier localization. Phrased differently, there are
in fact two opposite limiting regimes (local-
ized hopping vs. itinerant band transport) and
an intermediate regime featuring intermediate
characteristics of both limits.

In the limit of polaronic or hopping transport,
localized charge carriers move through the ma-
terial by hopping from one site to the other,
where the microscopic meaning of ”site” will be
further specified below. This regime applies if
such localized charge carriers exist and if there
is an activation barrier separating the localiza-
tion sites. This is generally the case either in
weakly coupled organic crystals or in disordered
solids such as polymer melts. Within the hop-
ping regime there are a number of analytical ex-
pressions to calculate the mobility, for instance
based on rate theories. A variety of compu-
tational approaches aims at providing the pa-
rameters entering these expressions and we will
survey these approaches in Section 3.

Band transport is the opposite limiting
regime in terms of carrier localization. Here,
carriers exist fully delocalized at the (valence
or conduction) band edges. They propagate
with an effective mass corresponding to the
inverse of the band curvature and thus to the
coupling between crystal sites. Propagation is
limited through impurities and collisions with
phonons. This regime generally applies for
ultra-pure organic crystals with large electronic
coupling between sites. In this case the mobility
can also be calculated from analytical expres-
sions with parameters accessible for instance
through ab initio calculations. The theory and
computational approaches geared to conduct
band mobility calculations will be outlined in
Section 4.

Experimentally, one can distinguish between
these two classic regimes by observing the mo-
bility as a function of temperature. An ex-
perimentally determined increase of the mo-
bility with temperature T is usually assigned
to activated hopping whereas a decrease of-

ten points to band transport due to increased
electron-phonon interactions. Unfortunately,
carrier transport in organic molecular crystals
does often not adhere exactly to one or the
other regime, but instead may follow a mix-
ture of both. For this intermediate regime no
simple analytical approach to calculate the mo-
bility exists to date. Rather one has to explic-
itly follow the dynamics of the carrier migration
through the system to simulate the mobility di-
rectly. The state of the art of such approaches
is discussed in detail in Section 5. To avoid any
confusion the discussion in all subsequent Sec-
tions will thereby concentrate on the full defi-
nition of µ as given in eq. (4).

3 Hopping Regime

Hopping transport models assume that the
charge carrier is localized on a site in the solid,
and moves from one site to another by a series
of discrete jumps. Depending on the degree
of localization, a site in an organic molecular
solid can thereby be a single molecular unit,
a part of a larger molecule or polymer, or a
discrete collection of molecules. The localiza-
tion can in general be induced by three dis-
tinct mechanisms. Small polaron theory pre-
dicts a localization of the charge carrier due to
its interaction with the medium. The charge
induces a local nuclear distortion of a molec-
ular site and the surrounding medium which,
in turn, stabilizes the localized charge. The
quasi-particle of charge carrier and lattice dis-
tortion thus formed is called a small polaron.
Recently, another theory for the occurrence of
localized carriers has been put forward by Troisi
and co-workers,58,59 based on the seminal work
by Su, Schrieffer and Heeger,60 as well as work
by Hannewald and co-workers.61 In this theory
localization is induced by thermal fluctuations
of the coupling between sites (so called non-
local electron-phonon coupling). Finally, in less
ordered systems, charges can also localise sim-
ply through the static disorder of the underly-
ing structure,62 which e.g. breaks conjugation
in organic polymer systems.

Regardless of the underlying localization
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mechanism, hopping models describe the charge
transfer (CT) through the discrete carrier
jumps in terms of charge transfer rates kab
between the discrete sites a and b. As detailed
below, these rates depend on the specific rel-
ative orbital geometry of initial and final site
and are thus in general highly site specific and
directionally dependent. The average drift ve-
locity can be written as a sum over all possible
site-to-site hopping rates times the respective
distance vectors. For the ith component 〈v〉i
of an ideal solid composed only of sites of one
equivalent type, this yields 〈v〉i =

∑
ab kabdab,i,

where the sum enumerates all possible com-
binations of initial site a and final site b, and
dab denotes the center-of-charge distance vector
between the sites. In general, the specific rates
also show a dependence on the applied external
field, which together with eq. (4) yields the fol-
lowing expression for the hopping mobility37,63

µij =
∑
ab

dab,i
kab
Ej

. (11)

Note that this expression applies only to per-
fectly ordered crystals where all sites are equiv-
alent. In the presence of defects or even in
the mere case of ideal crystals with multiple
inequivalent sites per unit cell, the intricate
interplay between different hopping rates and
sites can no longer be easily described analyt-
ically. Instead, the reaction network defined
by pairs of localization sites and their hopping
rates needs to be solved numerically, for in-
stance through a kinetic Monte Carlo algorithm
as described in Section 3.8 below. In either case,
the critical microscopic parameters required to
determine the mobility are next to the crys-
tal structure (which provides the site pairs and
distance vectors) the charge transfer rates kab.
In the following we describe various rate the-
ory approaches that have been put forward to
the calculation of these charge transfer rates,
as well as to the calculation of the quantities
that arise within the corresponding rate theory
expressions.

Figure 3: Schematic of a two-state polaronic
charge transfer model, where the reaction coor-
dinate is a collective variable of all nuclear co-
ordinates R. Initial and final electronic states
are described by free energy curves Ga(R) and
Gb(R), respectively. Both curves meet at the
transition state marked TS. The curves have
minima at the reaction coordinates Ra and Rb

which are, in general, energetically separated by
∆G0 = Gb(Rb) − Ga(Ra). For further details
see text.

3.1 Polaronic rate theory

Polaronic rate theories have been applied to a
multitude of condensed matter systems. The
main argument underlying these theories is that
in order to obey energy conservation in a closed
system, the charge transfer itself (the fast mode
of the system) can only occur at a transition
state (TS) at which the nuclear configurations
(the slow mode) of initial and final polaronic
state are energetically degenerate. For a charge
transfer to occur, the system must therefore
overcome a barrier which physically arises from
the polarization of the surrounding medium to
a given charge state—at least partially, as will
be discussed later.

Assuming a harmonic response one can visu-
alize this process in the form of two parabolae
as depicted in Fig. 3. Each parabola describes
the variation of the free energy upon changes
of the nuclear degrees of freedom along a suit-
able reaction coordinate, while simultaneously
constraining the electronic state of the system
to the one at the minimum of the parabola.
Each parabola thus represents a so-called di-
abatic state of the system; one for the initial
state with the charge at site a and one for the
final state with the charge at site b. Figure 3
then defines three important energetic quanti-
ties. First, the driving force ∆G0 between ini-
tial polaronic state a and final polaronic state
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b at their respective minima of the reaction co-
ordinate. Second, the diabatic activation en-
ergy ∆G‡ necessary to move the system from
the initial polaronic state a to the TS. Finally,
the reorganization free energy λ which describes
the energy cost to bring the nuclear configura-
tion of the polaronic state b into that of state a
while keeping the electronic configuration fixed
at state b. All free energies are thereby dynam-
ical averages over all nuclear degrees of freedom
except the reaction coordinate.

The actual choice of reaction coordinate is
thereby far from arbitrary. It has long been
known64 that a poorly chosen reaction coordi-
nate can lead to an erroneous description of the
reaction pathway or at least, in the case of a
dynamical sampling of the process, a bad con-
vergence of sampled quantities.65 In the case
of charge carrier hopping, where the reaction
coordinate has to be a collective variable de-
scribing relaxation of the surrounding medium
to changes in a local charge state, Mones and
co-workers66,67 recently quantified the impor-
tance of using a good reaction coordinate to
avoid hysteresis and slow convergence. Fortu-
nately, this problem had already been addressed
in the early 1980s by the pioneering works of
Zusman68 and Warshel,69 who proposed to use
a coordinate based on the energy gap ∆E be-
tween diabatic states. In a given nuclear geom-
etry R it is defined as

∆E(R) = Eb(R)− Ea(R) , (12)

where Ea,b(R) denote the total energy of ini-
tial and final diabatic state, respectively. It is
therefore a measure for the preference of the
charge carrier to localize in either state for any
given coordinate and thus depends crucially on
the configuration of the dielectric surroundings.
Since its inception the energy gap coordinate
has shown its feasibility numerous times in both
classical70–74 and quantum mechanical simula-
tions75–78 of charge carrier transport, and yields
results that compare well also to experimental
results.79,80

In the harmonic approximation, the semi-
classical transition state theory (TST) expres-

sion for the charge transfer rate reads7,35,81,82

kab,TST = νeffκelΓne
−β(∆G‡−∆‡) , (13)

with β = 1/kBT . The activation energy is
hereby given as

∆G† = ∆G‡ −∆‡ , (14)

i.e. the diabatic activation energy is reduced by
an adiabatic correction factor ∆‡ that accounts
for a finite electronic coupling between the ini-
tial state a and final state b. The three con-
tributions to the prefactor in eq. (13) are the
effective vibrational frequency νeff along the re-
organization reaction coordinate, the electronic
transmission coefficient κel which accounts for
a possibly less than perfect transmission of the
charge once the TS has been reached, and the
nuclear tunneling factor Γn. The latter is a cor-
rection accounting for quantum effects of the
nuclear degrees of freedom which can lead to
an overall lower effective free energy barrier and
thus an enhanced total transition rate (Γn ≥ 1).
Yet, these enhancements generally only play a
role at low temperatures due to the large masses
of the nuclei involved in the polaronic reorgani-
zation (cf. Section 3.6).81 In most studies, the
nuclear enhancement factor is therefore set to
one from the outset.

With the exception of Γn, all of the quantities
entering eq. (13) can be expressed in terms of
semi-classical Landau-Zener (LZ) theory.83–85

For the electronic transmission coefficient this
leads to

κel =

{
2PLZ

1+PLZ
if ∆G† ≥ −λ

2PLZ(1− PLZ) if ∆G† < −λ ,

(15a)

where PLZ is the LZ transition probability for
a single crossing of the transition region along
the reaction coordinate. It is given by

PLZ = 1− e−2πγ, (15b)

2πγ =
π3/2 〈|Hab|2〉TS

hνeff

√
λkBT

. (15c)

Here, h is Planck’s constant and Hab =
〈Ψa|Ĥ|Ψb〉TS is the Hamiltonian transition ma-
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trix element (or electronic coupling) between
initial and final diabatic electronic state at the
TS. The angular brackets 〈〉TS thereby denote
an equivalent dynamical averaging over all nu-
clear configurations of the TS as done for the
free energy expressions. This given form of the
transition probability and specifically eq. (15c)
is only valid in the harmonic (linear response)
regime with identical polarization responses for
initial and final state, i.e. identical curvature
of both parabolae in Fig. 3. Equivalent expres-
sions can be obtained for the general case of dif-
ferent (harmonic) polarization responses.81,83,85

Within this LZ theory, Spencer et al.86

showed the two contributions to the activation
energy to be

∆G‡ =
(λ+ ∆G0)2

4λ
, (16a)

∆‡ = 〈|Hab|2〉1/2TS −
1

λ
〈|Hab|2〉a , (16b)

where for the adiabatic correction factor (∆‡)
they assumed a vanishing driving force ∆G0.
The first term of eq. (16b) thereby corresponds
to the difference between adiabatic and diabatic
free energy surfaces, averaged at the TS. The
second term is the equivalent free energy dif-
ference averaged at the initial adiabatic state
a of the charge transfer. Note that earlier
work14,37,38,87,88 employed a different approxi-
mation for this non-adiabatic correction factor,
assuming that initial diabatic and adiabatic free
energy minima coincide at the same reaction co-
ordinate. Spencer et al. recently pointed out86

that this approximation is not necessarily al-
ways justified and indeed leads to an erroneous
criterion on Hab and λ for the validity of the
TST approach (see Section 3.2 below).

As apparent from eqs. (11-16), the charge
mobility within the hopping model is fully de-
termined through the quantities νeff, λ, Γn, Hab,
and ∆G0. In the case of sufficiently weak exter-
nal fields which do not significantly distort the
frontier orbitals of the molecules mediating the
charge transfer, to a good approximation only
∆G0 depends on E. This means that all other
quantities can be estimated in a field-free ap-
proach. The most common computational tech-

niques to determine all five parameters will be
discussed in Sections 3.3 to 3.7 below.

3.2 Adiabatic and non-adiabatic
limit

In order to appreciate the actual transport
mechanism underlying hopping models in gen-
eral it is instructive to consider the adiabatic
and non-adiabatic limits of the presented TST
rate expression in the semi-classical LZ formu-
lation, cf. eqs. (13-16). Note that adiabatic and
non-adiabatic here are taken to describe respec-
tive physical processes. To avoid confusion, the
label diabatic is only applied to charge sepa-
rated states which are not eigenfunctions of the
Hamiltonian.

Physically, in the adiabatic limit the elec-
tronic wavefunction of the charge carrier
changes slowly and gradually (”adiabatically”)
from the initial to the final charge localized
states as the system crosses the activation bar-
rier.35,37,38 This is the case for large electronic
couplings, small reorganization energy and
small nuclear velocity along the reaction co-
ordinate. In the opposite, non-adiabatic limit,
the electronic wavefunction changes almost in-
stantly at the barrier top. This is the case for
small couplings, large reorganization energies
and large velocities along the reaction coordi-
nate.86 In terms of the LZ parameters, the two
limits thus correspond to different ratios of Hab

to λ, and therewith to different adiabaticity
factors 2πγ, cf. eq. (15c).

Figure 4: Schematic of the adiabatic poten-
tial energy surfaces (solid lines) for a two-state
charge transfer compared to the respective dia-
batic picture (dashed lines).

Examining first the adiabatic limit we assume
a large coupling between initial and final elec-
tronic states on the order of the reorganiza-
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tion energy (and compared to the effective fre-
quency). This leads to an adiabaticity factor
2πγ � 1. In this case the LZ probability PLZ

approaches unity, cf. eq. (15b), which effectively
means that every time the system crosses the
TS region it will end up in the other charge
state. Consequently, in this limit the electronic
transmission coefficient κel approaches unity,
which reduces the semi-classical TST expres-
sion, eq. (13), to a standard Arrhenius form35,86

kab,adiab = νeffe
−β(∆G‡−∆‡)Γn . (17)

In the adiabatic limit, the prefactor thus only
depends on the effective vibrational frequency
along the reaction coordinate. Besides this, the
only dependence of the rate on the electronic
coupling is then via the adiabaticity correction
∆‡, which effectively lowers the free energy bar-
rier of the reaction as indicated in Fig. 4.

In the opposite, non-adiabatic limit 2πγ � 1
the exponential in the LZ probability, eq. (15b),
can be expanded in a Taylor series, which, if
truncated after the first order, yields PLZ ≈
2πγ. In this case the probability for a charge to
cross from one parabola to the other—which is
proportional to the electronic coupling—is very
low. In this limit, the adiabatic correction to
the activation energy is much smaller than the
activation energy (∆‡ � ∆G‡) since in most
non-adiabatic cases then, according to the def-
inition of γ, eq. (15c), the electronic coupling
is much smaller than the reorganization free
energy (λ � Hab).

86 This finally means that

(λ+∆G0)� 〈|Hab|2〉1/2TS and thus the full semi-
classical LZ rate equation reduces to35

kab,nadiab =
2π

~
1√

4πλkBT

〈
|Hab|2

〉
TS
e−β∆G‡

Γn.

(18)
This is the celebrated Marcus rate equa-
tion.89,90 In this limit, the rate does not de-
pend on the effective frequency νeff anymore,
but is instead fully determined through λ, Hab,
and ∆G0. In this limit the free energy curve
of the process is thus indeed best described in
terms of the two diabatic parabolae depicted
in Fig. 3. Also note, that in this limit it is
common to summarize all λ-dependent terms

into the so-called Franck-Condon factor35

F =
1√

4πλkBT
e−β∆G‡

. (19)

Figure 5: Left: Schematic representation of
the electron acceptor Phenyl-C61-butyric Acid
Methyl Ester (PCBM) in the bcc crystal struc-
ture. High and low coupling directions along
[111] and [100] are indicated by blue and red
boxes, respectively. Right: Donor/acceptor
molecule pairs, depicting in orange/silver the
donor and in red/blue the acceptor orbital
along these directions, respectively. Data taken
from reference.38

Even though appealing in terms of the phys-
ical interpretation of the charge transfer mech-
anism, it is generally dangerous to directly
employ the rate expressions for the adiabatic
and non-adiabatic limit, eqs. (17) and (18), re-
spectively, in a hopping model study. This
uncertainty has recently been pointed out by
Gajdos et al.38 which computed LZ electronic
coupling elements and reorganization free en-
ergies for the frequently used electron ac-
ceptor Phenyl-C61-butyric Acid Methyl Ester
(PCBM). Depending on the crystal orientation
they obtained Hab values between a few meV
to more than one hundred meV as illustrated
in Fig. 5. In contrast, λ was shown to be
more or less constant at ∼ 140meV, which re-
sults in room temperature non-adiabaticity fac-
tors 10−4meV/hνeff ≤ 2πγ ≤ 2meV/hνeff even
within this one system.

Another important question that appears in
this context concerns the validity of the hopping
model itself. The initial assumption in this re-
spect was that the excess charge (electron or
hole) is localized as a small polaron on a single
site. In the semi-classical LZ formulation this
is the case if the activation energy for charge
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transfer, ∆G† = ∆G‡ − ∆‡, is positive, i.e. if
a finite barrier exists at all. Conditions for the
existence of a barrier ∆G† > 0 can be estimated
by inserting eqs. (16) into the definition of the
activation energy, eq. (14). For a vanishing
driving force ∆G0 = 0 and under the assump-
tion that the mean square coupling elements
averaged in the TS and the initial state agree,
〈|Hab|2〉 = 〈|Hab|2〉TS = 〈|Hab|2〉a, the barrier
height is then given by a simple quadratic equa-
tion86 in 〈|Hab|2〉1/2

∆G†(∆G0 = 0) =
〈|Hab|2〉

λ
− 〈|Hab|2〉1/2 +

λ

4
.

(20)

Hence, the activation barrier between initial
and final minimum vanishes at 〈|Hab|2〉1/2 =
λ/2 to yield one single delocalized state. Fur-
thermore, while eq. (20) seems to suggest a re-
emergence of a barrier for values of 〈|Hab|2〉1/2 >
λ/2, the corresponding minima would lie in the
complex plane of the reaction coordinate, thus
not describing physically relevant states. This
has the effect that for such values of 〈|Hab|2〉1/2
the shared minimum stays at a value of the
reaction coordinate ∆E = 0 and gets deeper
the larger the coupling.14,86 This situation is
illustrated in Fig. 6 where we plot the adia-
batic potential energy surface of a PCBM dimer
(λ = 140 meV) for a range of different coupling
values.
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Figure 6: Adiabatic free energy profiles for
a PCBM dimer (λ = 140 meV) for differ-
ent square averaged coupling values 〈|Hab|2〉1/2,
here for simplicity abbreviated as Hab. Curves
were calculated with eq. (10) of reference.14

Note the disappearance of a dividing barrier be-
tween minima a and b for Hab ≥ 70meV = λ/2.

As mentioned above, earlier studies applied

different approximations37,38,87,88 to the esti-
mation of the adiabatic correction factor thus
yielding different estimates—such as the widely
used condition14 of 〈|Hab|2〉1/2 < 3λ/8 for the
existence of separate initial and final states.
This condition disagrees with the transition
from double- to single-well potential, as illus-
trated in Fig. 6. Instead the approximation
given in eq. (16b) should be used.

Finally, returning to the example of PCBM
the λ/2 condition yields an upper bound of
〈|H2

ab|〉1/2 ≤ 70meV for the existence of an acti-
vation barrier and thus the validity of the hop-
ping model. Yet, in all common PCBM crystal
structures there exist nearest-neighbor pairs of
molecules for which the couplings are of this
order of magnitude or even higher.38 For the
computational search for high mobility organic
electronic materials this underscores that hop-
ping models, although convenient and relatively
cheap to parametrize from first principles, have
to be applied with caution.

3.3 Driving force, ∆G0

The driving force is the difference in free energy
between the fully relaxed initial and final state,
i.e. the minima of the two diabatic surfaces in
Figs. 3 and 4. For a carrier of charge q moving
in a homogenous external field E between sites
a and b along the vector dab it generally reads91

∆G0 = Ga(Ra)−Gb(Rb) + qE · dab , (21)

where Ga and Gb are the—so-called on-site—
free energies of the state with the charge at
site a and b, respectively, while Ra and Rb

are the corresponding equilibrium nuclear con-
figurations (cf. Fig. 4). Equation (21) thereby
rests on the assumption that the external elec-
tric field is weak enough—depending on molec-
ular polarizability and orientation—not to per-
turb the molecular electronic structure. This
means that only the third term in eq. (21) de-
pends on the external field and the contribu-
tions Ga,b—also called the on-site energies—can
be estimated from field free simulations. They
do, however, depend on the dielectric response
of the entire environment of the two sites a and
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b involved and therefore an accurate descrip-
tion of both diabatic states in the extended sys-
tem. In general, Ga,b are therefore estimated
directly from simulations of either state using
for example a constrained electronic structure
approach92 (cf. Section 3.7.2) or sufficiently ac-
curate classical force fields.93 A more detailed
description of the calculation of site energies is
given in Sec. 3.3.1 below.

In homo-molecular crystalline systems the en-
vironmental contribution is canceled by the
symmetric equivalence of initial and final state
though. This leaves only the contribution due
to the external electric field. In this case the
driving force simplifies to

∆G0 = qE · dab , (22)

which can be calculated analytically for any
site-to-site vector dab.

3.3.1 On-site energies

As discussed above, the on-site contributions
Ga(Ra) and Gb(Rb) cancel each other out in
perfect homo-molecular crystals. In disordered
systems or crystals with inequivalent sites, on
the other hand, they have to be determined ex-
plicitly. Furthermore, as will be discussed in
Sections 4.1.1 and 5 below, other approaches to
CT modelling depend on absolute values of the
respective on-site contributions instead of just
pairwise differences.

On-site free energies are a local property94

in that they depend on the charge being lo-
calized on a single site in the crystal, yet also
include the polarization response of the sur-
roundings.91 For a computational study, this
means that to determine Ga,b(Ra,b), or neglect-
ing entropic contributions, the on-site energies
Ea,b(Ra,b), one needs to be able to construct
the diabatic states a and b and to determine
their energy in an extended system. Consider-
ing the inherent inability of e.g. DFT studies
to accurately treat charge-localized states, es-
pecially in extended systems,95 on-site energies
are not amenable to direct treatment by DFT.
Instead a number of approximate methods have
been put forward to tackle this problem. For

example, Brédas et al.96,97 and Fuchs and co-
workers91 first determined the charge distribu-
tions of single molecules on the level of hybrid
level DFT. This charge distribution is then in-
serted into a polarizeable but classical model
of the periodic crystal to determine the energy
of a given localized state a or b. A similar
combined quantum mechanical/molecular me-
chanical approach was followed by Norton and
Brédas,98 yet based on the ONIOM method
where the classical force field energy is cor-
rected by quantum mechanical corrections for
the central molecule. In an analogous approach,
Friedrich et al.99 embedded a DFT inner re-
gion into a DFT tight-binding exterior for the
determination of on-site energetic disorder. A
quantum chemical approach based on a combi-
nation of the valence bond model and Hartree
Fock calculations100 was also shown to not only
yield accurate results for on-site energies,101 but
also to reproduce their temperature variations
due to crystal lattice vibrations.94 In a more
approximate approach geared towards on-the-
fly determination of charge transfer parame-
ters in a direct charge propagation model (see
Sec. 5.3.4 below), Spencer et al.86,93 determined
on-site energies purely from classical force field
calculations. Finally, Nagata102 pioneered the
use of a fitted charge response kernel103 to de-
termine on-site energy disorder in amorphous
Tris(8-hydroxyquinolinato)aluminium. For the
same system Kwiatkowski et al.104 demon-
strated a particularly simple approximation to
differences of site energies. They showed that
approximating Gb(Rb) − Ga(Ra) as the differ-
ence of the eigenvalues of the involved frontier
orbitals yields a distribution consistent with a
Gaussian model of site energies. Introduced by
Bässler already in 1981105 the latter simply as-
sumes a Gaussian distribution of site energies,
based on the observation that absorption spec-
tra in disordered organic solids are of Gaussian
shapes with roughly similar widths.106

3.4 Reorganization free energy, λ

The reorganization free energy occurring in po-
laron hopping rate theories is in general a long-
range property describing the electrostatic re-
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sponse of the surrounding medium to changes
in the charge state of an active region, such as
in a charge transfer between two neighboring
sites. This long-range nature of λ is generally
hard to capture with electronic structure calcu-
lations due to the computational cost of sim-
ulating appropriately sized systems. A com-
mon way around this problem is to separate
short-range—so called inner-sphere—and long-
range, outer-sphere contributions to the reorga-
nization free energy λ = λin + λout.

In organic solids, a natural separation is for
example to designate the actual donor and ac-
ceptor molecules as inner-sphere and everything
else as outer-sphere. The advantage of such a
distinction is then that λout can for instance
be estimated in a mean-field approach via the
Marcus continuum formula89

λout = (∆q)2

(
1

εop

− 1

εs

)(
1

2ra
+

1

2rb
− 1

dab

)
.

(23)
Here, ∆q is the charge transferred, while ra

and rb are the effective radii of the donor
molecule at site a and the acceptor molecule
at site b, respectively. dab = |dab| is the dis-
tance between the two sites as before, and fi-
nally, εop and εs denote the optical (high fre-
quency) and static dielectric permittivities in
order to account for the electronic and nuclear
response of the medium outside of the donor
and acceptor cavities. The concept of effective
radii is based on a simple continuum solvation
model107 and originally ra and rb were intro-
duced by Marcus as simple ionic radii in solu-
tion. While there is no unique definition of the
radii,108–110 a common approximation is to as-
sume the reactants are in close contact yielding
ra + rb = dab,

111,112 which for identical molec-
ular sites leads to ra + rb = 2ra = dab. This
implies that the effective radii can be approx-
imated straightforwardly from lattice parame-
ters of the molecular crystal.

The inner-sphere contribution is correspond-
ingly given by the intra-molecular reorganiza-
tion energies of donor and acceptor. It is given
by110 λin = Gb(Ra) − Ga(Ra), where Ga and
Gb are the free energies of the state with the
charge at site a and b, respectively, while Ra

and Rb are the corresponding equilibrium nu-
clear configurations (cf. Fig. 4). Given an elec-
tronic structure method that can give an esti-
mate of these diabatic state energies Ga and Gb

such as e.g. the constrained density functional
theory method described in Section 3.7.2 below,
λin is straightforward to calculate. Yet, it gen-
erally involves an appropriate averaging over all
nuclear degrees of freedom for instance through
MD simulations.92 Otherwise, the standard way
to approximate the inner-sphere reorganization
free energy contribution is through the so-called
4-point scheme, where the system is separated
into donor and acceptor fragments (represent-
ing sites a and b). Denoting by EC

tot and EN
tot the

total energies of charged and neutral donor and
acceptor fragments, respectively, and by RC

and RN the equilibrium geometries adopted by
the charged and neutral fragments, the scheme
reads

λin = [EC
tot(RN) + EN

tot(RC)]

− [EC
tot(RC) + EN

tot(RN)]. (24)

Observing again that the reorganization free
energy is due to the change in nuclear coordi-
nates Ra → Rb upon transfer of the charge
from site a to site b, another way to de-
termine the full reorganization free energy λ
presents itself in the fact that each such dis-
placement can be expressed—within a har-
monic approximation—in terms of the normal
modes (or phonons) of the respective system.
By projecting the displacement ∆R = Ra−Rb

onto normal coordinates it is possible to deter-
mine the contribution of each normal mode j
to the reorganization energy.113 Denoting the
3N vector of mass-weighted Cartesian displace-
ment coordinates of a mode v in state {a, b} by

L
{a,b}
v , we can express this projection in terms

of dimensionless displacement parameters

Bv =

√
νv
h

(∆R)TM1/2 · La
v , (25)

where M is the diagonal matrix of atomic masses
associated with the 3N Cartesian degrees of
freedom and νv is the eigenfrequency of mode
v. The weight of the contribution of each mode
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to the reorganization energy is then given by
the dimensionless so-called Huang-Rhys factors
Sv = 1

2
B2
v ,

9,114

λ =
∑
v

hνvSv , (26)

where the sum extends over all (3N−6) modes.
While within the harmonic approximation this
is in principle exact for both inner and outer
sphere contribution to λ, so far this approach
has been mostly used for the inner-sphere re-
organization energy.9,115–117 In this case the
displacement projection is restricted to intra-
molecular modes, with donor and acceptor
modes treated separately. Note that the har-
monic approximation is thereby expected to
work well for rigid molecules with small λ, but
may break down for floppy molecules with po-
tentially large deviations from their equilibrium
geometries.118

Finally, a related approach to determine the
reorganization energy is to perform an MD sim-
ulation in one of the charge transfer states to
calculate the spectral density function J(ω) of
the energy gap coordinate (∆E) as defined by
eq. (12)110,119

J(ω) =
βω

2

∫ ∞
0

dt 〈δ∆E(0)δ∆E(t)〉 cosωt.

(27)
The straightforward generalization of eq. (26)
to a continuum of vibrational states is then
given by the integral over J(ω)

λ =
2

π

∫ ∞
0

dω
J(ω)

ω
. (28)

3.5 Nuclear tunneling factor, Γn

The above expressions for the nuclear reor-
ganization energy λ, equations (23),(24),(26),
and (28) all treat the nuclear degrees of free-
dom classically, which at low temperatures can
lead to an overestimation of the reorganiza-
tion barrier and thus an under-estimation of
the hopping rate. This shortcoming is ad-
dressed through the introduction of a nuclear
enhancement tunneling factor Γn into eq. (13).
Although most room temperature studies set

Γn = 1 as long as the differences between
the two polaronic geometries a and b are not
extremely large,81,119 it is important to note
here that in the case of organic semiconduc-
tors the comparatively large vibrational energy
stored e.g. in C = C bonds can lead to sig-
nificant nuclear quantum effects.13 While tests
e.g. on biological systems showed an enhance-
ment factor of around two even for compara-
tively large vibrational energies,119 much lower
reorganization energies in organic semiconduc-
tors compared to biological systems (≈ 0.1eV vs
≈ 1eV)119 can lead to a very different behavior.
Thus, we here give a brief introduction into one
of the main approaches available to determine
the nuclear tunneling factor.

Given a fully quantum mechanical description
kab,quantum of the rate, the nuclear tunneling fac-
tor is simply defined as the ratio of the rate at
the desired temperature T and its high temper-
ature (T →∞) classical limit:7,81

Γn(T ) =
kab,quantum(T )

kab,quantum(T →∞)
. (29)

A number of groups have put forward ap-
proximations to the full quantum rate expres-
sion120,121 based, among others, on Fermi’s
golden rule. Appealingly, the model pioneered
by Holstein,122–124 instead yields a closed form
expression of the tunneling factor81

Γn =

(
sinh(hνin/2kBT )

hνin/2kBT

)1/2

× e−((λ/hνin) tanh(hνin/4kBT ))−(hνin/4kBT )) .
(30)

Here, h denotes Planck’s constant, while νin is
an effective frequency of the inner sphere con-
tributions to the charge transfer mode.81 Note
that only at large effective frequencies or low
temperatures, Γn will show significant deviation
from unity and thus contributing noticeably to
the charge transfer rate.

Finally, a related expression based on indi-
vidual vibrational modes was recently given by
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Zhugayevych and Tretiak,13

Γn = exp

[∑
v

Sv

(εv
2
− tanh

εv
2

)]
, (31)

where Sv and ε again denote the Huang-Rhys
factors and eigenenergies of the mode v, respec-
tively. The advantage of eq. (31) over the ef-
fective treatment of eq. (30) is that it yields a
more detailed insight into the contributions of
each mode to the nuclear quantum effects.

3.6 Effective frequency, νeff

The effective frequency contained in the LZ
transition state expression, eq. (13), and the
tunneling factor, eq. (30), describes the num-
ber of attempts to cross the barrier per unit of
time. Within the LZ approximation, the barrier
to charge transfer is largely determined through
the nuclear reorganization. As such, νeff is then
the (harmonic) vibrational frequency along the
nuclear reaction coordinate connecting Ra and
Rb.

125

A straightforward way to compute νeff is again
given in terms of eigenmodes of the system.
As outlined above, the contribution of a given
eigenmode v to the overall nuclear reorgani-
zation is determined by the respective Huang-
Rhys factor Sv. This factor can therefore also
be used to weigh the contribution of each mode
to the effective frequency125,126

νeff =
∑
v

νv
Sv∑
k Sk

. (32)

If the projection of the reaction coordinate is
dominated by a single normal mode k, i.e. Sv ≈
δvk, the effective attempt frequency can thus
be approximated as the frequency of the corre-
sponding mode νeff ≈ νk.

3.7 Electronic coupling, Hab

As outlined above, Hab is defined as the elec-
tronic coupling between two diabatic states |ψa〉
and |ψb〉

Hab = 〈ψa| Ĥ |ψb〉TS , (33)

where Ĥ is the Hamiltonian of the system and
the subscript TS again denotes taking the ex-
pectation value at the nuclear transition state.
Due to the symmetry of the Hamiltonian matrix
the order of initial and final state is irrelevant
and thus Hab = Hba.

A successful computation of such coupling el-
ements rests mostly on the way the diabatic
wavefunctions are determined. These wave-
functions are not eigenfunctions of the Hamil-
tonian. Instead, they represent charge localized
states that diagonalize the nuclear kinetic en-
ergy operator.127,128 Finding a transformation
from the adiabatic eigenstates of the electronic
Hamiltonian to such diabatic states is unfortu-
nately not a trivial task, especially for extended
systems129 where it generally may not even ex-
ist.130 The determination of Hab is therefore the
most critical step in calculating polaronic hop-
ping rates. A range of approaches approximat-
ing a diabatic electronic basis have been put
forward in the literature.131 A key aspect to
recognize in this respect is that the value of the
electronic coupling element depends strongly on
the orbital geometries of the respective diabatic
wavefunctions, and as such also on the geome-
tries of the involved donor and acceptor sites.
It is of central importance to find diabatiza-
tion methods that are both computationally ef-
ficient and accurate, especially in view of amor-
phous systems where calculations need to be
carried out for many configurations. One com-
monly made assumption132,133 is an exponen-
tial distance dependence of electronic coupling.
This is rationalized with an exponential decay
of the diabatic wavefunction tails and allows for
extrapolation of the coupling from just a few
donor-acceptor distances.

As a further observation, we note that
there is an exact relationship between diabatic
and adiabatic state energies for a two-state
donor/acceptor system. In this case, the ener-
gies of the two adiabatic states—labeled E1 and
E2 in the following—are connected to the dia-
batic state energies Ea and Eb via the absolute
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value of the diabatic coupling as

E1,2 =
1

2

(
Ea + Eb ±

√
(Ea − Eb)2 + 4|Hab|2

)
.

(34)

The above expression can simply be obtained
by determining the characteristic polynomial
of a two-state diabatic Hamiltonian matrix.
A further—and highly utilized—simplification
can be obtained for a symmetric problem such
as a homo-molecular dimer, i.e. equivalent sites
a and b, where the energies of both diabatic
states are exactly identical Ea = Eb. It is then
easy to see that the excited state gap ∆E12

(cf. ∆‡ in Fig. 4) is equal to twice the coupling
electronic matrix element

∆E12 = E2 − E1 = 2|Hab| . (35)

This implies that in symmetric cases the cou-
pling can be calculated with any method that
yields accurate adiabatic ground and excited
state energies, E1 and E2. This fact was among
others exploited by Brédas and co-workers for
organic crystals to study the geometrical depen-
dency of coupling matrix elements.134,135 Re-
cently, in the context of DFT-based calcula-
tions, e.g. fully eigenvalue self consistent GW136

has been shown to yield excellent results for the
ground and excited state properties of organic
crystals. Unfortunately, for asymmetric cases
no such simple correspondence exists and some
form of diabatization is needed for the calcula-
tion of electronic couplings.

Over the years a large number of meth-
ods aimed at calculating electronic coupling
elements has been published.131,137 They dif-
fer in several aspects, such as the construc-
tion of the Hamiltonian (wavefunction vs DFT
vs semi-empirical approaches), the definition
of the diabatic states, or whether full de-
terminants or only frontier orbitals are cou-
pled. Especially in the field of quantum chem-
istry, wavefunction based diabatization meth-
ods have long been the focus of active research.
Early examples of such approaches include
the block diagonalization138 of the adiabatic
Hamiltonian—discussed in Sec. 3.7.5—the line
integral approach,139,140 or the calculation of di-

abatic states from molecular properties,141 such
as e.g. dipole moments.142 These then led to
more advanced methods such as the general-
ized Mulliken-Hush method129 (cf. Sec. 3.7.1),
multi-step block diagonalization of complete ac-
tive space self-consistent field (CASSCF) wave-
functions,143 and the construction of approxi-
mate, “regularized” diabatic states by remov-
ing only the leading nuclear kinetic coupling
terms from an adiabatic representation.144 For
the sake of brevity, we here describe in detail
only some of the available methods, limiting
the discussion to the most common approaches
found in literature. Recent, more focused dis-
cussions of the merits and shortcomings of cou-
pling element calculation methods can be found
for example in references.133,145–147

3.7.1 The generalized Mulliken-Hush
method

In the last twenty years the generalized
Mulliken-Hush (GMH) method, as based on
early work by Mulliken148 and Hush149,150

and put forward by Cave and Newton,129,151

has become the de-facto reference method for
the determination of diabatic coupling ele-
ments.133,145 It is based on the assumption
that diabatic states localized at different sites
possess zero off-diagonal elements of the dipole
moment matrix for ground- and first excited
states. This is ultimately based142 on the
simple observation that the transition dipole
moment between ground- and excited states
tends to vanish in the—charge delocalized—
adiabatic picture but necessarily takes on a rel-
atively large finite value for—charge localized—
diabatic states. At the TS both adiabatic states
are degenerate—and thus “rotate into each
other” in the terms of quantum chemistry142—
which gives rise to a sharp change in the dipole
moment functions of the adiabatic state. At
the TS a transformation between adiabatic and
diabatic states can thus be found by diagonal-
izing the adiabatic dipole matrix.142

In addition, only the components of each
dipole matrix element in the direction defined
by the difference between adiabatic dipole mo-
ments of the ground and excited states are con-
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sidered. For a two-state problem as considered
here, one thus searches for the set of states diag-
onalizing the dipole moment matrix. The trans-
formation to these states from the adiabatic
ground and first excited states is then taken as
the diabatic transformation matrix. Denoting
by Zuv the elements of the dipole moment ma-
trix for adiabatic states u, v = 1, 2, the diabatic
coupling element is thus

|HGMH
ab | =

|Z12|√
(Z11 − Z22)2 + 4|Z12|2

∆E12 .

(36)

Note that in the case of a symmetric
donor/acceptor system (Z11 = Z22) this ex-
pression for the coupling reduces trivially to
the exact value of half the ground/first excited
state energy splitting of eq. (35). Also, in lit-
erature the dipole moment matrix is generally
denoted by the letter µ, which we avoid here in
order to distinguish it from the carrier mobility.

The GMH method is thus applicable to ev-
ery electronic structure method that yields
an accurate excited state splitting and gives
access to transition dipole moments of these
states. It is thus most often used in conjunction
with wavefunction based approaches or hybrid-
level time-dependent density functional theory
(TDDFT), both of which tend to be computa-
tionally rather demanding for large systems and
extended solids as of interest here.

3.7.2 Constrained density functional
theory

There are a number of formulations of con-
strained density functional theory (CDFT).
They nevertheless all rest on the same idea
of adding an external potential to the den-
sity functional theory (DFT) electronic Hamil-
tonian in order to restrict the self-consistent
field (SCF) cycle to a certain pre-determined
molecular reference charge distribution. In the
context of charge transfer between a donor and
an acceptor site, this allows for the generation
of approximate diabatic states by forcing the
transferred charge (electron or hole) to local-
ize at certain atoms or groups of atoms that

comprise the donor and acceptor groups, re-
spectively. As pointed out e.g. by Wu and
van Voorhis,152 this basic idea is almost as
old as the field of computational electronic
structure theory itself, with its first use for a
small model system already in 1963 by Karplus
and Mukherji.153 Later it was, among oth-
ers, picked up by Dederichs,154 Akai,155 Hy-
bertsen,156 Zhang,157 Warshel158,159 and Behler
et al.160,161 for first studies of defect states,
magnetism and charge transfer reactions. To-
day, most modern applications of the CDFT
approach for molecular systems are based on
work by Wu and van Voorhis,152,162–164 who
formulated CDFT in form of a scleronomic
(i.e. not explicitly time-dependent) constraint
on the charge (or spin) density which is added
to the Kohn-Sham energy functional via a La-
grange multiplier. This new energy functional
F [ρ, V L], acting on an electron density ρ then
reads92

F [ρ, V L] = E[ρ]+V L

(∫
w(r)ρ(r) dr−Nc

)
,

(37)
where the first term denotes the unconstrained
Kohn-Sham energy functional and the second
term the constraint. There, V L is the Lagrange
multiplier regulating the strength of the exter-
nal potential, w(r) is the weight function defin-
ing the regions of space that the charge is con-
strained to, and Nc is the desired charge in the
region defined by w. Note that the Lagrange
multiplier can generally not be determined an-
alytically, but has to be optimized separately
in a loop on top of the normal density SCF cy-
cle. Also, it is evident from eq. (37) that the fi-
nal, self-consistent charge-constrained state will
depend somewhat on the choice of the weight
function.92 Yet, this at first severe drawback is
alleviated greatly in the calculation of coupling
elements (see below), which in practice show
only a limited sensitivity to the weight func-
tion.165 Nevertheless, this problem is analogous
to attributing electronic charges to atoms in
molecules. In the case of DFT, many different
definitions of such charges exist—e.g. by Mul-
liken,166 Hirshfeld167 or Bader168 to name only
a few of the most popular ones. Among these,
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a real-space definition of w(r), often based on
a form of Hirshfeld charges, has emerged as the
standard choice for the study of charge trans-
fer in the diabatic picture,11,132,169 due to their
very good accuracy,133,145 robustness, and basis
set independence.170

For a constraint on the charge in a region D
of a system with M atoms, the Hirshfeld weight
function reads

w(r) =

∑
u∈D ρu(r−Ru)∑M
u=1 ρu(r−Ru)

, (38)

where ρu(r−Ru) is the non-interacting, some-
times also called pro-molecular, free atom den-
sity of atom u on position Ru. For charge trans-
fer between a donor and an acceptor group the
constraint can actually also be expressed as a
constraint on the charge difference between the
groups.92 This avoids the need to define abso-
lute charges of the respective donor and accep-
tor groups. An example of a weight function for
a charge transfer dimer of tetracene molecules
in a tetracene crystal is shown in Fig. 7.

Figure 7: Hirshfeld weight function for a
donor/acceptor pair of molecules in a tetracene
crystal. Red shaded areas depict positive
(charge accumulating) regions, blue areas neg-
ative (charge depleting) regions of the weight
function. Shown in grey are surrounding
molecules not directly included in the weight
function.

Within the CDFT framework the diabatic
state wavefunctions ψCDFT

a , ψCDFT
b are approx-

imated by those of Kohn-Sham eigenstates
of suitably constrained DFT calculations with
Hamiltonians HKS[ρa] + V L

a wa and HKS[ρb] +
V L
b wb, respectively. The Hamiltonian transition

matrix elements between both states can then

in principle be determined as

HCDFT
ab =

〈
ψCDFT
a

∣∣HKS[ρb]
∣∣ψCDFT

b

〉
=Fb

〈
ψCDFT
a |ψCDFT

b

〉
− V L

b

〈
ψCDFT
a

∣∣wb ∣∣ψCDFT
b

〉
HCDFT
ba =

〈
ψCDFT
b

∣∣HKS[ρa]
∣∣ψCDFT

a

〉
=Fa

〈
ψCDFT
b |ψCDFT

a

〉
− V L

a

〈
ψCDFT
b

∣∣wa ∣∣ψCDFT
a

〉
. (39)

Note that, in this formulation HCDFT
ab would not

be guaranteed to equal HCDFT
ba . This compli-

cates the comparison of CDFT transition ma-
trix elements to those determined with other
methods or with experiment. Furthermore, the
CDFT-generated diabatic reference wavefunc-
tions are not generally orthogonal, as they are
not eigenstates of the same Hamiltonian. States
ψCDFT
a and ψCDFT

b generally have non-vanishing
overlap

〈
ψCDFT
b |ψCDFT

a

〉
= SCDFT

ab . This mo-
tivates a transformation as done in the GMH
method (see Section 3.7.1), i.e. to arrive at
the final diabatic states they are transformed
such that the final wavefunctions ψa,b diagonal-
ize both their overlap matrix S = 〈ψu|ψv〉 and
the weight matrix W = 〈ψu|wv |ψv〉 with u and
v ∈ {a, b}. Matrix elements Hab = Hba in the
basis of the orthogonal states are then symmet-
ric and can be compared to other methods.

In passing we note that an analogous formula-
tion of CDFT for extended solid-state systems
was put forward by Behler and co-workers.161 In
their work, the constraint potential is not deter-
mined via a Lagrange multiplier but rather via
the equalization of the Fermi levels between the
constraint regions. This nevertheless leads to
equations very similar to those outlined above.
On a final note we also point out that recently
Rapacioli, Spiegelman et al. combined the
CDFT approach with a self-consistent charge
tight-binding formulation of DFT.171–173 In the
latter method, the total energy functional is ex-
panded to second order in a localized basis set,
to ultimately yield a Hamiltonian matrix analo-
gous to “full” DFT but with precalculated and
tabulated elements for each atomic basis func-
tion. An in-depth review of DFTB methods can
for example be found in refs.174–176
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3.7.3 Fragment orbital methods

The fundamental assumption behind the frag-
ment orbital (FO) family of methods is that
only the frontier orbitals directly partaking in
the charge transfer do change between initial
and final diabatic state.177,178 All others remain
unperturbed. To illustrate this assumption, we
consider the transfer of an excess electron from
a donor group to an acceptor group. Exclud-
ing the excess electron, the donor group has
M occupied orbitals while the acceptor has—in
general—N occupied orbitals. Denoting these
single electron orbitals as φiD,A for donor and ac-
ceptor, respectively, diabatic wavefunctions are
given by

ψa =
1√

(M +N + 1)!

× det(φ1
D . . . φ

M
D φ

M+1
D φ1

A . . . φ
N
A )

ψb =
1√

(M +N + 1)!

× det(φ1
D . . . φ

M
D φ

1
A . . . φ

N
Aφ

N+1
A ) . (40)

Under the above assumption of otherwise con-
stant orbitals, the calculation of the transition
matrix element between wavefunctions ψa and
ψb reduces to determining the Kohn-Sham ma-
trix element between the two single-electron
frontier orbitals

HFO−DFT
ab ≈

〈
φN+1

D

∣∣HKS
∣∣φM+1

A

〉
. (41)

This implies that—given the knowledge of
the effective single-particle Hamiltonian of the
system—the matrix element only depends on
orbitals which are localized on either the donor
or the acceptor. In the case of inter-molecular
charge transfer this gives rise to the idea of
treating the donor and acceptor as fragments
in two separate calculations and then combin-
ing their wavefunctions to determine HKS and
the transition matrix element. This approach
guarantees the localization of the diabatic wave-
functions on the respective fragments indepen-
dent of any errors of the underlying method,
such as the electron delocalization error of semi-
local DFT.95 On the other hand, in separating
donor and acceptor fragments any direct influ-

ences between them—predominantly polariza-
tion of one fragment through the charge density
on the other one—are neglected. Furthermore,
the way how the full Hamiltonian is constructed
from the fragment wavefunctions gives rise to a
number of different “flavors” of the FO-DFT
method.16 Specifically this concerns the num-
ber of electrons used to construct the reference
donor and acceptor states, as well as HKS.

AD+

Hab =   D+|H|A

D+

A

̀[D+]

̀[A]

+

Figure 8: Sketch of the fragment orbital DFT
approach for hole transfer across an ethylene
dimer. Both fragments, donor and acceptor,
are treated separately when determining their
SCF ground state wavefunctions and densities
ρ[{D,A+}]. These are then used to construct a
Hamiltonian of the combined system, with the
wavefunctions acting as reference orbitals for
the diabatic state.

In the original formulation of the method by
Senthilkumar and co-workers,177 regardless of
the actual charge transferred, the Hamiltonian
is always constructed from the orbitals of the
neutral fragments and the reference states are
taken as the lowest unoccupied molecular or-
bitals (LUMO) in the case of electron transfer
(ET) and the highest occupied molecular or-
bitals (HOMO) in case of hole transfer (HT).
In this approach the Hamiltonian is therefore
constructed from a charge density that devi-
ates from that of the real combined system
by exactly the charge that is initially on the
donor and that is actually transferred, HKS =
HKS[ρ(M + N)]. Computationally, this holds
the advantage that only neutral fragments need
to be calculated, but can lead to systematic de-
viations of the matrix elements due to the de-
viating number of electrons.133,145

Another approach is therefore to treat both
fragments in the reduced state (M+N electrons
in the case of HT and M+N+2 for ET) in order
to determine the reference states and to con-
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struct HKS from these orbitals with the occu-
pation number of one of the frontier orbitals set
to zero (φND and φMA for HT states ψa and ψb, re-
spectively, and φN+1

D and φM+1
A for ET states ψa

and ψb, respectively).37,132 This approach guar-
antees the correct number of electrons in the ef-
fective Hamiltonian HKS = HKS[ρ(M+N−c)],
where c = +1 for electron transfer and c = −1
for hole transfer. In non-symmetric systems
this creates in principle two Hamiltonians that
differ by the fragment orbital the electron was
removed from, in close analogy to the situa-
tion in the CDFT approach. Due to numeri-
cal inaccuracies this can in turn lead to differ-
ences between the two matrix elements Hab and
Hba and thus a non-Hermitian diabatic Hamil-
tonian. Standard practice in such cases is to av-
erage over the two off-diagonal elements, which
amounts to a symmetrization of the two-state
Hamiltonian. This approach does, however, ne-
glect (HT) or overestimate (ET) charge reorga-
nization within the respective fragments due to
the excess charge.179

A most recent version of FO-DFT179 does also
consider these intra-fragment effects of the ex-
cess charge by constructing the reference state
from a charged and an uncharged fragment,
e.g. ψM+c

D and ψNA as illustrated in Fig. 8. The
Hamiltonian constructed this way not only has
the correct overall number of electrons but also
directly includes orbital relaxations due to the
excess charge. This on the other hand, comes
at the price of more approximate reference or-
bitals. All three of these “flavors” of FO-DFT
have been compared and critically discussed in
a recent study by Schober and co-workers.179 In
this work results showed a clear advantage of
the latter charged fragment-orbital procedure,
potentially yielding much greater accuracy than
“standard” FO-DFT approaches and at very
little additional computational cost due to the
need to calculate both charged and neutral frag-
ments. As a sidenote, Baumeier et al.180 as
well as Sutton et al.181 recently demonstrated in
their exhaustive studies of density functionals,
the functional dependency of FO-DFT calcu-
lated coupling values for organic semiconduc-
tors. The latter demonstrated a near linear
correlation of Hab with the amount of exact

exchange in the functional, ultimately scaling
the coupling by almost a factor of two from
GGA functionals to pure Hartree-Fock calcula-
tions. This further underlines the need to care-
fully benchmark calculated coupling elements
against available test-data.133,145

Finally, it is important to note that, al-
though successfully applied by a number of
groups,16,104,133,145,177,179,182 fragment orbital
approaches are not all restricted to the use
with DFT. Indeed any electronic structure
method that allows for a combination of frag-
ment wavefunctions and gives access to a com-
bined Hamiltonian would be suitable. Elstner,
Kubař and co-workers, for instance, presented a
series of studies based on a DFT tight-binding
(see above) formulation of the fragment orbital
approach (FO-DFTB).176 The early research fo-
cus there lay on charge transport in DNA183–185

and bio-molecular poly-peptides.186,187 Most re-
cently though the FO-DFTB approach was also
applied to CT in organic semiconductors.188,189

There it was also demonstrated that environ-
mental effects can straightforwardly be incor-
porated into FO calculations, e.g. via quantum
mechanical/molecular mechanical embedding
approaches.176,190 Concerning the accuracy of
this approach, recent benchmark studies133,145

indicated relative errors of FO-DFTB matrix
elements to be ∼ 10 − 20% larger than that of
the respective FO-DFT flavors, yet, of course,
at much reduced computational cost.

Even more economical variants of the FO
scheme are based on semi-empirical electronic
structure methods such as Zerner’s indepen-
dent neglect of differential overlap (ZINDO).191

In this method, the Hamiltonian is also con-
structed in a localized minimal basis, yet
with empirically determined parameters. Kirk-
patrick and co-workers showed27,192,193 the fea-
sibility of such an approach even for very large
systems. Finally, Akimov194 recently employed
a fragment orbital scheme based on extended
Hückel theory to determine electronic couplings
for use in the non-adiabatic propagation of
charge carriers (cf. sec. 5.3).
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3.7.4 Frozen density embedding

The frozen density embedding (FDE) ansatz,
initially presented by Wesolowski and
Warshel158 and later adapted to electronic
coupling calculations by Pavanello and Neuge-
bauer,195 rests on the partition of a large, but
non-covalently bound system into smaller frag-
ments. The total density of the system is
thereby expressed as a sum over the number
NS of sub-system densities ρw(r)

ρ(r) =

NS∑
w=1

ρw(r) . (42)

The main difference to FO-DFT is that the
fragments do interact with each other via their
Kohn-Sham effective potentials. In essence, for
each fragment a DFT SCF cycle is performed
including a constant embedding potential de-
scribed as the sum of the Kohn-Sham potentials
of all other fragments. This in turn yields a new
effective potential per fragment. This change
in potential has to be accounted for in an outer
SCF cycle for each fragment to respond to the
presence of the others fragment.196,197 As an il-
lustration of this approach we depict in Fig. 9
the local part of a FDE potential for a cluster
of tetracene molecules.

Figure 9: Illustration of the local part of the
iso-surface of the embedding potential of a clus-
ter of tetracene molecules acting on a central
molecule (calculated with DFT-PBE198 and us-
ing the FHI-aims code199). In an FDE calcu-
lation, the embedding potential is constructed
as a superposition of the potentials of each par-
ticipating fragment {A-D,F-I}, with one of the
fragments treated explicitly {E}. Density and
potential of the central fragment E would then
be determined by treating the embedding po-
tential as fixed, to be used in the determina-
tion of the embedding potential of the other
fragments in an outer SCF cycle.

Initially this ansatz was used to efficiently de-
termine DFT energies of large super-systems.
It was thereby noted early on that the
FDE method naturally suppresses the semi-
local DFT electron delocalization error and
yields fragment-localized charge states simi-
lar to the diabatic states of electron trans-
fer.200–202 Pavanello and co-workers have
pointed out146,203,204 that this is mostly due to
the missing orthogonality between orbitals of
different fragments, the localized initial guess,
basis sets which effectively rule out delocaliza-
tion of orbitals over more than one fragment,
as well as effective repulsive regions near the
frozen densities of other fragments.

Having constructed the diabatic reference
states one could in principle proceed similarly
to the FO-DFT or CDFT methods by deter-
mining the combined system’s Hamiltonian and
extracting the respective matrix elements. The
approach chosen by Pavanello195,203,205 instead
follows a slightly different path, observing that
the coupling between (non-orthogonal) diabatic
states a and b can be approximated as

Hab ≈ SabE[ρ(ab)(r)] , (43a)

where Sab is the overlap between the two Kohn-
Sham determinants of a and b, E[ρ(ab)(r)] de-
notes an energy functional of a transition den-
sity

ρ(ab)(r) =
occ∑
uv

φ(a)
u (r)(S(ab))−1

uv φ
(b)
v (r) ,

(43b)

and the sum goes over all occupied states. The
overlap matrix between all orbitals contribut-
ing to a and b is denoted by S(ab). This ap-
proximation can be seen as motivated by the
solution of a generalized eigenvalue problem
for the—generally unknown—diabatic Hamil-
tonian.206 In order to yield a coupling element
comparable to other methods, the final step in
this procedure is an orthogonalization step of
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the resulting diabatic Hamiltonian matrix via

HFDE
ab =

1

1− S2
ab

(
Hab − Sab

Haa +Hbb

2

)
.

(43c)

The energy functional E[ρ(ab)(r)] appearing in
eq. (43a) in principle denotes an appropri-
ate energy functional of the full system eval-
uated for the transition density ρ(ab)(r) given
in eq. (43b).203 Yet, it can also be calculated
from fragments according to the frozen density
embedding scheme.

3.7.5 Block diagonalization of the elec-
tronic Hamiltonian

Based on similar ideas as the fragment orbital
method, block diagonalization (BD)138,143,151

approximates the coupling between the two di-
abatic wavefunctions by the off-diagonal ele-
ments of a reference Hamiltonian in a local-
ized basis. Initially conceived for wavefunction-
based electronic structure methods, the ap-
proach has found use with DFT in the context
of extended systems.207 We will therefore illus-
trate it in terms of a Kohn-Sham DFT Hamilto-
nian, but keeping in mind that the method can
equally be used with Hartree-Fock, single- or
multi-reference wavefunction based approaches.
The basic principle of the BD method is to
transform the Hamiltonian matrix from a lo-
calized atomic basis into a basis of eigenstates
of fragments of the complete system. These
fragments are chosen analogously to the FO-
DFT ansatz but, as will be seen below, can also
be covalently bonded to other fragments. The
basis of fragment eigenstates is found by sep-
arate diagonalization of the Hamiltonian sub-
matrices belonging to each of the fragments,
where the fragments are identified by their re-
spective localized basis functions. Within these
eigenspaces one can then determine the fron-
tier orbitals by counting the states up to the
HOMO and LUMO orbitals of the fragments.
The unitary transformation U matrix of the
complete Hamiltonian is thereafter simply given
as a combination of the eigenvectors Va,b of the

fragments a and b

U =

(
Va 0
0 Vb

)
. (44)

The electronic coupling Hab is finally extracted
from the thus transformed Hamiltonian as the
matrix element between the respective frontier
orbitals as illustrated in Fig. 10.
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Figure 10: Demonstration of the block-
diagonalization method for a benzene dimer
(calculated with DFT-PBE198 and using the
FHI-aims code199). Shown is an orthogonalized
and block diagonalized Hamiltonian matrix, for
illustrative purposes in a logarithmic scale of
the absolute values. Elements belonging to the
approximated HOMO orbitals on molecules a
and b are highlighted by grey lines.

Unfortunately, this method does suffer from
some ambiguity when comparing to other meth-
ods, since the localized basis functions of
the respective fragments generally show non-
vanishing overlap with each other. This means
that in order to obtain meaningful Hamil-
tonian matrix elements208–210 it is advanta-
geous to introduce a basis set orthogonalization
step, e.g. employing the symmetric method of
Löwdin211,212

Hortho = XTHX (45)

X = S−1/2 , (46)

where S denotes the overlap matrix. Compli-
cations arise here, because any orthogonaliza-
tion scheme necessarily mixes the basis func-
tions and thus potentially blurs the clear sep-
aration between donor and acceptor fragment
orbitals. Yet, as e.g. pointed out by Thoss
and co-workers,207 the symmetric approach has
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two advantages. First, it is least biased com-
pared to other methods, such as for example
the Gram-Schmidt scheme, where all basis func-
tions are orthogonalized with respect to one
unchanged reference basis function.212,213 Sec-
ond, the Löwdin method preserves the charac-
ter of the basis in a least squares sense such
that its localization is mostly retained and thus
the separation between fragments is mostly up-
held.214 Yet, there are still systems where the
donor/acceptor separation fails at this stage, es-
pecially in the case of larger basis sets necessary
for instance to represent unoccupied orbitals.215

Careful consideration of the resulting reference
orbitals is therefore generally necessary.

3.7.6 Analytic overlap method

The methods discussed so far, while reason-
ably accurate and significantly cheaper than
quantum chemical reference methods, still re-
quire at least one DFT calculation per geom-
etry. In the case of static, rate-based ap-
proaches a single-point DFT calculation per
donor/acceptor pair is in general computa-
tionally affordable, even in systems with a
large number of local donor/acceptor config-
urations.37 Yet, there are cases where even
such comparatively undemanding approaches
become unfeasible. An example would be a
direct propagation of the excess charge in a
non-adiabatic MD scheme as discussed in Sec-
tion 5.3 below. There, or in the case of snap-
shot sampling for disordered systems, a rapid
on-the-fly estimation of Hab is essential. In
such cases one needs to resort to semi-empirical
approaches, for instance FO-DFTB where rel-
evant integrals are tabulated and readily avail-
able for a given molecular geometry. An even
simpler way to rapid estimation of electronic
couplings was recently suggested by Gajdos et
al.216 Their analytic overlap method (AOM)
rests on the idea of establishing a correlation
between the electronic coupling and a descrip-
tor that can be very rapidly calculated for a
given donor-acceptor geometry. A good lin-
ear correlation between the electronic coupling
and singly occupied molecular orbital (SOMO)
overlap SSOMO

ab was for instance identified. This

is analogous to resonance integral calculations
in extended Hueckel theory, which only differ
in the type of reference state used in place of
the atomic orbitals. Furthermore, Gajdos et
al. approximated the overlap integral through
an analytical expression, by projecting the fron-
tier orbitals of a reference DFT calculation onto
Slater-type p-orbitals. This way, for not too
radical departures from the molecular reference
geometry, SSOMO

ab can be estimated without any
further DFT calculations for the different ge-
ometries. For example, along an MD-trajectory
the direction of the atomic p-orbital basis func-
tions that form a given fragment π-orbital are
updated at each nuclear time step. This is in
a first approximation performed simply by en-
forcing the p-orbital axis to lie perpendicular to
the π-conjugated plane defined by the atom it
is centered on and its neighboring atoms.

In the AOM approximation the Hamiltonian
matrix element reads

HAOM
ab = CSSOMO

ab , (47)

where C is a constant of proportion obtained
by a linear fit to Hab values from explicit elec-
tronic structure calculations. For a training set
of small organic molecules Gajdos et al. deter-
mined C to be 1.819 eV. The same linear cor-
relation applied remarkably well to a test set
of π-conjugated molecules not included in the
calibration. With a view on dynamical trajecto-
ries, the authors further tested the importance
of updating the p-orbital expansion coefficient
at each nuclear time step and found that it can
be neglected for rigid molecules.93 However, for
larger molecules with soft intramolecular modes
(like e.g. polymers) the fragment orbitals may
undergo large electronic reorganizations as the
nuclei evolve. In this case one could carry out
an ensemble of reference electronic structure
calculations for important conformations and
use on-the-fly interpolation methods to recon-
struct the fragment orbital during the MD sim-
ulation.

Due to the fact that this method rests solely
on analytical terms and just a single reference
DFT calculation per molecule is required, its
speed easily surpasses any other method on the
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current list, while nevertheless reaching com-
parable accuracies. While Gajdos et al. ob-
served a remarkably good linear correlation for
a wide range of π-conjugated compounds, it
may be advantageous (and straightforward) to
reparametrize the linear relation for a given
molecule under consideration for a further re-
finement of the coupling value estimation. The
constant of proportionality is thereby very sen-
sitive to the exponential decay of the frontier
orbitals. Hence, application of AOM to ET be-
tween non-organic/non π-conjugated donor ac-
ceptor systems would require parametrization
of the relation.

3.7.7 Super-exchange effective cou-
plings

While not a diabatization method, we con-
sider here also the case of effective couplings
for super-exchange (SE) charge transport. All
previously mentioned approaches considered di-
rect ET between donor and acceptor with the
space between them being empty (vacuum). If
the space between donor and acceptor is made
up of molecules or a covalent bridge connect-
ing them, most of these methods can still be
used to compute couplings. However, the val-
ues quickly become very small with increasing
bridge length. Here the SE model for ET can be
used to estimate effective electronic couplings.
In this method it is assumed that the ET is me-
diated by the lowest unoccupied and/or highest
occupied orbitals of the bridge. These bridging
orbitals possess considerably different site en-
ergies (∆G0 6= 0) even without external elec-
tric field, or they could simply be considered as
other diabatic states.

Examples for SE can be found in monocrys-
tals bearing point defects, among different
molecules in heterocrystals, or in disordered
systems.217 In the SE model the effective cou-
pling between donor and acceptor sites can be
effectively be expressed using the Green’s func-
tion of the bridge35

GB(E) = (ESB − HB)−1 , (48)

where SB and HB are overlap and Hamiltonian

matrices of the bridge orbitals, and E is the tun-
neling energy, which is generally taken as equal
to the energy at the transition state between
initial and final state.14,218 The bridge-mediated
effective coupling element is then given as a sum
over all bridge states NB

H
(SE)
ab =

NB∑
u,v=1

(Hau − ESau)GB
uv(Hbv − ESbv) .

(49)

Here, Hau and Hbv are the coupling elements
between the bridge states and the donor and ac-
ceptor orbitals, respectively, while Sau and Sbv
are the respective overlap matrix elements.

While super-exchange models have so far
been mostly applied in bio-chemical simula-
tions,14,219,220 first applications in organic solids
recently started to emerge,217 and more can be
expected as research moves towards more com-
plex systems.

3.8 Kinetic Monte Carlo simula-
tion of µ

Initially developed to track radiation damage
in solids221 the kinetic Monte Carlo (kMC)
method evolved in the past 50 years into the
main method to study the dynamical evolu-
tion of reaction networks connected by rare
events.28,222,223 As already alluded to earlier,
charge carrier hopping through a solid can be
viewed as exactly such a process.27,91,193,224 This
is illustrated in Fig. 11, where we depict the net-
work of all possible nearest and next-nearest
neighbor carrier hops in a naphtalene crystal.
The basic assumption behind a hopping model
is that carriers are localized on individual sites
(here individual naphtalene molecules) and per-
colate as a series of discrete hops between sites a
and b with a rate kab. Such a problem is ideally
suited for a solution with kMC. The advantage
of a kMC approach over the analytical solution
with eq. (11) is that it can also be applied to
less regular systems, including for example lat-
tice defects.

Among a variety of different, numerically effi-
cient kMC algorithms, we will limit our discus-
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Figure 11: Illustration of a possible hopping
network in a naphtalene crystal. Shown is a 2D
cut of the crystal with each nearest and next-
nearest neighbor sites connected to each other.

sion to the common, so-called “rejection free”
procedure.225 In the case of just a single excess
charge carrier moving through a system, thus
disregarding any interaction between carriers,
the corresponding kMC algorithm turns out to
be surprisingly simple

1. At each kMC step with the carrier local-
ized at site a, determine the site b for the
next hop from the pool of connected sites
with a probability proportional to the rate
kab associated with this connection. Tech-
nically, this can be achieved by picking a
random number p between 0 and

∑
b kab,

where the sum goes over all sites con-
nected with non-zero rate to the current
site a. The site b to hop to is then deter-
mined by finding which interval

p ∈

[
b∑

b′=0

ka(b′−1),

b+1∑
b′=0

ka(b′−1)

]
, (50)

the chosen random variable falls into.

2. Having picked the process a → b to ex-
ecute, the simulation timer needs to be
advanced. The waiting times t for this
process to occur are hereby exponentially
distributed

pab(t) = kabe
kabt . (51)

Thus, the next step is to pick an expo-
nentially distributed random variable to
advance the simulation clock.

3. Having picked a process and a waiting
time the final step in a kMC cycle is to
move the carrier to the new site b and re-
turn to step 1.

This kMC cycle is repeated either for a number
of steps or until a given desired total simula-
tion time τ is reached. The procedure hereby
mimics charge diffusion trajectories through the
molecular solid. In order to determine the mo-
bility according to either eq. (4) or (6) one
needs to determine either the average drift ve-
locity or the root mean square displacement,
respectively. This can generally be achieved
by averaging over many created kMC trajecto-
ries. In the standard case of time-independent
fields and bulk crystals this is typically re-
placed by a time-average over one sufficiently
long kMC trajectory. For the average drift ve-
locity one thereby considers that each carrier
hop a→ b in the trajectory covers the distance
vector between the centers of mass dab. For
the Einstein-Smoluchowski mobility expression,
eq. (6), these distances can be square-averaged
and tabulated versus the corresponding waiting
times t to yield the component-resolved MSD
and thus the diffusion matrix Dij. For the
general mobility equation, eq. (4), a field E
can be applied, which corresponds to adjust-
ing the hopping rates (eqs. (13-18), depending
on which rate theory is considered). The drift
velocity averaged over the whole simulation is
then simply determined by the distance vector
between the center of mass of the initial site
for the excess charge Rinitial and its final site
Rfinal—possibly taking care of periodic bound-
ary conditions—and the overall simulation time
τ

〈v〉 =
Rfinal −Rinitial

τ
. (52)

As noted, this simplified approach applies
only to the diffusion of a single excess charge
carrier, or equivalently to a negligible interac-
tion between excess charge carriers. This ap-
proximation holds typically only for very dilute
carrier concentrations. For higher carrier densi-
ties one generally needs to include interactions
with other carriers to achieve a faithful rep-
resentation of carrier diffusion.226 Prominently
this concerns the “blocking” of sites by carriers
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or finite Coulomb interactions between carriers
localized at neighboring sites. The practical
treatment of such lateral interactions in kMC
simulations is still very much subject of ac-
tive research and we refer the interested reader
to227–231 and references therein for a discussion
of present state-of-the-art approaches.

3.9 Applications

The use and value, but also the limitations
of hopping models in the context of charge
transport in organic crystals is documented
in a wide range of literature. C60 and other
fullerene derivatives are certainly among the
most thoroughly studied molecular solids of the
last decade. In 2009 Nelson and co-workers193

employed a Marcus-hopping model, based on
semi-empirical electronic structure calculations,
to study the grain-size dependence of the mobil-
ity in disordered C60 films. In good agreement
to experiment, their simulations showed only a
slight dependence of the mobility on the grain
size. The same group later studied the effect
of C60 functionalization on packing order and
thus mobility.26 The actual validity of the hop-
ping model in general and the specific hopping
regimes (Section 3.1) in particular, was only
subsequently scrutinized by some of us, first
for unmodified C60 fullerenes37 and later for
the popular PCBM modification.38 In these
DFT-based studies outliers with large coupling
elements did cast doubt on the general appli-
cability of the hopping model in these systems.
On the other hand, experimental mobilities
could still be reproduced to within the correct
order of magnitude. In a similar approach,
Idé and co-workers232 studied the mobility of
crystalline fullerene derivatives—PCBM and
1-(3-methoxycarbonyl)propyl-1-thienyl-[6,6]-
methanofullerene (ThCBM)—in a hopping-
based kMC model to estimate the influence of
chemical modification on the fullerenes’ trans-
port properties.

With regards to other molecules, Di Motta
et al.233 estimated charge diffusion con-
stants for benzoquinone derivatives—2,3-
dichloro-5,6-dicyano-1,4-benzoquinone(DDQ),
tetrachlorobenzo-1,4-quinone (TCQ), and

tetracyanoquinodimethane (TCN) as well as
pentacene—to establish their suitability as
resistive molecular memories. A similar ap-
proach was recently followed by Huong, Tai and
Nguyen for modified thiophene compounds.234

McMahon and Troisi235 evaluated the reorga-
nization free energies of several polyacenes as a
measure for their hopping mobility, and Cornil
and co-workers employed hopping models to
study interfacial dielectric layers of pentacene
on polystyrene and polymethacrylate.236

Yet, application of hopping models is not
solely confined to ordered molecular crystals.
For example, Friederich et al.99 recently pub-
lished a study of disorder effects of amorphous
materials composed of coordination complexes
(tris(8-hydroxyquinolinato)aluminium) and
molecules (N,N′-di(1-naphthyl)-N,N′-diphenyl-
(1,1′-biphenyl)-4,4′-diamine) and could accu-
rately reproduce experimental mobilities over a
range of four orders of magnitude. Even more
interest was garnered by organic polymer de-
vices, which, due to their disordered nature,
can for the most part also be treated with hop-
ping models. Examples for this are the work
of Athanasopoulos et al. on polydioctylflu-
orene,237 the works of Nelson,193 Fornari,62

and Pershin238 and their respective co-workers
on various modifications of polythiophenes, as
well as the work of Walker on polyfluorenes
and polyvinylenes,239 all of which rest on hop-
ping models. In general, the straightforward
applicability of the model and the wealth of
relatively inexpensive methods to determine its
parameters make hopping models still one of
the most used models for charge transport in
organic solids.

4 Band transport regime

The other regime in which charge transport in
condensed matter is mainly discussed is the ex-
act opposite of charge hopping. Whereas in the
hopping model charges are assumed to be lo-
calized on discrete sites, band theory assumes
a delocalization of charge carriers in periodic
carrier bands. There is a wealth of literature
on the topic of band transport, and (mainly in-
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organic) semiconductor research has made im-
mense progress in refining band models over the
years.240–243 Apart from a more complex crys-
tal structure that is bound by a mixture of co-
valent and—importantly—dispersive forces,136

there is no fundamental difference between a
highly pure organic and an inorganic semicon-
ductor that would prohibit the application of
these band models also to charge transport in
organic solids.

The fundamental basis of band theory is
Bloch’s theorem. This theorem establishes the
general form of an electron orbital in a peri-
odic potential as a superposition of plane waves
modified by a set of periodic functions. By con-
struction, band theoretical approaches are thus
restricted to ordered and relatively defect-free
crystals, and therefore not suited for disordered
semiconductors such as polymeric solids.

Considering the general definition of charge
mobility of eq. (4), the defining quantity is
again the field-dependent time-averaged veloc-
ity of the carrier. In this particular case,
this velocity corresponds to the average of the
group velocity vg of the charge carrier’s wave-
packet. Given a wave-packet composed of
Bloch-functions with wave-vectors near a recip-
rocal space vector ko and belonging to energy
band α, the field-free group velocity is given by
the reciprocal space gradient of the dispersion
relation

vg =
1

~
∇kεα(k)

∣∣∣∣
k=ko

. (53)

Thus, all transport properties of the periodic
medium are determined by its band structure
represented as a reciprocal space function of
electronic eigenenergies, i.e. the dispersion re-
lation εα(k) (see Fig. 12 below for a representa-
tive example). In fact, it is relatively straight-
forward to show34 that the change of velocity of
a particle with charge q in band α of a periodic
semiconductor and due to an applied electric
field E simply follows a Newtonian equation of
motion

Fi = qEi =

(
1

m∗α

)−1

ij

dvg,j

dt
, (54)

albeit with a generalized effective mass (m∗α),
defined as the curvature of the respective band
dispersion relation(

1

m∗α

)
ij

=
1

~2

(
∂2εα(k)

∂ki∂kj

)
. (55)

Here, vg,i and Ei denote the i-th component of
the group velocity and the electric field, respec-
tively. Note that eq. (54) is a harmonic ap-
proximation valid only near valence band max-
imum (VBM) and conduction band minimum
(CBM) for holes and electrons, respectively.
It is therefore limited to small enough electric
fields. Even then, without any dissipative terms
this would imply an indefinite acceleration of
charge carriers due to the electric field. Yet,
in a realistic system there are other effects to
consider which act in opposition to the parti-
cle’s acceleration. These are mainly collisions
with defects and impurities, as well as phononic
lattice vibrations. The interplay between ac-
celeration through the field and scattering at
such impurities leads ultimately to a steady-
state condition and thus an effective velocity
for the charge carrier.

Charge transport in such a regime is statis-
tically described by the Boltzmann transport
equation, which considers the relative change in
the carrier distribution functions f when sub-
jected to an external field. Thereby, it accounts
for the actions of the field—driving the system
out of equilibrium, the diffusion of the carriers,
and collisions of the carriers with phonons and
impurities,244

∂f

∂t
=

(
∂f

∂t

)
field

+

(
∂f

∂t

)
diffusion

+

(
∂f

∂t

)
collision

.

(56)
It can either be solved by performing a Monte
Carlo integration in momentum space245 (a
technique that although successfully used for
inorganic systems has not yet widely been ap-
plied to organic semiconductors) or by intro-
ducing the so called relaxation-time approxi-
mation (RTA).246 In the latter method, one lin-
earizes the relaxation of an electron distribution
in a given energy band and distorted by an ex-
ternal field towards the field-free ground state.
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This leads to a time constant, the relaxation
time τ s, which is the average time between—
elastic—scattering events that reset the carrier
distribution in a band. In general, the relax-
ation time is—in exact analogy to the effective
mass—a tensor of rank 2, yet for the sake of
simplicity it is often transformed into the prin-
cipal axes of the crystal.247 In the following
we will thus, for improved legibility, also give
only the diagonal elements of the involved ten-
sorial quantities, unless stated explicitly other-
wise. For a full discussion of band-mobilities
including anisotropies we refer the reader to a
more specialized discussion in ref.248

In this simplified formulation and within the
RTA, the carrier group velocity is given as249

vg,i = qEiτ
s
i

(
1

m∗α

)
ii

. (57)

Inserting this result for the average carrier ve-
locity into the definition of the mobility, eq. (4),
yields

µii = qτ s
i

(
1

m∗

)
ii

, (58)

without any explicit dependence on the applied
electric field. Additionally, we here and hence-
forth drop the index α denoting the respective
band of the charge carrier. In the vast major-
ity of cases, it is understood that the charge
carrier—electron or hole—occupies its respec-
tive lowest energy configuration. As such, the
bands in question are those closest to the Fermi
level, the CBM for electron transport or the
VBM in the case of hole conduction.

In summary, in band theory there are two
parameters, two 2nd rank tensors to be pre-
cise, that need to be evaluated computation-
ally to determine the mobility. Namely, the ef-
fective mass, which can quite straightforwardly
be estimated from the material’s band struc-
ture, and the relaxation time. The latter is
not as straightforward to calculate. It de-
pends on macroscopic properties such as defect
concentration, long-range order and—through
phononic contributions—elastic properties of
the material.

4.1 Effective Mass

As apparent from eq. (55), the effective mass
is defined as the reciprocal-space Hessian ma-
trix of the respective energy band. Reference
points for the derivatives here are the respec-
tive global extrema of the bands in the first
Brillouin zone,34 i.e. the VBM and CBM. If
the extrema do not coincide with the Γ-point
(k = (0, 0, 0)), they can easily be identified in a
conventional band structure plot of the energy
bands along a reciprocal space path connect-
ing the high-symmetry points of the Brillouin
zone. An example for such a plot is shown in
Fig. 12. Having identified the reference point,

Γ S Y ΓZ U R T Z
− 1.0

− 0.5

0.0
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Figure 12: Semi-local (PBE) DFT valence (or-
ange) and conduction (blue) band structure of
a rubrene crystal (cf. eg. Szulczewski et al.250).
Note the relatively large dispersion (curvature)
of both, conduction and valence bands. In this
case the effective mass would be estimated ei-
ther at the Γ-point or the Z high-symmetry
point. Also, given the band gap of ≈ 1.2eV
and the Fermi level position centrally within
the gap, the intrinsic charge carrier concentra-
tion would be very low (cf. section 2.1). To still
yield non-vanishing conductivity, mobile charge
carriers would have to be introduced either via
defects or doping.

the next step is to estimate the Hessian matrix.
As the band structure is generally not known
in a closed analytic form, the derivatives have
to be taken numerically along the three recip-
rocal basis vectors. Unfortunately, in three di-
mensions this a tedious task due to the mixed
derivatives i 6= j.

In an isotropic medium or in the case of only
one direction being of interest, there is fortu-
nately a simpler way to estimate the effective
mass. Observing that a (nearly) free electron
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gas model shows a parabolic dependence of the
band energy on the reciprocal space vector in
the vicinity of the band extremum with energy
ε0,34 the following relationship holds

ε(k) = ε0 +
~2|k|2

2m∗
, (59)

or in the fully anisotropic case

ε(k) = ε0 +
1

2

∑
i

∑
j

~2kikj

(
1

m∗

)
ij

, (60)

with the sums running over the three compo-
nents of the vector k. In this case the effec-
tive mass m∗ can simply be acquired from a
parabolic fit to energy eigenvalues calculated for
a number of k-points around the extremum.

4.1.1 Tight-binding model of electronic
band structures

There are a number of electronic structure
methods which yield the band structure for a
periodic organic solid with varying degrees of
accuracy and computational cost. In the semi-
conductor community, the prevalent method is
undoubtedly DFT, but there have also been
successful applications of DFTB and semi-
empirical methods. A straightforward way
to determine the effective mass in all these
methods proceeds through the explicit calcu-
lation of ε(k) at numerous k-points for an ex-
tended crystal described in a periodic super-
cell, and subsequent calculation of numerical
derivatives or parabolic fitting. A different
and computationally much cheaper approach
for determining the band structure of organic
solids was already suggested in the 1960s by
LeBlanc241 and Jortner and co-workers,251 but
is still actively developed and used today.252–254

Observing the abundance, efficiency and rel-
ative accuracy of methods to determine cou-
plings between charge-localized states of molec-
ular dimers and their respective on-site energies
(cf. Section 3.7), they devised a tight-binding
model on the basis of these states. For a crys-
tal with two molecules sitting at two different
site types 1 and 2 per unit-cell the band disper-
sions can then for instance be written as252,254

ε(k) =
H̃11(k) + H̃22(k)

2

±

√
(H̃11(k)− H̃22(k)2

2
+ (H̃12(k))2 ,

(61a)

where the ”+” sign holds for electrons and the
”−” sign for holes. The coupling functions
H̃nm (n,m = 1, 2) are related to the couplings
between the molecular sites in the crystal. If—
analogously to reference254—we denote the cou-
plings between symmetrically equivalent sites
in the crystal as Hs1 and Hs2 for site type 1
and 2, respectively, and we denote the couplings
between a central molecule and its four near-
est other type neighbors as Hn1, Hn2, Hn3, and
Hn4 (n = 1, 2), respectively (cf. Fig. 13), the re-
spective periodic couplings H̃nm in a periodic
tight-binding ansatz are given by

H̃11 = 2Hs1 cos k ·Rs1 (61b)

H̃22 = 2Hs2 cos k ·Rs2 (61c)

H̃12 = Hn1e
ik·Rn1 +Hn2e

ik·Rn2

+Hn3e
ik·Rn3 +Hn4e

ik·Rn4 . (61d)

As depicted in Fig. 13, Rx are thereby the di-
rection vectors corresponding to the respective
couplings listed above.

s1s1

s2

n1n2

n3 n4

Figure 13: Charge transfer-relevant directions
in a pentacene crystal. Couplings and thus
band dispersion in the out-of-plane direction
not pictured here are negligible.

The great advantage of such a model is ob-
viously its closed analytical expression for the
band structure. This allows for a direct ana-
lytical analysis with respect to extrema and—
more importantly—an anaytical calculation of
the Hessian matrix and thus the effective mass.
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The approximations underlying this approach
are somewhat similar to those of the hopping
model, in that only the first neighbor shell of
a molecule is included, as opposed to the full
periodic structure present in a crystal.

4.2 Relaxation Time

In order to determine the relaxation time within
the RTA one has to consider the exact scat-
tering mechanisms at play. As mentioned ear-
lier these are mainly elastic collisions of charge
carrier wave-packets with impurities, as well as
with optical and acoustic phonons. If these
three mechanisms are statistically independent,
the total scattering rate in a direction i—the
inverse of the relaxation time tensor element
τ s
ii—is simply the sum over the rates of all three

events

1

τ s
ii

=
1

τ imp
ii

+
1

τ opt
ii

+
1

τ ac
ii

, (62)

where τ imp is the relaxation time tensor for im-
purity scattering, and τ opt and τ ac are the re-
laxation time tensors for optical and acoustic
phonon scattering, respectively. All three of
these can in general be determined based on
Fermi’s golden rule.249 Considering a scattering
event that relaxes a charge carrier from state
|α,k〉, where α again enumerates the energy
bands and k is the wave-vector, to any other
state |α′,k′〉 the rate is249,255

1

τii
=

2π

~
∑
α′,k′

|〈α,k|∆V̂ |α′,k′〉|2δ[εα(k)− εα′(k′)]

×
(

1− vi(α,k)

vi(α′,k′)

)
, (63)

where the last term is a weight function for the
scattering angle.256 The operator ∆V̂ appear-
ing in the coupling element between initial and
final states describes the interaction of the elec-
tron with the lattice according to the given scat-
tering mechanism.

In the case of lattice impurities, which mainly
act as traps for electrons or holes, ∆V̂ would
for example be a screened Coulomb operator.
To date there are only few approaches to ac-
curately determine τ imp, even less so in the

case of molecular organic solids. On the other
hand, organic crystals displaying high carrier
mobilities tend to be relatively pure and de-
fect free. This results in low impurity scatter-
ing rates (large elements of τ imp) as compared
to phononic mechanisms. The latter tend to
be even more pronounced in organic semicon-
ductors due to their weak binding and thus
large thermal fluctuations.257,258 Most theoreti-
cal studies therefore focus on electron-phonon
scattering as the main mechanism of charge
carrier energy dissipation.249,254,259 For such
charge-carrier/phonon scattering, ∆V̂ becomes
the change of the single electron potential due
to a strain on the lattice. In this case, the cen-
tral matrix element in eq. (63) can for exam-
ple be determined via the deformation potential
model. ∆V̂ is there taken to depend linearly on
strain with a coupling constant Ddef, the epony-
mous deformation potential. Most generally,
the latter is of course also a tensor of rank 2,
but in considering only the diagonal elements
of the scattering time tensor we only need to
consider diagonal elements Ddef,ii of the defor-
mation potential. Bardeen and Shockley255 al-
ready showed in 1950 that the relaxation rate
along a direction i due to acoustic phonons is
given by

τ 3Dac

ii =

√
8πC3D

i ~4

3(kBT )3/2D2
def,ii(m

∗
ii)

3/2
. (64a)

The deformation potential constant in direction
i, Ddef,ii can in this model straightforwardly be
calculated from the response of e.g. the energy
eigenvalue of the band in question (VBM or
CBM) at the extremal k-point (ke) to a lattice
deformation δli along direction i,

Ddef,ii =
∂ε(k)

∂δli

∣∣∣∣
k=ke

. (64b)

Finally, in contrast to Ddef,ii which is the sin-
gle electron response to a lattice deformation,
C3D
i in eq. (64a), is the crystal’s elastic con-

stant in direction i and therefore a measure for
the total energetic response to lattice strain. In
a harmonic picture of lattice interactions it is,
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in a 3D lattice, given by

C3D
i =

1

V

∂2Etot

∂δl2i
, (64c)

where V is the total volume of the crystal unit-
cell in the unstrained configuration, and Etot is
the total (nuclear and electronic) energy of the
unit-cell.

From a computational viewpoint both C3D

and Ddef are accessible by numerical differen-
tiation or parabolic and linear fitting proce-
dures, respectively. This also demonstrates the
simplification brought about by a treatment of
band transfer in the principal axes of the crys-
tal. Both parameters necessary to assess the
relaxation time can be determined from a num-
ber of DFT geometry-optimization calculations
in stretched and compressed unit-cells.249

With the above equations, it is in total quite
straightforward to determine the (RTA) band
mobility along the principal axes of a three-
dimensional periodic solid. Yet, especially
in organic crystals,254 transport is often con-
stricted to a lower dimensionality, such as 1D
in the case of tightly stacked molecules, or 2D
for molecules that couple only in-plane.254,259 In
such cases slightly modified expressions apply.
The one-dimensional expression was derived by
Beleznay and co-workers260 and is very similar
to the 3D case. Denoting for consistency with
the multi-dimensional cases the direction along
which the transport occurs with the index i

τ 1D
i =

C1D
i ~2

√
m∗i√

2πkBTD2
def,ii

, (65a)

with the elastic constant

C1D
i =

1

li

∂2Etot

∂δl2i
. (65b)

Here, the prefactor is determined by the length
li of the respective unit-cell vector. In the two-
dimensional case, the relaxation time is gener-
ally a (2 × 2) tensor, yet again we restrict the
discussion to the principal axes denoted by i. It

is given by261–264

τ 2D
i =

~3ρmv
2
sLeff

kBTD2
im
∗
i

, (66a)

where ρm denotes the mass density of the 2D
system and vs the velocity of sound in the sys-
tem. Differences in this 2D expression to the
1D and 3D case stem from the fact that here
the relaxation expression explicitly includes the
degree of localization in the direction perpen-
dicular to the plane of transport. This is owed
to the fact that restriction of the wavefunction
to the 2D symmetry leads to quantization in
only one direction, but a continuum of Bloch
states in the perpendicular direction.261 This is
expressed through the localization length Leff

(Leff)−1 =

∫
dr⊥ |ξ(r⊥)|4 , (66b)

where ξ(r⊥) is an envelope function which de-
scribes the localization along the perpendicular
direction r⊥. In the case of organic molecular
crystals, it can often be approximated through
the extent of the molecule in this perpendicular
direction.254,259 Apart from these small differ-
ences in the underlying equations, the compu-
tational approach to determine the relaxation
times in 1D and 2D is identical to that in 3D.

As final remark, note that all of the above
relations still rely on a harmonic picture of lat-
tice vibrations, which in weakly bound organic
solids might not necessarily be accurate. Im-
provements over the calculation of purely har-
monic phonon modes can be made based on
e.g. the quasi-harmonic approximation by Togo
and co-workers,265 where elastic properties and
phonon frequencies of a solid also show a direct
dependence on the unit cell strain. While not
yet applied to organic solids, such an approach
should be considered for future studies of band
transport in organic solids.

4.3 Applications

As discussed above, the coherent band-like
transport regime mostly applies for highly pure
and ordered organic solids. While the the-
oretical foundations have been proposed al-
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ready in the 1960s, it is only in the last 15
years that band models have increasingly been
used to describe the transport in such materi-
als. Cheng and co-workers252 determined the
mobility in oligoacene single crystals based on
semi-empirical estimates of the band structure.
Their model first explained experimental trends
of hole and electron mobilities with regards to
conjugation lengths. Similarly, Giuggioli, An-
dersen and Kenkre266 rationalized the depen-
dence of the mobility on temperature in pen-
tacene. Northrup259 employed the band model
in the deformation potential approximation to
address the superior hole transport proper-
ties in two thiophene modifications (DNTT-
C10 and BTBT-C12) and thin-film pentacene.
Later Xi et al.249 employed an analogous ap-
proach to predict mobilities of a variety of
materials ranging from graphene nano-ribbons
to oligoacenes, diacene-fused thienothiophenes
and various modifications thereof.

In a comparative study Kobayashi and co-
workers254 determined hopping and band mo-
bilities for pentacene, rubrene and a benzo-
thiophene (C8-BTBT). In line with the theo-
retical considerations concerning the validity of
band and hopping models (see below), as well
as with experimental results, they found band
transport to be the dominant mechanism at
room temperature. Li et al.267 determined the
temperature dependence of the effective mass
in rubrene from a tight binding approach and
successfully reproduced the experimentally ob-
served conductivity behavior. Finally, very re-
cent results revealed band-like behavior even for
weakly coupled directions in highly anisotropic
rubrene crystals. In a combined experimen-
tal/theoretical study, Bluelle and co-workers243

demonstrated a band-like temperature depen-
dence of the mobility in rubrene for directions
perpendicular to the strongly coupled high mo-
bility plane. This was explained as an effect
of dynamic disorder, which demonstrates again
the need for a careful selection of the correct
transport model for a given system.

5 Intermediate regime

There are numerous cases of charge transport in
organic solids which do not adhere to a mecha-
nism covered by either of the two hitherto dis-
cussed, limiting regimes. The charge carrier
is neither localized at a given site, nor fully
delocalized in a carrier band. With respect
to electronic and electron-phonon coupling this
can be seen as an intermediate regime. Be-
fore going into more detail on simulation tech-
niques for corresponding intermediate charge
transport mechanisms, we briefly summarize
the ranges of validity for both limiting cases to
point out why neither can yield a fully satisfac-
tory description of charge transport in organic
solids.

5.1 Ranges of validity

5.1.1 Polaronic hopping model

In order for a polaronic model to apply, the
charge carrier has to exist in a localized form
on one or a given (small) number of sites. In
organic solids the most natural choice of such
sites appears to be individual molecules in the
crystal. Leaving the effect of molecular lattice
vibrations aside for the moment, a localized
state according to the rate theories described
by eq. (13) exists as long as a barrier ∆G† > 0
separates initial and final state. In a perfect
periodic crystal without any driving force the
existence of such a barrier rests on the interplay
between the electronic coupling and the reorga-
nization energy, cf. Fig. 4. The crossing point
from positive to vanishing activation energy can
for this case be established from eq. (16), by de-
termining the root of ∆G‡ with respect to λ and
Hab. This yields

Hab ≤
1

2
λ (for ∆G0 = 0) (67)

as a limit for a non-vanishing activation en-
ergy, and thus the existence of a small polaron.
To put this relation into perspective (see also
Fig. 14), in molecular crystals the reorganiza-
tion free energy tends to be rather small; typi-
cally around 130 meV in the aforementioned ex-
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ample of fullerene crystals. Equation 67 then
implies that a finite barrier exists only for an
electronic coupling . 65 meV.

large barrier

localised states

small barrier

slightly 

delocalised states

no barrier

no localised states

Figure 14: Illustration of the interplay of reor-
ganization energy and electronic coupling in a
two-state charge transfer model. Adapted with
permission from ref.38 Copyright 2012 Ameri-
can Chemical Society.

Problems arise especially in organic solids
with good transport properties, as these are
precisely geared towards large coupling and
small reorganization energies.38,268 Carrying
out computations on a large database of diverse
organic crystals, Schober et al.16 have shown
that in many compounds electronic coupling
values are above the λ/2 threshold. This sit-
uation is further complicated when considering
lattice vibrations and nuclear quantum effects.
Indeed, often already the zero point motion of
a large molecule along the charge transfer co-
ordinate may hold sufficient energy to “push”
it over small activation barriers. For instance,
for the prominent case of C60, the correspond-
ing C=C stretch of the carbon cage amounts to
≈ 90 meV of zero point energy.

In addition to the existence of a barrier, there
is also a dynamic criterion for the validity of a
hopping model. Ultimately based on transition
state theory hopping models implicitly assume
that after a hopping event, the nuclear degrees
of freedom of the system return to an equilib-
rium in the new charge state. Yet, for a series of
concerted hops, such an equilibration can only
occur if the hopping rate is significantly lower
than the rate of vibrational relaxation. This re-
alization allowed Troisi269 to formulate a crite-
rion on the maximally allowed hopping mobility
to still consider a hopping mechanism. To allow
a rapid evaluation, the criterion was expressed
solely in materials’ properties easily accessible
to experiment. For a carrier of charge e in a

crystal with a center of mass distance between
molecules dab, it reads

µhop <
2πcδ̃qdab
kBT

= µmax
hop . (68)

Here, c denotes the speed of light, kBT the
thermal energy, and δ̃ the Raman line broad-
ening as a measure of the vibrational relax-
ation. Of the two system-dependent param-
eters, δ̃ does not change much between dif-
ferent organic crystals and was taken as δ̃ =
3cm−1. The site-to-site distance along the
maximally conducting axis of a semiconduc-
tor dab, on the other hand, does change sig-
nificantly between crystals. In order to gauge
the impact this has on the maximally allowed
mobility we determined the limiting µmax

hop for

the largest (dab = 15Å) and smallest values
(dab = 4Å) of dab found in a recent screen-
ing study16 of organic semiconductors in the
Cambridge structural database.15 This rough
estimate yields µmax

hop = 0.03cm2V−1s−1(4Å)

and 0.5cm2V−1s−1(15Å). The mobility regime
where the hopping model is applicable accord-
ing to Troisi’s vibrational criterion is shown as
an orange bar in Fig. 15.

Figure 15: Illustration of the ranges of valid-
ity of hopping models (orange) and band mod-
els (blue). Ranges of the validity criterion de-
pending on intrinsic materials’ properties are
depicted as hatched areas of the respective bars.
The bright blue box in the background de-
picts the range of charge mobilities of common
materials with data taken from.270 Parameters
and validity criteria are described in the text,
Sec. 5.1.1 for hopping and Sec. 5.1.2 for band
transport, respectively.

5.1.2 Band theory model

The validity of the band model is closely tied to
the existence of delocalized Bloch-like states in
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the crystal. Next to a near defect-free crystal
structure, this implies that the mean free path
of a charge carrier is much larger than the typi-
cal inter-molecular lattice spacing.252,271 Exper-
imental relaxation times indicate that this is the
case for highly pure crystals of C60, pentacene
or rubrene at low temperatures. At higher tem-
peratures though, the relaxation time and with
it the mean free path length decreases signifi-
cantly, indicating the formation of a more lo-
calized carrier wavefunction and therewith a
breakdown of band-like transport. In analogy
to the maximal mobility criterion of hopping
transport, one can formulate a minimal mobil-
ity criterion observing that the mean free path
length 〈lscatter〉 of a carrier in one dimension is
simply the product of group velocity vg and re-
laxation time τs

vgτs = 〈lscatter〉 . (69)

Inserting this, together with the condition
〈lscatter〉 > dab, into the definition of the mo-
bility, eq. (4), leads to the following criterion
on µ:

µband >
dab
τsE

(70a)

µband >
dabq

vgm∗
. (70b)

Here, E denotes the external applied field. As
this is not a property of the material, we also
provide an equivalent form in eq. (70b) as a
function of the effective mass m∗ and the group
velocity. Compared to the hopping criterion,
eq. (70b) depends on more system specific pa-
rameters, which are not necessarily easily ac-
cessible by experiment. To nevertheless pro-
vide a rough estimate for the ranges of validity
we used parameters provided by Kobayashi
and co-workers254 for three known band con-
ducting materials, highly pure pentacene,
rubrene, and 2,7-dioctyl[1]benzothieno[3,2-
b][1]benzothiophene, commonly known as C8-
BTBT. With group verlocities ranging from
5 × 103 cm/s to 25 × 103 cm/s and effective
masses of 0.6 × me to 1.3 × me we arrive for
the aforementioned representative distances of

dab = 4 − 15Å at a range of minimally allowed
mobilities of 0.4 cm2V−1s−1 to 8 cm2V−1s−1.
The resulting ranges of validity are depicted in
blue in Fig. 15.

Note that, while this is only a rough general
estimate, each system can be gauged according
to the criteria provided in eqs. (68) and (70b).
Also, ranges depicted in Fig. 15 seem to sug-
gest an overlap of validities of hopping and band
transport models. This is in fact not necessar-
ily the case, considering that due to influence of
dab, no system can be at the same time in the
ranges of high hopping mobilities but low band
mobilities. Note that there exists a similar cri-
terion for disordered solids originally provided
by Mott and Davis,272 which yields similar min-
imal band mobilities in the range of around a
few 10s of cm2V−1s−1.273

In addition, it is important to note that ap-
proximations to the relaxation time rest almost
exclusively on a phononic description of ther-
mal effects, cf. Section 4.2. Yet, by definition
phonons are based on a harmonic view of lat-
tice vibrations, as originally developed for in-
organic solids. In organic solids, on the other
hand, site-site interactions are often compara-
bly weak (arising from dispersion forces) and in-
ternal vibrational degrees of freedom may cou-
ple to inter-molecular motion. The overall ef-
fect of both is to yield particularly pronounced
anharmonic contributions to thermal molecu-
lar motion in an organic solid, which cannot be
captured in a simple phononic band model.61,274

Finally, although electronic band theory does
include interactions of electrons and nuclei
(mostly via effective models such as the de-
formation potential approach), contributions
due to the polarization of the surroundings are
generally neglected within the assumption of
full carrier delocalization. In an intermediate
regime between band and small polaron model,
carriers are instead still delocalized over many
molecular units, but nevertheless induce a po-
larization response by the crystal in the form
of a large polaron (cf. Fig. 16). The existence
of such a spread out state does depend on tem-
perature and polarizability of the material, and
can no longer be described within the confines
of traditional band theory. Effective correction
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approaches, developed to capture such effects,
will be discussed in Section 5.2 below. Af-
ter that, methods explicitly following the time-
propagation of the charge carrier wavefunction,
thus yielding an atomistic treatment without
any assumptions on the mechanism, will be
treated in Section 5.3.

small polaron

large polaron

delocalized band

Figure 16: Illustration of charge carrier local-
ization in a molecular crystal. (Top) Carrier
probability function |ψ|2 in a fully delocalized
band (Bloch) state; (middle) large polaron de-
localized over a number of molecular sites; (bot-
tom) small polaron more or less localized on a
single site. Normalization of wavefunctions here
is arbitrary for illustration purposes.

5.2 Polaronic band theories

Early approaches to reconcile the effects of nu-
clear and electronic motion in band theories
have been around since the late 1950s in the
form of model Hamiltonians, cf. Section 4.1.1.
In his pioneering work, Holstein122,123 formu-
lated a Hamiltonian that couples electronic
states locally to the phononic modes of the sys-
tem. This basic approach has found many ap-
plications in the past275–278 and is also undergo-
ing continuous improvement, the most notable
being its combination61,279 with Peierls type,
non-local coupling terms.60,280,281 The general
form of such a Holstein-Peierls Hamiltonian for
tightly bound electrons reads61

ĤHP =
∑
mn

Hmnâ
†
mân +

∑
Q

~ωQ

(
b̂†Qb̂Q +

1

2

)
+
∑
mnQ

~ωQgQmn(b̂†Q + b̂−Q)â†mân .

(71)

The three terms above are, in order, the
electronic term, the phononic term and the
electron-phonon coupling. Thereby, â

(†)
m and

b̂
(†)
Q are the electronic and phononic annihila-

tion (creation) operators, respectively. Sums
m,n run over all electronic states which are cou-
pled by Hmn, while Q enumerates phonons of
energy ~ωQ and their wave-vectors. gQmn, fi-
nally, couples electron and phonon states. A
coupling g that is diagonal in m and n, corre-
sponds thereby to a local (Holstein) coupling,
while a purely non-diagonal g leads to a fully
non-local (Peierls) model.

Correctly parametrized, such a Hamilto-
nian leads to eigenstates that fully describe
a mixed, electronic/nuclear wavefunction.282 In
the past, the parametrization has been suc-
cessfully achieved by fitting to experimental
or theoretical data.61,274,277 Yet, in the form
given above the Hamiltonian does not lend itself
to a straightforward ab initio parametrization
or even direct diagonalization.61 It is there-
fore generally transformed into a more suit-
able basis via the so-called polaron transfor-
mation,61,123,283,284 which is unitary and thus
norm-conserving.285 In the new basis comprised
of electrons and lattice distortions, the explicit
electron-phonon coupling terms disappear and
the Hamiltonian reads284

ĤHPpol =
∑
mn

H̃mnâ
†
mân +

∑
Q

~ωQ

(
b̂†Qb̂Q +

1

2

)
,

(72)

where H̃mn now represents the coupling of
states in the interacting electron-phonon sys-
tem and as such depends on both the elec-
tronic, as well as the electron-phonon coupling
constants. In fact, H̃mn is not simply a num-
ber, but instead still contains phonon oper-
ators, thus fully including the effect of po-
laron/phonon scattering.284 Eigenvalues of this
Hamiltonian consequently represent the energy
levels of the now interacting polaronic electron
bands. Given the knowledge of these bands, all
the methods outlined in Section 4 for determin-
ing the charge carrier mobility can be applied
as well. In fact, Hannewald and co-workers61

could demonstrate a distinct narrowing of the
bandwidth with temperature due to polaronic
effects that is not accounted for in standard,
T = 0 band theories. This narrowing is due to
a decrease of the effective coupling H̃mn—and
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with it an increase of effective mass—with in-
creasing temperature due to a less perfect over-
lap of molecular orbitals in thermally excited
systems.286 Compared to purely electronic band
theories, charge carriers in phononic bands are
thus effectively heavier, which ultimately leads
to a decrease in mobility.

In refs.61 and285 the authors also outline
a way to parametrize eq. (72) from ground
state, ab initio calculations. They fit a—
purely electronic—tight binding model of the
band structure, cf. eq. (61), to DFT results
in order to obtain the electronic couplings.
The electron-phonon coupling is then deter-
mined numerically by displacing molecules in
the crystal lattice and calculating the change
of coupling.287 As an alternative to this fit-
ting procedure, any method outlined in Section
3.7 could serve to determine the couplings di-
rectly as demonstrated by Troisi for rubrene.282

Parametrization of the Hamiltonian was per-
formed on the level of semi-empirical electronic
structure calculations based on crystal geome-
tries taken from force field MD. This study and
earlier work by Girlando and co-workers288 un-
derscored the importance of both Holstein (lo-
cal) and Peierls (non-local) terms for the de-
scription of electron-phonon coupling.

Finally, it is important to note that the
electron-phonon coupling term appearing in the
Holstein-Peierls and related models, cf. eq. (71),
is related to the reorganization free energy con-
tributions of hopping rate theories. Applying
the polaron transformation to eq. (71) leads to
a new Hamiltonian, eq. (72), with coupling ele-
ments H̃mn that are modulated by an electron-
phonon term. It has been shown13,61 that the
leading contribution to this modulating term
can be written as a sum over Huang-Rhys fac-
tors Su, which according to eq. (26) amounts to
the reorganization free energy λ. Together with
the electronic coupling Hab, λ thus appears as
a defining contribution in both hopping, band
(via the relaxation time approximation), and
intermediate theories. Therefore, they are im-
portant, and computationally cheaply accessi-
ble, targets for in-silico screening approaches.16

5.3 Propagation of the charge-
carrier wavefunction

Considering again that the carrier mobility,
eq. (4), is defined as a function of the aver-
age drift velocity only and that, according to
the generalized Ehrenfest theorem, the time
evolution of such an average is uniquely de-
termined by the Hamiltonian, a direct cal-
culation of µij from a dynamical simulation
of the charge carrier is, in principle, possi-
ble. Altogether, such an approach amounts to
solving the time-dependent Schrödinger equa-
tion for the combined nuclear-electronic sys-
tem. The two most common propagation tech-
niques used in this context are Ehrenfest based
mean field (MF) dynamics289 and Tully’s sur-
face hopping (SH) method.290–292 It is impor-
tant to note that both techniques, though semi-
classical in that nuclear degrees of freedom
are treated classically, are not tied to propa-
gation with model Hamiltonians. Especially
SH has been applied in combination with a
wide variety of electronic structure methods,
ranging from fully ab initio approaches based
on multi-reference configuration interaction,293

configuration interaction,294 and complete ac-
tive space self-consistent field,293,295,296 via DFT
(in the form of TDDFT297–299 and open-shell
Kohn Sham300,301) to semi-empirical302–306 and
tight-binding DFT307–310 approaches. In prac-
tice though, the high computational cost re-
stricts the application of full ab initio methods
presently to small (reference) systems.133,145

Note that both charge propagation meth-
ods (MF and SH) discussed below are of a
semi-classical nature in that nuclear degrees of
freedom are treated classically with typically
only the charge carrier itself evaluated in a
fully quantum mechanical fashion. Such mixed
quantum-classical approaches have shown to be
an optimal combination of good accuracy and
reasonable computational cost for the study of
complex interactions between charge carriers
and phonons.311
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5.3.1 Mean field propagation

In the MF or Ehrenfest approach the evolu-
tion of the classical nuclear degrees of freedom
is governed by the gradient of the expectation
value of the system’s total energy. This includes
the time-dependent quantum degrees of free-
dom, described e.g. by a Hamiltonian such as
eq. (72). In effect this means that the clas-
sical degrees of freedom move on a single av-
eraged potential energy surface (PES). For a
time-dependent QM wavefunction |φ(t)〉, which
in the MF approach is constructed as a co-
herent superposition of excited states,289 the
PES value experienced at time t is thus given
by EQM(t) = 〈φ(t)|Ĥ|φ(t)〉. Note that in this
notation EQM(t) only contains terms relating
to the quantum degrees of freedom and thus
leaves out interactions between the classically
treated nuclear degrees of freedom. The result-
ing contribution Eclass(t) can be obtained on
the level of a classical force field93 (discussed
in more detail below) or by coupling the mean
field approach to an external bath in a Langevin
like approach.311 Given such an averaged, mean
field PES the equations of motion for the classi-
cal degrees of freedom R are simply Newtonian

R̈i(t) = − 1

Mi

∇iEtot(t)

= − 1

Mi

∇i[EQM(t) + Eclass(t)] , (73)

where R̈i and Mi denote acceleration and mass
(in this case that of the charge carrier) along
degree of freedom i, and∇i is the spatial deriva-
tive component along i.

The time evolution of the QM system—here
the charge carrier wavefunction—is then given
by the time-dependent Schrödinger equation

|φ̇(t)〉 = − i
~
Ĥ|φ(t)〉 . (74)

Propagation of the combined system can be car-
ried out with any suitable integration scheme
for differential equations such as e.g. the well
known Runge-Kutta integrator,311,312 of at least
fourth order.313 For an in-depth analysis of ad-
vantages and disadvantages of different prop-

agation schemes we refer the reader to the
work of Castro and Marques.314 In order to
yield results independent of the chosen initial
conditions, the propagation is, in analogy to
any other dynamical sampling scheme, gener-
ally repeated for a number of different initial
conditions.311 For the thus resulting ensemble
of “trajectories” of the wavefunction

∣∣φ(l)(t)
〉
,

with the superscript l enumerating the trajec-
tories one then calculates the MSD. Assuming
a carrier particle initially fully localized at the
origin, Wang and Beljonne showed311 that the
MSD can be determined from the width of the
charge distribution. In this case the MSD along
one of the system’s principal axes i is calculated
by evaluating the expectation values of the car-
rier position operator ri and its square242

MSDi(t) =
1

L

L∑
u=1

[〈
φ(u)(t)

∣∣ r2
i

∣∣φ(u)(t)
〉

−
〈
φ(u)(t)

∣∣ ri ∣∣φ(u)(t)
〉2
]

,

(75)

where L is the total number of trajectories. On
the other hand, Spencer and co-workers,93 in
simulating the propagation of a charge carrier
along a chain of molecules, used the MSD of
the centre of charge for the calculation of the
diffusion coefficient

MSDi(t) =
1

L

L∑
u=1

〈
φ(u)(t)

∣∣ ri ∣∣φ(u)(t)
〉2

.

(76)

Note that both definitions given here have
drawbacks. Equation (75) yields zero for a fully
localized quantum particle hopping from one
site to the other because there the width does
not change in time. Equation (76), on the other
hand, gives zero if the quantum particle delo-
calizes symmetrically around the origin and the
center of charge therefore does not move. The
right definition of the MSD thus has to be cho-
sen based on the problem at hand.

As already outlined in Section 2.2 above, the
linear section of the MSD function along axis i
is directly proportional to the diagonal element
Dii of the diffusion tensor D of the charge car-
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rier, cf. eq. (9). This, in turn can directly be
inserted into the Einstein-Smoluchowski equa-
tion, eq. (6), to yield the mobility.

Advantages of the MF approach over other
methods, such as the SH scheme described next,
are its simplicity and that it can be derived from
first principles. Its validity for charge transport
simulations, on the other hand, is very much
in question. In a general context this has been
shown by Tully already in 1998291 and in the
case of charge transfer in organic molecular sys-
tems it was reinforced in 2013 by Wang and
Beljonne.311 They showed that while MF does
indeed yield diffusion tensor elements and thus
numerical values of the transfer rates within
the correct order of magnitude in the hopping
regime, it fails to yield a correct temperature
dependence of the carrier mobility. The au-
thors were able to ultimately trace back this
failure to an assumption implicitly contained in
the MF approach. Use of just a single PES im-
plies an infinite decoherence time of the charge
carrier state, which in the localized (hopping)
limit of transport mechanisms was shown not
to be fulfilled at all. Despite these severe short-
comings315 the MF approach is employed to this
day and, if used with care, can lead to physi-
cally relevant results.58,59,188,189,282,316–319

5.3.2 Surface hopping approaches

The SH algorithm, presented by Tully,290 im-
proves on some aspects over the mean field ap-
proach. Owing to the method’s great popular-
ity, a number of reviews and various modifica-
tions of the original approach are available in
literature.12,292,320,321 The main difference with
respect to the MF method is that one consid-
ers an ensemble of realizations, progressing on
a single PES at any time, but with occasional,
stochastic transitions (“jumps”) between sur-
faces instead of one realization of the system
evolving on an averaged PES. The motivation
for such a treatment is best illustrated with a
two-state model as illustrated in Fig. 4 above.
There, the dynamics of a carrier wave-packet
is governed not just by the ground state adia-
batic PES, but also the excited state PES, in
case of an incomplete (non-adiabatic) separa-

tion of electronic and nuclear degrees of free-
dom. As outlined above, such a behavior is in-
deed likely in organic solids and in effect leads
to a non-vanishing probability for a wave-packet
to branch between the PESs.

The SH scheme (partially) realizes such a
non-zero branching probability through discrete
jumps between the PESs. The dynamics of the
carrier wave-packet is again determined by a
time-dependent Schrödinger equation

i~ ˙|Ψ〉 = (H− i~dad)|Ψ〉 . (77)

Here, H denotes the adiabatic Hamiltonian ma-
trix (cf. Section 3.2) representation in a given
basis {|ϕn〉}, while dad is the non-adiabatic cou-
pling matrix with elements

dad
mn =

〈
ψm

∣∣∣∣dψndt
〉

. (78)

Note that basis functions are time dependent
due to the general, non-adiabatic nature of the
approach, where the motion of charge carriers
represented as the expansion |Ψ〉 =

∑
n cn|ψn〉

is not time-scale separated from the nuclear mo-
tion. Thus basis functions localized at the nu-
clear coordinates can not be assumed as con-
stant in time during propagation of the carriers.
We also point out that eq. (77) is in fact identi-
cal to eq. (74), yet projected onto the adiabatic
states of the system.

Classical degrees of freedom are again treated
simply on the level of Newtonian dynamics,
cf. eq. (73). The jumps from one adiabatic
PES (m) to another (n) then occur with a fi-
nite probability gmn depending on the molecu-
lar dynamics timestep ∆t and the charge car-
rier’s density matrix amn = c∗mcn

gmn = −∆t
2Re

(
a∗mnd

ad
mn

)
amn

. (79)

This particular SH probability is known as the
so called “fewest switches” SH (FSSH) algo-
rithm, as it minimizes the number of transitions
between PESs.

In this scheme, a single trajectory alone does
not carry much physical significance due to the
stochastic transitions in the dynamics. Aver-
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aged over an ensemble of trajectories with ap-
propriately chosen initial conditions, the charge
mobility can be estimated similarly to the mean
field approach.322 Also, for a whole set of real-
izations of the dynamics starting from different
initial conditions the charge mobility can be es-
timated similarly to the mean-field approach.

Whereas FSSH appears to be a viable ap-
proach to the simulation of charge transport
in organics, the original method suffers from
a number of well known shortcomings com-
pared to a fully quantum mechanical treat-
ment.321,323–326 Standard FSSH, for example,
and indeed also the MF approach, do not treat
nuclear quantum effects such as tunneling or
zero-point motion by construction.290 Recently,
though, this limitation has been lifted and nu-
clear quantum effects have been incorporated
into the method by combining it with ring poly-
mer MD.327–329

Additionally, the essential asymmetry be-
tween quantum and classical degrees of free-
dom in this approach can lead to an overly
coherent electron dynamics often termed the
“decoherence-problem”, which can lead to spu-
rious results.323,330,331 The latter can have an es-
pecially large impact on charge-transfer rates to
the point where SH dynamics is not able to re-
cover the Marcus limit if applied to the respec-
tive hopping regime.332 This is highly system
specific though and studies on simple molecu-
lar donor-acceptor complexes for instance found
the effect of missing decoherence on electron
transfer rates to be rather small.86,333 Various
methods to correct for the missing decoherence
have been suggested. These are for example
the instant collapse of the electronic wavefunc-
tion to the active state323 or exponential damp-
ing of the inactive electronic states as e.g. used
in the coherent switching with decay of mix-
ing approach331 or in the energy-based deco-
herence correction.320 Landry and Subotnik de-
rived334 an augmentation to the fewest switches
SH (a-FSSH) scheme that accounts for the miss-
ing electronic decoherence. They demonstrated
that by adding a decoherence step, based on a
propagation of the first moments of the posi-
tions and the momenta of the charge carrier,
one can indeed recover the correct Marcus be-

havior.335 This step is indeed just a “collapse”
of the wavefunction, that occurs with a proba-
bility proportional to the inverse of the so-called
coherence time.335

A further problem in practical applications
of the original FSSH scheme is its insufficient
treatment of so called trivial and “unavoided”
crossings336 between PESs.321 In the context of
CT in organic solids they can occur between
electronic states that have very small electronic
interaction (e.g. when they are far apart). If
they come close in energy due to nuclear fluctu-
ations their interaction is very small which leads
to the occurrence of a cusp on the two PESs pic-
tured as a double cone with the crossing point
as common vertex. The non-adiabatic coupling
vector between the two states, being inversely
proportional to the energy gap, shows a very
sharp peak at the crossing and the hopping
probability gmn approaches 1. This means that
in an exact simulation of the nuclear and elec-
tronic dynamics excited states could de-excite
simply by going through the vertex. In numeri-
cal FSSH runs, however, the cusp can be easily
missed due to the finite nuclear time step. In
this case the system does not change state as
it should. Consequently, since the state index
after and before the crossing remains the same,
the new electronic state is now the active state
i.e. a spurious long-range charge transfer has
occurred.242,337,338 An insufficient treatment of
trivial crossings thus can lead to serious arte-
facts in the simulated dynamics.

To counter this, efficient modifications to the
FSSH scheme have been developed in recent
years. The first approach is to track trivial
crossings along the trajectory, either by detect-
ing unphysical discontinuities of the involved
PESs,339 or by following the overlap between
the involved adiabatic states at different times
along the trajectory.337 If indicated, a tran-
sition between the PESs is then simply en-
forced. This approach can be somewhat tedious
and becomes inefficient if trivial crossing ap-
pear frequently. Secondly, one can venture to
eliminate the interaction between weakly cou-
pled states altogether, by treating only subsys-
tems of the material at hand with FSSH, in
the so called flexible surface hopping scheme.242
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Then, all adiabatic states are necessarily phys-
ically close, eliminating the possibility of spu-
rious long-range charge transfer. Although the
method was applied successfully to simulate CT
along a harmonic chain model,242 it is likely
to have some limitations. For instance, it may
not solve the trivial crossing problem in cases
where electronic couplings between physically
close diabatic states are very small or when the
charge carrier is spatially strongly delocalized.
Recently, Prezhdo and co-workers suggested an
elegant and effective detection method for triv-
ial crossings based on a rigorous sum rule for
hopping probabilities.338 Violation of the sum
rule at a given MD step indicates occurence of a
trivial crossing, in which case the hopping prob-
ability to the adiabatic state closest in energy
to the active adiabatic state is corrected. This
method was shown to give excellent results for
model systems.338 The only caveat is that it
may not provide a correction to the hopping
probability where more than two surfaces are
involved in a trivial surface crossing.

A further drawback of the FSSH approach
was shown by recent analyses for small model
systems.340,341 These showed that surface hop-
ping does not generally yield the exact equi-
librium Boltzmann distribution of electronic
states. The deviations from the exact Boltz-
mann limits, however, were also found to be
small especially for systems with small elec-
tronic and strong non-adiabatic couplings.

Finally, it is evident that—compared to the
single PES considered in the MF approach—
the sampling efficiency of surface hopping is
directly determined by the number of excited
state surfaces that need to be included to de-
scribe a particular system. In metallic systems,
for example,342 FSSH becomes very inefficient
due to the large number of PES’ contributing
to a single band. In this case, hops occur ex-
tremely frequently as the energetic separation
between the PES is small at any time requir-
ing a large number of trajectories for proper
sampling.342 Whether or not this will become a
problem for the simulation of charge transport
in organics remains to be seen.

In summary, recent research provided a great
number of improvements over the original

FSSH scheme each dealing with different short-
comings. For each application the combination
of these techniques has to be carefully chosen
based on the processes expected to occur. A
more in-depth review of FSSH and its state-
of-the-art improvements can be found in refer-
ence.321

5.3.3 Other propagation methods

Before going on to discuss a specific example
of a combined nuclear-electronic dynamics we
here briefly describe other techniques, which,
though not yet as widespread in the field of or-
ganic solids, can also be employed to model CT
processes.

Realtime time-dependent DFT As al-
ready mentioned in the introduction to Section
5.3, neither MF nor FSSH or its derivatives are
limited to specific descriptions of the electronic
degrees of freedom. Although we have, for the
sake of brevity, limited the discussion to dy-
namics based on electronic model Hamiltoni-
ans, a more versatile electronic description ex-
ists e.g. in the form of realtime time-dependent
DFT (RT-TDDFT).343 This is based on the
Runge-Gross theorem,344 which is the time-
dependent analogue of the first Hohenberg-
Kohn theorem.345 It states that there is an ex-
act mapping between the time-dependent den-
sity ρ(r, t) and the time-dependent potential
V (r, t) and thus by extension also the time-
dependent wavefunction. Yet, analogously to
ground state DFT, not every observable can
easily be expressed in terms of the density.
Thus, based on the work of van Leeuwen,346

one generally employs a reference system of
non-interacting, though time-dependent, sin-
gle electron orbitals with the same density as
the full system. This treatment leads to a
Hamiltonian comparable to ground state Kohn-
Sham DFT347 in that it includes an unknown
but time-dependent exchange-correlation (XC)
term that needs to be approximated. This is,
however, complicated by the fact that the hy-
pothetical “exact” term couples XC contribu-
tions at different times leading to a memory
effect.348,349 A number of studies investigated
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the effect of memory on RT-TDDFT, for ex-
ample using an adiabatically exact approxima-
tion to the XC potential, which completely ne-
glects XC-memory.350–353 Unfortunately, such
a simple approach was shown to fail for CT
problems,351,353 making it unsuitable for the
tasks discussed in this review. Yet, there is on-
going research into more accurate approxima-
tions to the time-dependent XC functionals and
more in-depth discussion of RT-TDDFT can
for example be found in reference.343 Finally,
while RT-TDDFT provides a way to propa-
gate electronic degrees of freedom, the cou-
pling to nuclear motion is commonly achieved
in Ehrenfest like approaches.289,354,355 Yet, more
accurate, though also more expensive, multi-
configurational approaches to RT-TDDFT have
been reported in the literature.356,357

Multi-configurational time-dependent
SCF approaches Propagation of a charge
carrier in an extended system with two or more
possible states in principle needs to take into
account the PES’ of all states, as outlined in
Sec. 5.3.2 above. Yet, while the SH and MF
approaches treat these in an explicitly but
stochastically or in an averaged fashion, re-
spectively, the family of multi-configurational
time-dependent SCF (MC-TDSCF)358 meth-
ods represents an approximate but deter-
ministic treatment of time-dependent prob-
lems. The most common variant nowadays,
which we very briefly discuss here, is the
multi-configurational time-dependent Hartree
(MCTDH) method.359,360 This is based on the
expansion of the full solution to the time-
dependent Schrödinger equation into Hartree
products of time-dependent single electron or-
bitals.361 Inserting this ansatz together with
a constraint operator establishing the orthog-
onality of eigenfunctions at every time step,
into the Schrödinger equation yields a set of
coupled equations for both the single parti-
cle orbitals and the expansion coefficients of
the full wavefunction. Given a large enough
basis of product functions, MCTDH can thus
yield an accurate picture of the time evolution
of any prepared initial state. The advantages
of MCTDH in the context of this review are

thereby two-fold. First, the combined electron-
nuclear dynamics is fully non-adiabatic and
thus in-principle not biased to one specific CT
mechanism.362 The second advantage lies in
its systematic improvability, where by adding
more product functions one can get an increas-
ingly accurate description. Unfortunately, with
the number of product functions the computa-
tional cost of MCTDH also grows steeply, which
means that early applications where confined
to very small systems.360 Yet, recent devel-
opments such as multi-layer MCTDH,363–365

where the large number of single particle func-
tions is treated in a hierarchical tree-like fash-
ion, has reduced the cost of the method such
that now thousands of degrees of freedom can
be accurately treated for short timescales. First
simulations of quantum dynamics of organic
systems with MCTDH were reported e.g. by
Burghardt and co-workers,366–368 investigating
exciton dynamics and dissociation in oligothio-
phenes and thiophene-fullerene junctions, or by
Zheng et al.369 studying singlett fission in a pen-
tacene dimer model system. All these studies
share their focus on ultra-fast processes, owing
to the still present resource limitations of the
method. A more detailed review of MCTDH
and its applications can be found in a focused
review by Beck, Jäckle, Worth and Meyer.361

5.3.4 Example: propagation in a charge
localized basis

To illustrate how explicit time propagation can
be realized in practice, we discuss an efficient
FSSH scheme recently put forward by Spencer,
Gajdos and Blumberger.93 Inspired by CT rate
theory approaches and CDFT, they expand the
time-dependent electronic wavefunction in a ba-
sis of charge localized SOMOs. This approach
rests on a number of assumptions, first and fore-
most that the excess charge may be described
by a one-particle wavefunction expressed as a
linear combination of SOMO orbitals of the
molecules. Interactions between carriers were
not included in their first version, hence limit-
ing its applicability to the low carrier concen-
tration limit.

The basis functions |ϕm〉 used in the scheme
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are then analogous to the diabatic states used
in rate theoretical approaches (see Section 3.1)
in that each of them represents a state where
the excess charge carrier is entirely localized on
a given molecular site. Note that the name di-
abatic state does not strictly apply to such ref-
erence states, as they do not diagonalize the
non-adiabatic coupling matrix. This is why
Spencer and co-workers refer to them as SO-
MOs. An illustration of this SOMO basis for a
fullerene derivative is given in Fig. 17. In order

Figure 17: 1D illustration of the charge-
localized SOMO basis used in the fragment
orbital based surface hopping (FOB-SH) ap-
proach for a chain of PCBM molecules. Each
basis function |ϕn〉 is given as a charge carrier
(electron or hole) localized on different sites in
the chain.

to solve the time-dependent Schrödinger equa-
tion, eq. (77), the wavefunction |ψ〉 and thus
the Hamiltonian H and the non-adiabatic cou-
pling matrix dad are expanded in the SOMO
basis for every given snapshot {Rk(t)} of nu-
clear positions along a trajectory. Compar-
ing to diabatic rate theories, off-diagonal ele-
ments of the Hamiltonian 〈ϕm|Ĥ|ϕn〉 are in this
approach simply given by the electronic cou-
pling elements. These elements can in princi-
ple be determined with any of the methods dis-
cussed in Section 3.7. Yet, for practical reasons
such as scaling and computational cost this de-
termination is presently restricted to cheaper
methods such as FO-DFT or AOM. The diago-
nal elements of the Hamiltonian 〈ϕm|Ĥ|ϕm〉, in
turn, represent the site energies of such charge-
localized states within the potential of the crys-
tal. As such, they include contributions beyond
simple two-site approximations used for the off-
diagonal elements. Again for reasons of compu-

tational efficiency, Spencer et al. here employ a
classical force field, which yields the energetics
of the charge response to a given localization of
the excess electron. Finally, the non-adiabatic
coupling elements d′mn(t) between the charge lo-
calized states are estimated by finite differences
from the overlap matrices of the SOMO basis
functions taken at different times

d′mn(t) =

〈
ϕm(t)

∣∣∣∣ ddtϕn(t)

〉
≈ 1

∆t
(〈ϕm(t)|ϕn(t+ ∆t)〉

− 〈ϕm(t)|ϕn(t)〉) . (80)

These are then transformed into the adiabatic
basis to yield the non-adiabatic coupling ele-
ments dad

mn(t) (cf. eq. 78). Here, the analyti-
cal time-derivative of the basis function |ϕn(t)〉
has been replaced by a numerical approxima-
tion with a small but finite time step ∆t, which
for convenience can be chosen as the time step
for the propagation of the nuclei.

The thus fully determined Hamiltonian and
non-adiabatic coupling matrix can not yet
be used directly for propagation within the
SH scheme. For this, they have to be uni-
tary transformed into an orthogonalized basis,
for instance through Löwdin’s symmetric ap-
proach.211–213 Note that the transformation of
the non-adiabatic coupling thereby also neces-
sitates calculation of the time derivative of the
transformation matrix, which in the present ap-
proach is calculated analogously to d′. With the
transformed matrices a prepared initial state
is then propagated according to eq. (77) us-
ing a fourth order Runge-Kutta scheme.370 The
necessary nuclear gradients were calculated by
Spencer et al. in a mixture of analytical and nu-
merical schemes, as described in detail in ref.93

Given a number of charge trajectories the car-
rier mobility was finally estimated by evaluating
the MSD of eq. (75) and exploiting the Einstein-
Smoluchowski relation, eq. (6), in close analogy
to the MF approach described in Section 5.3.1.

By specifically choosing localized fragment
orbitals as basis for the expansion of Hamil-
tonian and non-adiabatic coupling Spencer et
al. exploited a number of advantages, such as
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a possible linear scaling behavior due to the
sparsity of the resulting matrices, as well as
easy access to the necessary matrix elements
for a given nuclear configuration. On top of
that, the localized approach somewhat miti-
gates the well known charge-delocalization er-
rors of DFT.95,371 Yet, at least in the form pre-
sented in reference,93 there are also a number
of caveats to such an approach. For example,
only intra-band CT in the band formed of the
SOMOs is considered by construction. There-
fore, the dynamics of optical excitations (”ex-
citons”), occurring for example in organic so-
lar cells, could not be addressed with this ap-
proach. Moreover and as mentioned previously,
no interaction between charge carriers is incor-
porated yet. In future work, it may be possible
to model these effects by suitably expanding the
state space of the electronic Hamiltonian.

5.4 The Kubo formula

Finally, we point out that the charge carrier
mobility in a material can also be expressed
in terms of a time-correlation function of the
carrier current I(t) based on the Kubo formula
(KF).54,372 Especially considering the relative
ambiguity of organic molecular crystals with re-
spect to the carrier transport regime, an unbi-
ased approach based on statistical considera-
tions such as the KF can be of great impor-
tance. Indeed, a number of recent studies of or-
ganic materials based their approaches on the
KF. Ortmann, Bechstedt, and Hannewald,284

for example, applied the KF to a Holstein
Hamiltonian—cf. eqs. (71) and (72)—to deter-
mine carrier mobilities for a realistic model sys-
tem, showing the temperature-induced tran-
sition from hopping-dominated to band-like
transport. Similarly, Fratini and Ciuchi257 em-
ployed the KF to determine the carrier mobil-
ity in rubrene as a function of temperature,
demonstrating the versatility of KF approaches
to describe both band-like and incoherent trans-
port mechanisms. Similarly Gunnarsson and
Han,373 on the other hand explored the mean
free carrier path length in gap-less and there-
fore metallic fullerene crystals. Wang et al.374

employed the related Kubo-Greenwood formal-

ism to study the charge transport properties in
different phases of polyethylene.

In the limit of vanishing momentum transfer
from the carrier to the lattice the KF can be
expressed as257

µ =
βπed2

Z~

∫
dω B(ω)e−βω , (81a)

with d the average spacing between crystal sites
and

B(ω) =

∫
dt eiωt 〈[I(t), I(0)]〉 (81b)

the Fourier transform of the current auto-
correlation function. It can be viewed as an
energy-resolved, state-specific mobility function
and can be calculated e.g. from the expectation
value of the current operator

∑
j〈ψ(t)|â†j âj−1−

â†j âj+1|ψ(t)〉, where â†, â are the creation and
annihilation operators and the sum runs over
all states. Finally,

Z =

∫
dω ρ(ω)e−βω , (81c)

with the density of states ρ(ω). Gunnars-
son and Han373 demonstrated that the cor-
relation function B(ω) can—by neglecting so
called vertex corrections—be factorized into
Green’s function terms and matrix elements
of the current operator, both averaged over
the phonon displacement spectrum. Using
this, Fratini and Ciuchi257 further simplified
the calculation of B(ω) to just the calcula-
tion of the system’s Green’s function, observ-
ing that the latter term can be determined an-
alytically. Moreover, Wang and co-workers374

demonstrated that using a result from Kubo-
Greenwood theory372,375,376 one can reduce the
computational complexity even further, essen-
tially replacing the current correlation function
with a mean square momentum matrix element
between pairs of different states, averaged over
all states.

5.5 Applications

Driven by an increasing awareness that nei-
ther hopping nor band models alone are able
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to fully explain experimentally reported find-
ings, there has been a strong shift toward the
more general approaches in the last decade.
As already mentioned in Section 5.2 Han-
newald and co-workers61,279 conducted seminal
studies of polaronic bandwidth narrowing in
oligoacene molecular crystals (naphtalene, an-
thracene, and tetracene) based on a Holstein-
Peierls Hamiltonian. Troisi and Orlandi274,316

subsequently showed for the examples of pen-
tacene and anthracene, that the thermal modu-
lation of the electronic couplings entering such
model Hamiltonians cannot be neglected.

Next to polaronic band theories especially
non-adiabatic propagation of the charge car-
rier wavefunction has been employed to study
transport in organic crystals. Troisi282 demon-
strated the accuracy of such approaches ver-
sus experiments for the absolute charge mo-
bility in rubrene. Using a mixed quan-
tum/classical approach315 based on SH Wang
and Beljonne242,311 studied the crossover from
hopping to band-like transport in organic crys-
tals. Demonstrating the versatility of the
method, Ren and co-workers377 also employed
non-adiabatic MD to simulate charge trans-
port in two-dimensional pentathiophene butyric
acid monolayers to determine the underlying
mechanisms of charge transport in such con-
fined systems. Based on a quantized Hamil-
tonian dynamics, first Hannewald and Bob-
bert,279 and later again Wang et al.378 ex-
plained low-temperature experimental results
for charge transport in naphtalene crystals.
Zhang, Zhong, and Zhao379 employed a time-
dependent wavepacket method to explain elec-
tron mobilities in pentacene-quinone deriva-
tives, also finding a crossover from hopping
to band-like behavior. For chains of ethylene-
like molecules Spencer et al.86,93 demonstrated
that their just discussed fragment-orbital based
non-adiabatic SH method achieves comparable
accuracy to these earlier and computationally
more expensive methods. A conceptually sim-
ilar method, brought forward by Heck and co-
workers,188,189 also utilizes a fragment orbital
description, based on DFTB, to arrive at an
analogous effective QM-MM single-particle de-
scription of the charge carrier. In contrast to

the FOB-SH, Heck et al. propagated the charge
carrier with Ehrenfest dynamics, which has a
number of well known deficiencies (cf. section
5.3.1). Nonetheless, the charge mobility com-
puted for chains of organic molecules was in
good agreement with experimental data, where
available.

Finally, dynamic approaches to charge trans-
port are not limited to periodic crystalline ma-
terials. For example, Akimov194 utilized a frag-
ment orbital scheme based on semi-empirical
extended Hückel theory in the non-adiabatic SH
propagation of an effective QM-MM Hamilto-
nian of a molecular donor-acceptor heterojunc-
tion of Boron Subphthalocyanine Chloride and
C60.380 Johansson and Stafström381,382 as well
as An, Wu and Sun383 employed non-adiabatic
dynamical approaches to study polaron trans-
port along polymer chains. In another recent
approach, Bauer et al.384 used a multi-agent
quantum Monte Carlo model to model charge
transport through disordered multi-phase field
effect transistors consisting of C60 molecules sit-
ting on a layer of alkyl chains.

6 Synopsis, remaining chal-

lenges and future direc-

tions

In the present review, we set out to provide
a comprehensive overview over the tools cur-
rently available to the computational scientist
to tackle the study of charge carrier transport
in molecular organic semiconductors. To this
end we first gave a summary of the theories of
conductivity in Section 2, highlighting the dif-
ferent regimes of transport occurring in organic
semiconductors. Then we elaborated them in
detail in subsequent Sections. In Section 3 we
first detailed the theoretical background of the
hopping model, thereby pointing out the dif-
ferent limiting cases of hopping rate theories
available in literature. This discussion included
all common computational methods available to
determine the parameters going into rate theo-
ries for an ab initio calculation of charge carrier
mobilities within the hopping model.
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Where the hopping model assumes a local-
ized, polaronic charge carrier, band theory
rests on the opposing assumption of a delo-
calization of carriers in periodic bands. Cor-
responding approaches were described in Sec-
tion 4. There we again first detailed the the-
oretical foundations of the model before giv-
ing an overview over computational methods
available in the theorist’s toolbox. Applicabil-
ity of either model rests on the intricate inter-
play of charge transfer parameters in each semi-
conductor. Which model to apply is therefore
not necessarily possible to decide beforehand,
in some cases even the use of neither model
can reasonably be justified. In such interme-
diate cases, dynamic simulations as described
in Section 5 have to be employed. To set this
regime into perspective we first discussed in de-
tail the ranges of validity of the limiting carrier
transport regimes. Available methods for the
intermediate regime comprise the propagation
of model Hamiltonians or the explicit propaga-
tion of the wavefunction. Finally, we ended the
main part of this manuscript with a discussion
of the famous Kubo transport equation in Sec-
tion 5.4, which represents a statistical approach
to charge transport in solids, considering time-
correlation functions of the charge current.

Given such a wealth of methods available
to the theoretical researcher, one would be
tempted to assume that most challenges in sim-
ulating organic semiconductors have been over-
come and one can readily employ theoretical
methods to predict charge transfer parameters
of realistic organic solids. As we have pointed
repeatedly, this is unfortunately not the case.
Direct comparison of absolute mobilities to ex-
periment, is still only rarely possible for several
reasons. On the theoretical side, as pointed out
in Section 5.1, the exact mechanism underly-
ing charge carrier transport in a system is often
unclear or even ill-defined. In such cases only
propagation methods—discussed in Section 5—
can in principle deliver an unbiased picture.
Yet, even such methods rest on a number of
approximations, given the large sizes of organic
molecular systems. On the other hand, exper-
imental studies have their own unique set of
challenges to contend with. For instance, mo-

bility measurements of one and the same sys-
tem can deliver wildly differing values mostly
due to minute differences in preparation lead-
ing to ill-defined or disordered crystal struc-
tures. Many theoretical studies nowadays rec-
ognize the problem and introduce models for
the influence of structural disorder on elec-
tronic couplings, Sec. 3.7, and on-site energies,
Sec. 3.3.1, which indeed show first successes.
Similarly, dynamical influences on carrier lo-
calization and propagation, through electron-
phonon coupling, Sec. 4.2, and a certain degree
of dynamical disorder, are gathering increased
attention for more refined modelling studies.

Another challenge for the comparison of the-
ory and experiment are interface effects. While
this review concentrated mainly on techniques
for the study of bulk charge transport phe-
nomena, virtually every real-life application
of such systems—and thus also experimental
measurements—needs to interface the semicon-
ducting organic solid with metal electrodes.
Disregarding for the moment the problem of
structural modelling of the interface, transport
across such interfaces is by necessity harder
to model, as one needs to combine methods
suited for metallic systems with those geared
towards molecular transport. In the case of
single-molecule/metal interfaces a great variety
of theoretical studies can be found in literature
due to their potential application in molecu-
lar electronics. Yet, with regards to the theory
of charge carrier propagation across bulk inter-
faces between organic solids and metals there is
still much work do be done.

Another important aspect is the geometric
structure, which necessarily underlies all the-
oretical studies. While this review focused on
ordered organic solids, the class of amorphous
or polymeric organic solids is of high interest
for applications in display devices, electronics,
and even solar cells. The ill-defined micro-
scopic structure of such materials poses a signif-
icant challenge to any atomically resolved mod-
eling. One way to obtain representative struc-
tures used for charge transport calculations is
to perform MD simulations, possibly performed
at elevated temperatures and based on approx-
imate energetics to lower the computational
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burden. Snapshots drawn from the computed
trajectories then provide an ensemble of struc-
tures which can then be treated using the meth-
ods outlined in this review, ultimately yield-
ing a distribution of charge transport param-
eters. While amorphous semiconductors could
in principle also be tackled through such snap-
shots, sampling the likely non-equilibrium dis-
tribution of their structures poses a practical
problem. Such a discrepancy in structure dis-
tributions can thus potentially lead to large dis-
crepancies between experiment and theory.

Finally, one of the great advantages of the-
ory, even given all of the problems outlined in
the paragraphs above, is to point out trends
and thus provide a link between structure and
function of a material. Given such a link, one
could think of employing a number of easily
computable parameters for a given system, such
as coupling and reorganization energy as dis-
cussed in Sec. 5.2, to at least roughly predict
its applicability as an organic semiconductor
relative to other materials in a computational
screening study. Yet, as before, such screen-
ing approaches again depend on the knowledge
of the microscopic structure of the material,
which in principle limits their applicability to
already known systems. Luckily, the last cou-
ple of years saw great leaps in crystal struc-
ture prediction methodology, which brought us
to the point where, for any molecule, one can
predict to a great degree of accuracy the corre-
sponding crystal structure.22 While these pre-
diction studies tend to be costly, theoretical
predictability of charge transport properties for
unknown systems is now definitely within our
reach.

In conclusion, then, what is the ideal method
to describe CT? Unfortunately, there is no sim-
ple answer to this question, as the ideal method
will always depend on the system, the regime,
the available resources, and finally the exact
question one wants to answer. In general, an
ideal theory should yield the transport mech-
anism as a result and not assume one in the
first place. This in turn points towards the
methods discussed in Section 5. At the same
time one ideally would like to be able to treat
large or even disordered systems which, given

even today’s computing resources, can be a
challenge for methods relying on direct charge
propagation. On the other hand, as outlined
in Sec. 5.2, if one is only interested in broad
mobility trends in a screening study, in princi-
ple only few parameters have to be calculated
per system. Then a full non-adiabatic dynamics
clearly would go far beyond what is necessary
in practice. Thus, the question at hand as well
as the system and the available resources in-
form the choice of method to be used and with
this review the authors aimed at providing a
guide to the available approaches in the differ-
ent regimes for the reader to choose from.
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Approximately Diabatic States from
Block Diagonalization of the Electronic
Hamiltonian. J. Chem. Phys. 1988, 89,
7367–7381.

(139) Baer, M. Adiabatic and Diabatic Repre-
sentations for Atom-Molecule Collisions:
Treatment of the Collinear Arrangement.
Chem. Phys. Lett. 1975, 35, 112–118.

(140) Baer, M. Topological Effects in Molecular
Systems: An Attempt Towards a Com-
plete Theory. Chem. Phys. 2000, 259,
123–147.

55



(141) Macias, A.; Riera, A. Calculation of Di-
abatic States from Molecular Properties.
J. Phys. B 1978, 11, L489–L492.

(142) Werner, H.-J.; Meyer, W. MCSCF Study
of the Avoided Curve Crossing of the
Two Lowest 1Σ+ States of LiF. J. Chem.
Phys. 1981, 74, 5802–5807.

(143) Domcke, W.; Woywod, C. Direct Con-
struction of Diabatic States in the
CASSCF Approach. Application to the
Conical Intersection of the 1A2 and 1B1
Excited States of Ozone. Chem. Phys.
Lett. 1993, 216, 362–368.

(144) Köppel, H.; Gronki, J.; Mahapatra, S.
Construction Scheme for Regularized Di-
abatic States. J. Chem. Phys. 2001, 115,
2377–2388.

(145) Kubas, A.; Gajdos, F.; Heck, A.;
Oberhofer, H.; Elstner, M.; Blum-
berger, J. Electronic Couplings for
Molecular Charge Transfer: Bench-
marking CDFT, FODFT and FODFTB
against High-Level Ab Initio Calcula-
tions. II. Phys. Chem. Chem. Phys.
2015, 17, 14342–14354.

(146) Ramos, P.; Mankarious, M.; Pa-
vanello, M. Practical Aspects of Compu-
tational Chemistry IV ; Springer, 2016;
pp 103–134.

(147) Gillet, N.; Berstis, L.; Wu, X.; Gaj-
dos, F.; Heck, A.; de la Lande, A.; Blum-
berger, J.; Elstner, M. Electronic Cou-
pling Calculations for Bridge-Mediated
Charge Transfer Using Constrained Den-
sity Functional Theory (CDFT) and
Effective Hamiltonian Approaches at
the Density Functional Theory (DFT)
and Fragment-Orbital Density Func-
tional Tight Binding (FODFTB) Level.
J. Chem. Theory Comput. 2016, 12,
4793–4805.

(148) Mulliken, R. S. Molecular Compounds
and their Spectra. II. J. Am. Chem. Soc.
1952, 74, 811–824.

(149) Hush, N. Homogeneous and Heteroge-
neous Optical and Thermal Electron
Transfer. Electrochim. Acta 1968, 13,
1005–1023.

(150) Reimers, J. R.; Hush, N. S. Electronic
Properties of Transition-Metal Com-
plexes Determined from Electroabsorp-
tion (Stark) Spectroscopy. 2. Mononu-
clear Complexes of Ruthenium(II). J.
Phys. Chem. 1991, 95, 9773–9781.

(151) Cave, R. J.; Newton, M. D. Calcula-
tion of Electronic Coupling Matrix El-
ements for Ground and Excited State
Electron Transfer Reactions: Compar-
ison of the Generalized Mulliken–Hush
and Block Diagonalization Methods. J.
Chem. Phys. 1997, 106, 9213–9226.

(152) Wu, Q.; Voorhis, T. V. Direct Optimiza-
tion Method to Study Constrained Sys-
tems within Density-Functional Theory.
Phys. Rev. A 2005, 72, 024502.

(153) Mukherji, A.; Karplus, M. Constrained
Molecular Wavefunctions: HF Molecule.
J. Chem. Phys. 1963, 38, 44–48.

(154) Dederichs, P.; Blügel, S.; Zeller, R.;
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