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ABSTRACT. This manuscript describes a new route to prepare rapidly Ca
2+

-free hydrogels from 

unmodified sodium alginate by simply mixing with small organic molecules such as 

polycarboxylic acid compounds as cross-linker agents instead of classical divalent metal salts 

such as CaCl2. DMSO was also found to induce the rapid gelation of aqueous alginate solutions. 

The gelation process takes place at RT and depending on the composition, gels with good 

thermal (90-100 °C) and mechanical properties compared to classical metal-containing analogs 
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are obtained. DMSO-based gels showed remarkable self-supporting and thixotropic properties, 

which can be tuned by the biopolymer concentration. Furthermore, oxalic-based gels showed 

superior elasticity than HCl, CaCl2 and DMSO-based gels. The possibility to prepared monoliths, 

beads and films of these gels provide them significant versatility. In particular, films made of 

alginate and oxalic acid showed good potential as synergistic anticancer drug delivery carrier. 

Computational studies using both quantum mechanical and classical force-field methodologies 

revealed that hydrogen bonding networks between water and DMSO molecules located close to 

the alginate chains are responsible of the stability of DMSO-based gels. In contrast, the cohesion 

of oxalic-based gels is due to the coexistence of multiple ionic associations involving oxalate, 

alginate and Na
+
 couterions, which stabilize the system and keep all the interacting species 

grouped. 

 

INTRODUCTION 

Over the years, naturally occurring polymers have been extensively investigated in biomaterials 

science due to their biocompatibility, low toxicity, relatively low cost and gelation properties. 

Among them, alginate has emerged as one of the most reliable and versatile anionic biopolymer 

in industry. It is typically obtained from brown algae (Phaeophyceae)
1
 by alkali treatment with 

NaOH.
2
 After filtration, NaCl is added to the filtrate affording the precipitation of sodium 

alginate (Na-Alg), which can be also converted into insoluble alginic acid upon protonation of 

pendent acidic groups by treatment with dilute HCl.
3-5

 From the structural point of view, 

alginates
6-8

 are biocompatible and biodegradable linear copolymers with homopolymeric blocks 

of (1,4)-linked β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) residues, 



 3 

respectively, covalently linked together in different sequences. The monomers can appear in 

homopolymeric blocks of consecutive G-residues (G-blocks), consecutive M-residues (M-

blocks) or alternating M- and G-residues (MG-blocks). Depending on the source, alginates differ 

in both the M/G ratio and the length of each block.
9
 The molecular weight of commercially 

available sodium alginate ranges between 32,000 and 400,000 g/mol, and the viscosity of their 

solutions increase as pH decreases, reaching a maximum around pH 3–3.5, as carboxylate groups 

in the alginate backbone become protonated and form hydrogen bonds.
10

 

Alginate is typically used in the form of cross-linked hydrogels in biomedicine, mainly 

for wound healing, in vitro cell culture, drug delivery and tissue engineering applications.
11

 

Different strategies have been developed for the cross-linking of alginate chains allowing for the 

preparation of hydrogels with tunable physical properties. These approaches include, for 

instance, formation of semi-interpenetrating polymer networks via in situ copolymerization of 

alginate and N-isopropylacrylamide (NIPAAm),
12

 formation of alginate-pectinate complexes,
13

 

cell cross-linking of RGD-modified alginates,
14,15

 combination of alginates with magnesium 

aluminum silicates,
16

 photo cross-linking of methacrylate-modified alginates,
17,18

 covalent cross-

linking of alginates with glutaraldehyde
19

 or diamines via carbodiimide chemistry,
20

 covalent 

cross-linking of partially oxidized alginates with dihydrazides
21

 and oxidative cross-linking of 

covalently conjugated alginate-dopamine.
22

 However, the most common method to prepare 

hydrogels from aqueous alginate solutions is the ionic cross-linking in the presence of divalent 

cations, typically Ca
2+

. These cations are believed to bind solely to the carboxylic groups of the 

G-blocks of two adjacent polymer chains forming stable conformations with junction zones 

affording a 3D gel network. This has been classically described as the “egg-box” model of cross-

linking to explain the formation of alginate hydrogels (Figure 1),
23-25

 which has been supported 

https://en.wikipedia.org/wiki/Covalently
https://en.wikipedia.org/wiki/Monomer
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by a series of molecular dynamics and semiempirical studies.
26,27

 Furthermore, Plazinski
28

 has 

also proposed the possibility of alternative structural models of Ca
2+

-polyguluronate complexes 

where Ca
2+

 ions are coordinated by four oxygens atoms from two opposite carboxyl groups of 

two polyguluronate chains and, additionally, by four oxygen atoms belonging to water 

molecules. 

 

Figure 1. Conventional method for the preparation of alginate hydrogels by ionic cross-linking 

of Na-Alg with Ca
2+ 

ions. Only guluronate (G) blocks participate in the formation of a 

corrugated “egg-box”-like structure with Ca
2+ 

ions located at the interstices. 

 In this work, we demonstrate for the first time that Ca
2+

-free hydrogels can be prepared 

from Na-Alg by simple addition of small organic molecules such as dimethyl sulfoxide (DMSO) 

or oxalic acid as cross-linker agents without any chemical modification of the biopolymer 

backbone. The specific role of the mentioned organic additives in the gelation mechanism, which 

at first glance may seem counterintuitive, has also been rationalized with the aid of quantum 

mechanical calculations and molecular dynamics simulations. To the best of our knowledge, the 

use of DMSO in alginate-containing formulations has been limited so far to cell 
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cryopreservation
29,30

 and as solution media for chemical modifications.
31

 Moreover, hydrogels 

made of alginate and oxalic acid showed great potential as synergistic anticancer drug delivery 

carrier. 

EXPERIMENTAL SECTION 

Materials 

Alginic acid sodium salt from brown algae was purchased from Sigma-Aldrich (low viscosity, 

A2158). Methotrexate hydrate (MTX) was purchased from TCI Europe (M1664, CAS 59-05-2). 

Unless otherwise noted, the rest of chemicals and solvents were also purchased from commercial 

suppliers and used without further purification. 

Procedure for the preparation of M
2+

-free alginate gels 

Aqueous solutions of Na-Alg at different % w/v were prepared by dissolving the corresponding 

amount of Na-Alg in H2O at ca. 50 °C. The obtained viscous solutions (from transparent to 

yellow-colored, depending on the biopolymer concentration) were allowed to cool down to room 

temperature (RT) without control of the cooling rate. The appropriate amount of DMSO was 

added using a micropipette on top of the Na-Alg solution (1 mL) placed in a vial. The mixture 

was stirred gently with a spatula for a few seconds and subsequently submitted to ultrasound for 

5 min. After this time, the system was let to gel at RT for at least 24 h. The specificity of DMSO 

to induce the formation of hydrogels using Na-Alg was evaluated by replacing DMSO with a) 

other organic solvents having similar solvatochromic parameters or b) small organic molecules 

dissolved in water. The volume of solvent/solution added to the Na-Alg aqueous solution and the 

biopolymer concentration were selected as input variables in this study. 

 On the other hand, Na-Alg hydrogel beads were prepared by dropping 3 mL of a 2% w/v 
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or 4% w/v Na-Alg solution via an addition funnel into the desired cross-linker solution. The tip 

of the addition funnel (inner diameter = 0.5 cm) was placed at a distance of ca. 1 cm above the 

surface of the cross-linker solution. Approximately, 30–35 beads were obtained in each case, and 

were matured in the cross-linker solution for 30 min. So obtained beads were thoroughly washed 

with water (at least 8 250 mL) to a neutral pH and stored in water inside a sealed vial at 4 ºC 

before their characterization. 

 Note: Addition of DMSO to water at 22 ºC increases the temperature of the mixture until 

44 ºC (T = 22  2 ºC). Similarly, the addition of DMSO to the aqueous alginate solution (2%) 

increases the temperature of the mixture until 40 ºC (T = 18  2 ºC). 

Preparation of drug-loaded gel scaffolds 

Na-Alg/oxalic acid-based gels, beads and films were prepared with a loaded anticancer MTX to 

test their application as drug delivery systems. Moreover, analogues gel systems cross-linked 

with CaCl2 were also prepared for comparison. A summary of the different materials prepared is 

given next: 

 a) Control Na-Alg hydrogel films were cast from sodium alginate solutions, which were 

prepared at 2 and 4% w/v by dissolving the corresponding amount of sodium alginate powder in 

water at 50 °C. Films on glass substrates (3.7 cm in diameter) were prepared by solvent casting 

Na-Alg solution (1.3 mL) and subsequent drying overnight at RT. After that period, the casted 

films were easily peeled off from the mold, and cut in pieces of approximately 1  1 cm. Then, 

each alginate piece was cross-linked by a one-step procedure. The sample was completely 

immersed in the cross-linker solution (30 mL in either 0.1 M CaCl2 or 0.5 M oxalic acid 

solution) for 5 min. After this time, the films were rinsed manually several times in water to 
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dissolve any remaining salt adhered to the surface. The films were dried overnight at RT, and 

stored in closed vials at RT prior characterization. Note: Na-Alginate films were not possible to 

cross-link in DMSO. Instead of gelation, the film was dissolved within 1 min in the organic 

solvent. 

 b) Control Na-Alg hydrogel beads were prepared by dropping Na-Alg solution (3 mL from a 

2% w/v solution) into the cross-linker solution (0.1 M CaCl2 or 0.5 M oxalic acid solution).   

 c) Control Na-Alg gels were prepared by adding oxalic acid (0.3 mL from a 0.5 M 

solution) or CaCl2 (0.3 mL from a 0.1 M solution) onto Na-Alg aqueous solution (1 mL from a 

2% w/v solution). 

 d) Drug-loaded hydrogel samples (gels, films and beads) were prepared following the 

above-described procedure but using Na-Alg aqueous solutions containing MTX. Specifically, 

MTX (20 mg) was dissolved in a H2O:EtOH mixture (5 mL, 3:1 v/v) and submitted to ultrasound 

to facilitate drug dissolution. Then, the MTX-containing solution was added to a Na-Alg aqueous 

solution (5 mL, 4% w/v), and mixed using a magnetic stirring bar. Furthermore, to ensure the 

minimum MTX loss during the formation of the beads, the curing time was reduced to 10 min, 

and MTX-containing beads were only washed with water (2  250 mL).  

Drug-release studies from bulk gels, beads and films 

Alg-MTX gel materials were allowed to equilibrate for 24 h prior to drug release experiments. 

After this time, Alg-MTX gels were overlaid with phosphate-buffered saline (PBS, 1 mL, pH 

7.4), and incubated at room temperature. In the case of films and beads, each piece of film (1 cm 

 1 cm) or bead was placed into an Eppendorf tube and immersed in PBS (1 mL). At selected 

time points, aliquots (100 μL) were removed and diluted with PBS to 1 mL. Then, fresh PBS 

(100 μL) was added over the gel material to maintain infinite sink conditions. Drug concentration 
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in the aliquots was determined using UV-spectroscopy after proper calibration using the 

maximum absorbance of MTX at 305 nm or 351 nm depending on the system as explained in the 

results section (see main paper). Samples were centrifuged (EBA 12 Hettich Zentrifugen) at 

4000 rpm for 5 min before measurements. The experiments were carried out in triplicate and 

average values are reported. Moreover, both the cross-linking and the curing solutions, as well as 

the washing aqueous solutions were also analyzed by UV-vis to check any possible MTX loss 

during the preparation of the films and beads. UV-vis spectroscopy was performed using a 

Varian Cary 50 UV spectrophotometer and quartz-glass cuvettes of 0.5 cm thickness. The results 

were plotted after applying the corresponding correction derived from withdrawing aliquots and 

further replacement by an equivalent volume of solvent. 

Characterization of gel-based materials 

Gel-to-sol transition temperatures (Tgel) values were determined by the dropping ball method. 

Gels (total volume = 1.3 mL for Alg/acid or 2 mL for Alg/DMSO systems) were prepared in 

clear glass vials. After an equilibration time of 24 h, a glass ball (285 mg) was placed on top of 

the gel, and the vials were placed into a mold of an alumina block and heated up using an electric 

heating plate equipped with a temperature control coupled to an oil bath.
32

 Herein, Tgel was 

defined as the temperature at which gel material collapsed and the ball fell to the bottom of the 

vial. The values were verified by differential scanning calorimetry (DSC) measurements that 

were performed on a Mettler Toledo Differential Scanning Calorimeter using a DSC 30 

measuring cell. The DSC thermograms were obtained under dynamic argon atmosphere (gas 

flow rate = 25 mL/min) at a heating rate of 10 °C/min. Samples were placed in closed aluminum 

pans (Mettler Toledo). An empty sample holder was used as reference and the runs were 

performed by heating the samples from 20 to 90 °C at 10 ºC/min with an initial stabilization 
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period of 1 min at 20 ºC/min and a final period of 5 min at 90 ºC. The samples were 

subsequently cooled from 90 to 20 ºC at 10 ºC/min.  

 The morphology of the samples (xerogels) was examined by scanning electron 

microscopy (SEM) using a Focused Ion Beam Zeiss Neon40 scanning electron microscope 

equipped with an energy dispersive X-ray (EDX) spectroscopy system and operating at an 

accelerating voltage of 5 kV. All samples were sputter-

nm thickness using a K950X Turbo Evaporator to prevent electron charging problems. The 

specimens were prepared by the freeze-drying method (i.e., an Eppendorf tube (1 mL) containing 

a piece of the gel was frozen in liquid nitrogen and subsequently evaporated under reduced 

pressure overnight at room temperature). 

 FT-IR absorption spectra of freeze-dried samples were recorded on a FT-IR Jasco 4100 

spectrometer. Samples (either powder or xerogels obtained by the above described freeze-drying 

method) were placed on an attenuated total reflection accessory (top plate) with a diamond 

crystal (Specac model MKII Golden Gate Heated Single Reflection Diamond ATR). For each 

sample, 32 scans were performed between 4000 and 600 cm
-1

 with a spectral resolution of 4 cm
-

1
. 

 Dynamic oscillatory rheological measurements of the gels were performed with an AR 

2000 rheometer (TA instruments) equipped with a cooling system (Julabo C) using 40 mm flat 

plate geometry (stainless steel) and a gap size of 0.5 mm at 25 °C. Evolution of the storage (G') 

and loss (G'') moduli was studied as following: Dynamic strain sweep (DSS) measurements were 

first performed between 0.1% and 100% strain at 1 Hz frequency to establish the strain value at 

which reasonable torque values were given (about 10 times of the transducer resolution limit). 

Subsequently, dynamic frequency sweep (DFS) measurements (from 0.1 to 10 Hz at 0.1% strain) 
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and time sweep measurements (DTS) within the linear viscoelastic regime (0.1% strain and 1 Hz 

frequency) were carried out. Furthermore, the thixotropic properties of the gels were investigated 

by loop experiments consisting in the following steps: (1
st
 step) Application of a low shear strain 

(0.1% and 1 Hz frequency, gel phase: G' > G''), (2
nd

 step) increase of the shear strain (1000%) 

until the gel breaks (viscous solution phase, G' < G''), and (3
rd

 step) return at the same rate to the 

initial strain % value (recovered gel phase, G' > G''). The loop was repeated two times. 

Simulation studies 

Quantum mechanical calculations. Density Functional Theory (DFT) calculations on model 

compounds were performed using the Gaussian 09 computer package.
33

 The geometries of the 

different investigated systems were fully optimized using the M06L
34,35

 functional, which was 

developed by Zhao and Truhlar to account for dispersion, combined with the 6-31+G(d,p) basis 

set. No symmetry constraints were used in the geometry optimizations. All geometry 

optimization were performed in both the gas-phase and aqueous solution. For the latter, the 

solvent was described as a dielectric medium using a well stablished Self-Consistent Reaction 

Field (SCRF) method, that is, the Polarizable Continuum Model (PCM) of Tomasi and co-

workers.
36

 

 Molecular dynamics (MD) simulations. All classical simulations were carried out using 

the AMBER 14
37

 software and the potential energy function of AMBER.
38

 Force-field 

parameters for the Na-Alg were taken from the GLYCAM06 libraries.
39

 Water molecules were 

represented by the TIP3P model,
40

 while data for DMSO were taken from the parametrization 

developed by Fox and Kollman for organic solvents.
41

 Finally, oxalic acid in its protonated, 

partially deprotonated and completely deprotonated forms were described using the GAFF 
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parameters.
42

 In all cases, the negative charges of the carboxylate groups of Na-Alg and 

deprotonated oxalic acid molecules were neutralized with Na
+
 ions. 

 Bond lengths involving hydrogen atoms were kept at their equilibrium distances using the 

SHAKE algorithm.
43 

Atom pair distance cutoffs were applied at 15.0 Å to compute the van der 

Waals interactions. Electrostatic interactions were extensively computed by means of Ewald 

summations.
44

 The real space term was defined by the van der Waals cutoff (15.0 Å), while the 

reciprocal space was computed by interpolation of the effective charge into a charge mesh with a 

grid thickness of 5 points per volume unit (particle mesh Ewald).
 

 Na-Alg-DMSO gels were investigated using three different models, Na-Alg being described in 

both cases by two G-blocks of six residues each and 12 Na
+
. Thus, differences between such 

three models, hereafter denoted Na-Alg-DMSO/# are the following: 

 - Na-Alg-DMSO/1 contained 3 DMSO molecules at the cavity between the two chains (see 

Figure S17), and 2296 explicit water molecules. 

 - Na-Alg-DMSO/2 involved a total of 576 DMSO molecules (3 at the cavities between the two 

modelled Na-Alg chains) and 2288 water molecules (50:50 w/w) randomly distributed.  

 - Na-Alg-DMSO/3 accommodated 629 DMSO molecules, without additional water molecules. 

 On the other hand, Na-Alg-oxalic gels were initially studied using three model systems, which 

essentially differ in the protonation degree of oxalic acid and its concentration: 

 - Na-Alg-Ox
2–

/1 contained 3 oxalate dianions (Ox
2–

) located at the cavity defined by the two 

Na-Alg chains, 18 Na
+
, and 2455 explicit water molecules. 

 - Na-Alg-Ox
2–

/2 formed by 20 Ox
2–

, 2 Na-Alg chains, 52 Na
+
, and 4350 explicit water 

molecules. 
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 - Na-Alg-OxH
–
 involved 3 hydrogen oxalate anions (OxH

–
) located at the cavity defined by the 

two Na-Alg chains, 15 Na
+
, and 2401 explicit water molecules. 

 Models for both Na-Alg-DMSO and Na-Alg-oxalic gels were constructed considering 

both the parallel and antiparallel arrangements of the Na-Alg chains. However, features provided 

by MD simulations were in all cases independent of the relative disposition of the biopolymer 

chains and, therefore, only results obtained for the parallel disposition are discussed in the next 

section. This feature is fully consistent with previous computational studies on Ca
2+

-Alg 

systems.
45 

Each model was submitted to 5000 steps of energy minimization (conjugate gradient 

method) before any MD trajectory was run in order to relax conformational and structural 

tensions.
 
The temperature and pressure of each model were equilibrated at 298 K and 1 bar, 

respectively, by two consecutive MD runs: 1) a NVT-MD simulation was run at 298 K for 0.1 

ns; 2) a NPT-MD simulation was run at 298 K for 0.5 ns. In both cases the Na-Alg molecules 

were restrained at their initial positions.
 
Both temperature and pressure were controlled by the 

Langevin dynamics and the Berendsen barostat
46

 Pressure was kept at 1.01325 bars, the 

oscillation period was set at 2 ps while the collision rate was set at 3 ps
–1

. The piston temperature 

was set at the same value as the thermostat control, 298 K, which used a damping coefficient of 2 

ps. The integration step was 1 fs in all production simulations.  

The most stable Na-Alg-DMSO/# model was studied using replica exchange MD 

(REMD).
 
In order to ensure a reasonable replica swaps ratio of acceptance, 32 replicas were 

exponentially distributed in the temperature range from 272.00 K to 400.94 K. Exchanges were 

attempted every 0.4 ps between all neighbouring replicas with an average success ratio of 0.35. 

The REMD trajectories resulted in a cumulative simulation time of 128 ns. Between replica 
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exchanges, the system was evolved using NVT Berendsen MD with a damping coefficient of  = 

2.5 ps
–1

 and an integration step of 2 fs. The replicas were previously equilibrated by a set of short 

runs (isothermal and isobaric equilibration), and completed with a final NVT run of 0.5 ns to 

ensure that each replica reached the target temperature. Atom pair distance cut-offs were applied 

at 10.0 Å to compute the van der Waals and electrostatic interactions. Bond lengths involving 

hydrogen atoms were constrained using the SHAKE algorithm.
43 

RESULTS AND DISCUSSION 

Na-Alg gelation induced by DMSO 

During the development of different biopolymer-based conductive hydrogels,
47

 we found by 

serendipity the unexpected gelation of Na-Alg aqueous solutions after adding a DMSO solution 

containing a conductive polymer. The atypical absence of Ca
2+ 

in the gel mixture, motivated us 

to investigate the origin of the gelation process. Preliminary experiments showed that the 

conductive polymer was not playing any role on the gelation, which took place simply by mixing 

the Na-Alg solution and DMSO. In order to investigate the exact role of DMSO in the gelation 

process,
48-50

 different amounts of the solvent, from 0.1 to 1.2 mL, were added at RT to 1 mL of 

Na-Alg aqueous solutions ranging from 2 to 8 % w/v (Table 1 and Figure S1).  

Table 1. Gelation ability of DMSO added onto 1 mL of Na-Alg aqueous solution (assessed after 

24 h).
a 
 

Na-Alg 

(% w/v) 

Volume of DMSO added (mL) 

0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 

2 L L L L L L L
c 

L L G
b
 G G 
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3 L L L L L G
b
 G

b
 G G G G G 

4 L L L G
b
 G G G G G G G G 

5 L L G
b
 G G G G G G G G G 

8 L G
b
 G G G G G G G G G G 

a
L = viscous liquid; G = transparent gel. 

b
Weak gel.

 c
Volume of DMSO = 0.65 

mL. 

Interestingly, the concentration of Na-Alg necessary to obtain stable gels decreased with 

increasing DMSO volume. As the mixing of DMSO and water is exothermic (54 cal/g at 25 

ºC), the vials were noticed to warm up rapidly upon addition of DMSO (see Experimental 

Section). Moreover, bubbles were generated during the gelation process and were trapped inside 

the transparent gels (Figure 2). Application of ultrasound to the gels for ca. 10 min allowed the 

removal of the bubbles for the lowest concentration of Na-Alg (2% w/v). At higher 

concentrations of the biopolymer, bubbles either stayed on the top half of the gel, or were not 

able to diffuse at all due to the enhanced consistency of the gel. The gels were considered stable 

when no gravitational flow was observed upon inversion of the glass vial, and their nature was 

subsequently confirmed by dynamic rheological measurements. Interestingly, most gels could be 

destroyed by vigorous stirring with a spatula and restored upon resting overnight (Table S1). 

Such thixotropic behavior was also supported by loop-rheological experiments (vide infra, 

physicochemical characterization).  
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Figure 2. Representative digital photographs of gels obtained by adding different amounts of 

DMSO (values in mL are indicated in white) onto 1 mL of Na-Alg aqueous solutions prepared 

at: (a) 2% w/v, (b) 4% w/v, (c) 3% w/v, (d) 5% w/v and (e) 8% w/v. 

 Unless otherwise indicated, further studies were made with gels prepared using 1 mL of 

DMSO and 1 mL of Na-Alg solution at the indicated concentration (x% w/v). From now on, and 

for simplicity, these gels are denoted as Na-Alg (x%)-DMSO. Among the gels described in Table 

1, Na-Alg (2%)-DMSO could be turned into a viscous fluid by heating with a heat gun until the 

first bubble appeared, and then mixed with a spatula. Fluid-to-gel transition took place upon 

cooling down the sample to RT. In contrast, the same procedure (heating + mixing) applied to 

gels made at higher concentrations (3 and 4%) let to incomplete gel-to-fluid transition. 

Nevertheless, the systems reverted to gels after resting overnight (Figure S2). The 
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thermoreversible and thixotropric nature of Na-Alg (2%)-DMSO also permitted the gel to be 

injected to a second vial through a syringe and restored overnight under undisturbed conditions 

(Figure 3). Transferring was more difficult and incomplete for higher concentrations of Na-Alg, 

although gelation was observed for the amount of material transferred to the second vial (Figure 

S3). 

 

Figure 3. Injectability test for Na-Alg (2%)-DMSO gel. (w) refers to weak gel. 

 Finally, Na-Alg (2%)-DMSO and Na-Alg (4%)-DMSO gels were used to demonstrate the 

firmness of monoliths prepared inside syringes (with the tip cut off) instead of vials. After 24 h, 

the monoliths were easily pulled off from the syringes and placed on a glass surface. As it can be 

observed in Figure 4, Na-Alg (4%)-DMSO gel could support its own weight and form a bridge 

between two vials. In contrast, Na-Alg (2%)-DMSO gel spread quickly over the surface after 

being released from the syringe (Figure S4). 
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Figure 4. Self-sustainability test for Na-Alg (4%)-DMSO gel. 

Specificity of DMSO for the gelation of Na-Alg solutions 

The specificity of DMSO to induce the gelation of Na-Alg aqueous solutions was first assessed 

by using different solvents. For these experiments, 1 mL of each solvent was added to 1 mL of 

2% w/v or 4% w/v Na-Alg aqueous solution, and the mixture stirred gently with a spatula 

followed by 5 min of ultrasound. The materials were left undisturbed overnight before any 

analysis. A series of solvents characterized by different solubility parameters were selected for 

this study, including other polar aprotic solvents (i.e., dimethylformamide (DMF), 

dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), diethylformamide (DEF), 

tetrahydrofuran (THF), acetone, acetonitrile) and polar protic solvents (i.e., methanol (MeOH), 

ethanol (EtOH)). The results indicated that a stable Na-Alg (2%) gel could be formed only in 

DMF, and partial gelation occurred in acetone. On the other hand, for Na-Alg (4%), stable gels 

were obtained in DMF, and weak gels in NMP, DMAC, MeOH and EtOH, whereas partial or no 

gelation was obtained when using acetone and DEF, or THF and CH3CN, respectively (Table S2, 

Figure S5 and Figure S6). It should be emphasized that the gels obtained by adding other organic 

solvents support the inversion of the vial, but they flow down under vigorous agitation. 

 Considering that DMSO could in some way act as cross-linker between alginate chains, 

we anticipate that other small coordinating water-soluble molecules would behave similarly. 

Thus, to evaluate this possibility we tested L-arginine (0.5 M), N-methyl urea (0.5 M and 1 M) 
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and oxalic acid (0.5 M) as alternative gelation-inducing additives. No gels could be obtained 

with L-arginine or N-methyl urea in 4% w/v Na-Alg. However, oxalic acid exhibited very good 

gelation induction. Specifically, 0.3 mL of oxalic acid (0.5 M, pH = 1.0) promoted gelation when 

added to 1 mL of either 2% w/v or 4% w/v Na-Alg solution (Figure 5a). In contrast to DMSO, 

the gels obtained with oxalic acid did not show thermal gel-to-fluid transition. Interestingly, no 

gelation was observed when adding 0.3 mL of acetic acid (0.5 M) or 1 mL of ethylene glycol to 

1 mL of 4% w/v Na-Alg solution (Figure S7). These results suggest the influence of the 

dicarboxylic acid as a cross-linking agent in the gelation mechanism. This was supported by the 

successful use of other di- and tri-functional carboxylic acid compounds, i.e., maleic acid (0.5 M, 

pH = 1.0, in situ formation of maleic acid was achieved by slow but progressive hydrolysis of the 

anhydride
47

), tartaric acid (0.5 M, pH = 1.5), glutaric acid (2.0 M, pH = 2.0) and citric acid (0.5 

M, pH = 1.0). Figure 5 shows representative photographs of the gels obtained by adding the 

above acids. The gels that showed higher gel-to-sol transition temperature (Tgel = 90100 ºC) 

were obtained with oxalic acid and maleic acid (Table S3). All these gels displayed different 

degree of opacity. The use of organic acids as cross-linkers for the gelation of other systems has 

also been recently reported.
51-53 

Besides, considering the very low pH of all solutions, we 

wondered if we could induce the gelation of Na-Alg by simple combination with a strong 

inorganic acid such as HCl. However, attempts to achieve bulk gelation by mixing 1 mL of 2% 

or 4% w/v Na-Alg solutions and 0.3 mL of 1 M HCl yielded inhomogeneous gels combined with 

non-gelled fluid. 
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Figure 5. Representative digital photographs of gels obtained by adding 0.3 mL of 0.5 M acid 

solutions onto 1 mL of Na-Alg aqueous. Solutions prepared at 2% w/v and 4% w/v as indicated. 

Only for glutaric acid the concentration was adjusted to 2 M.  

 Finally, one of the most important properties of Ca
2+

-alginate hydrogels for different 

applications is that they can be easily processed in different forms such as beads or films. With 

this in mind, uniform and spherical beads could be also obtained by adding dropwise 4% w/v 

Na-Alg solution onto the oxalic acid solution (0.5 M) (Figure 6a). These beads remained stable 

for at least five weeks in a closed vial. It is worth mentioning that beads were also obtained in 

DMSO, albeit they were more irregular and significantly less stable during neutralization 

washing than those obtained with oxalic acid (Figure S8 and Table S4). The use of citric acid 

(0.5 M) and maleic acid (0.5 M) also allowed the preparation of spherical beads. In contrast, 

glutaric acid (2 M) and tartaric acid (0.5 M) were ineffective as bead-forming solutions, whereas 

4% w/v Na-Alg solution added dropwise onto a 1M HCl solution led to uniform and spherical 

beads (Figure S9). 
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Figure 6. Na-Alg beads (4% w/v) obtained by dropwise addition in 0.5 M oxalic acid. Beads 

were washed with water several times (picture in the middle). 

Physicochemical characterization of model gels 

For comparison reasons, we selected the following representative gels for further 

characterization. All gels were prepared as described above:  

(1) Gelation induced by DMSO:  

- Na-Alg (2%)-DMSO = 1 mL 2% w/v Na-Alg + 1 mL DMSO (gel) 

- Na-Alg (4%)-DMSO = 1 mL 4% w/v Na-Alg + 1 mL DMSO (gel) 

(2) Gelation induced by oxalic acid:  

- Na-Alg (2%)-oxalic-gel = 1 mL 2% w/v Na-Alg + 0.3 mL oxalic acid (0.5M) 

- Na-Alg (2%)-oxalic-beads = 2% w/v Na-Alg beads in oxalic acid (0.5M) 

(3) Gelation induced by CaCl2: 

- Na-Alg (2%)-CaCl2-gel = 1 mL 2% w/v Na-Alg + 0.3 mL CaCl2 (0.5M) 

- Na-Alg (2%)-CaCl2-beads = 2% w/v Na-Alg beads in CaCl2 (0.1M) 
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(4) Gelation induced by HCl: 

- Na-Alg (2%)-HCl-gel = 1 mL 2% w/v Na-Alg + 0.3 mL HCl (1 M) 

- Na-Alg (4%)-HCl-beads = 1 mL 4% w/v Na-Alg + 0.3 mL HCl (1 M) 

 As expected, the FT-IR absorption spectra (1800600 cm
−1

)
 
of both Na-Alg-DMSO 

xerogels matched the main peaks observed for Na-Alg powder, albeit with the main COO
−
 and 

CO stretching bands (1595 cm
−1

, 1297 cm
−1

, respectively)
 
slightly blue shifted (Figure S10a), 

suggesting the involvement in additional hydrogen bonding.
54-56

 On the other hand, the spectra 

for Na-Alg (2%)-oxalic-gel resulted from overlapping the absorption spectra from Na-Alg and 

oxalic acid and also showed slight blue shifts of the main bands assigned to the biopolymer, 

similarly to Na-Alg-DMSO samples (Figure S10b). In the case of Na-Alg (2%)-CaCl2 used as 

control, no shift of the mayor bands were observed (Figure S10c). Tables S5-S7 summarize the 

peak assignment for all FT-IR spectra. 

  In order to get some insights into the microstructure of the materials, we conducted SEM 

of the corresponding xerogels (Figure 7 and Figure S11). A nanoporous and granular surface 

composed of particles between 0.1 and 0.3 m in diameter was characteristic for the bulk Na-Alg 

(2%)-CaCl2 gel (Figure 7a). Such rough surface was also observed for Na-Alg (2%)-oxalic-gel, 

albeit a denser network and less defined granules (Figure 7b). On the other hand, Na-Alg-DMSO 

xerogels showed a highly entangled fibrillar network with rope-like bundles (Figure 7c and 7d). 

Although we collected numerous images of the bulk samples, it should be considered that 

changes in the nanostructures could take place during the preparation of the samples. Thus, the 

conclusions derived from these images should always be interpreted cautiously. 
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Figure 7. Selected SEM micrographs: (a) Na-Alg (2%)-CaCl2 xerogel; (b) Na-Alg (2%)-oxalic 

xerogel; c) Na-Alg (2%)-DMSO xerogels; d) Na-Alg (4%)-DMSO xerogel. 

 The gel nature of the different materials and their mechanical response was studied by 

dynamic rheological experiments (Table 2 and Figures S12-S14). Despite the weak nature of the 

gels, the results showed that at the same concentration of biopolymer, the storage modulus of 

Na-Alg-oxalic-gel was 1.5 times higher than that of Na-Alg-DMSO, and slightly superior to Na-

Alg-CaCl2. In addition, Na-Alg-oxalic-gel showed the lowest tan  value and the highest yield 

stress  indicating superior elasticity of this material. The damping properties of Na-Alg-oxalic-

gel were close to those of Na-Alg-HCl, albeit the storage modulus of the former was ca. 2 times 

lower. The thermal stability (i.e., the higher the Tgel the higher the thermal stability) of the gels 

prepared using DMSO, oxalic acid or maleic acid above ca. 90 ºC was further confirmed by DSC 

and Tgel measurements (Figures S15-S16).  

Table 2. Rheological properties of selected systems.
 

Gel G’ (Pa) G’’ (Pa) tan   (%) 
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Na-Alg (2%)-DMSO 57.7 7.2 0.125 16.0 

Na-Alg (4%)-DMSO 741.0 136.6 0.184 3.3 

Na-Alg (2%)-Oxalic 86.3 8.1 0.094 29.2 

Na-Alg (2%)-CaCl2 83.9 10.7 0.128 25.6 

Na-Alg (2%)-HCl 180.8 19.8 0.110 20.6 

Na-Alg (4%)-HCl 315.0 34.2 0.109 32.8 

 

 Moreover, the thixotropic
57,58

 behavior of Na-Alg-DMSO gels previously observed with 

the bulk gel (vide supra), was also confirmed by a 3-steep loop test involving (1) application of 

0.1% shear strain (G' > G'', gel), (2) increase of the strain to 1000% (G' < G'', fluid) and (3) 

return to the starting strain value (G' > G'', gel). Full recovery of the gel strength was 

immediately reached after each cycle (Figure 8) 

 

Figure 8. Thixotropic behavior of (a) Na-Alg (2%)-DMSO gel and (b) Na-Alg (4%)-DMSO gel 

prepared by adding 1 mL of DMSO onto 1 mL of the corresponding Na-Alg aqueous solutions. 

The experiments were performed at 0.1% strain and 1 Hz. 

Computational studies   

Na-Alg-DMSO gels. Initially, quantum mechanical calculations at the M06L/6-31+G(d,p) level 

were performed on small model complexes to evaluate the applicability of the “egg-box” model, 
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which is the most accepted description of the Ca
2+

-containing Na-Alg hydrogels,
23-25 

to the 

DMSO-based gels prepared in this work. For this purpose, model chains with deprotonated 

carboxylate groups were constructed for Na-Alg considering two identical (M–M or G–G) or 

two different (M–G) residues. The M-M residues, which were considerably more stable than the 

M-G residues ( > 30 kcal/mol), were used to build model complexes by positioning a Ca
2+

 inside 

the cavity defined by two properly arranged model chains. Results derived from geometry 

optimizations demonstrated the stability of complexes with four, or even more oxygen atoms, 

coordinating the single Ca
2+

 (Figure S18), which is consistent with the “egg-box”-like models 

confirmed experimentally
23-25 

and theoretically
26-28

 for Ca
2+

-containing Na-Alg gels. 

Furthermore, these results were achieved considering geometry optimizations in both the gas-

phase and aqueous solution.  

 Substitution of the Ca
2+

 cation by a DMSO molecule in these complexes resulted in a 

drastic destabilization after geometry optimization. Thus, the DMSO molecule was not able to 

compensate the repulsive interactions between the carboxylate groups of the alginate model 

chains, as occurred for the Ca
2+

-containing complexes. Consequently, the distance between the 

two Na-Alg model chains increased during the optimizations until they separated completely.  

 In order to look for the interactions responsible of the stability of Na-Alg-DMSO gels, 

models including explicit water molecules were examined using conventional Langevin MD 

simulations. More specifically, the three Na-Alg-DMSO models described in the Methods (see 

Experimental Section), which differ in DMSO-to-water ratio, were constructed and equilibrated. 

Production trajectories, which took 5 ns each one, allowed us to ascertain the role of 

water···DMSO interactions in the cohesion of the Na-Alg chains. For this purpose, two 
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geometric parameters, defined as dav and d in Table 3, were used to define the firmness of the 

cavity formed by the two modelled Na-Alg chains (Table 3).  

Table 3. Geometric parameters used to define the cavity of Na-Alg-DMSO gels. In the scheme, 

blue circles indicate the center of the cavity, in which DMSO molecules were put at the 

beginning of the Na-Alg-DMSO/# simulations. 
 

 

Model dav (Å) d (Å) 

Na-Alg-DMSO/1 12.9 ± 2.3 8.1 ± 5.1 

Na-Alg-DMSO/2 10.8 ± 0.4 0.8 ± 0.6 

Na-Alg-DMSO/3 12.8 ± 1.3 3.5 ± 2.6 

Na-Alg-Ox
2-

/1 13.3 ± 1.7 4.1 ± 2.3 

Na-Alg-Ox
2-

/2 12.4 ± 1.1 2.7 ± 1.7 

Na-Alg-OxH
-
 12.7 ± 1.2 3.5 ± 1.8 

 

 Both dav and d average values indicate that the cavity formed by the two Alg chains 

exhibit much less fluctuations when the environment is 50:50 DMSO:water, the dimensional 

stability of the system varying as follows: Na-Alg-DMSO/1 < Na-Alg-DMSO/3 << Na-Alg-

DMSO/2. Accordingly, the co-existence of enough water and DMSO molecules seems to be a 

crucial factor for the formation of stable Na-Alg-DMSO gels. Visual inspection of the recorded 

snapshots suggested that, apparently, water molecules solvate the carboxylate groups of Alg 

chains while DMSO stabilizes the ionic complexes formed between Na
+
 ions and the carboxylate 

d
1

d2

d
3

)
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groups of Alg (Figure S19). This hypothesis is fully consistent with recent studies that concluded 

that the solvation of metal cations is, in general, higher in DMSO than in water.
59

 

 On the basis of these results, REMD simulations were carried out on Na-Alg-DMSO/2, 

32 replicas (4 ns for each replica) being performed in a temperature range from 272 to 400.94 K. 

This MD based technique speeds convergence relative to brute force conventional MD. The 

method is based on the generation of a number of copies (‘‘replicas’’) of the system that span 

from the temperature of interest to heated states, which facilitates overcoming the free energy 

barriers. Periodic swaps of neighbouring replicas, which are performed while preserving an 

overall Boltzmann-weighted ensemble at each temperature (Monte Carlo based criterion of swap 

acceptance), enable conformations to heat up and cool down. 

 Stored configurations were grouped in clusters using the clustering algorithm 

DBSCAN,
60

 which is implemented in the post-processing program cpptraj of the Amber 

package.
61

 Application of this algorithm, which is based on the shape defined by density of 

atoms of the system, considering the Na-Alg model molecules led to six different clusters with 

population  1.5%. Table 4 lists the population, the average distance between all pairs of Na-Alg 

atoms in the cluster () and both the dav and d values for the representative cluster structure.  

Table 4. Results derived from the clustering analysis of the structures obtained using REMD on 

Na-Alg-DMSO/2.  indicates the average distance between pairs of Na-Alg atoms in the cluster. 

The meaning of dav and d values, which are taken from the representative structure of each 

cluster, is described in the caption of Table 3.   

Cluster # Population (%)  (Å) dav (Å) d (Å) 
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0 69.1 3.40 ± 0.88 11.1 0.3 

1 1.8 1.14 ± 0.32 7.3 0.4 

2 1.8 1.73 ± 0.55 14.6 9.1 

3 1.8 1.51 ± 0.39 20.2 22.0 

4 1.7 1.73 ± 0.42 11.6 3.8 

5 1.5 1.78 ± 0.62 11.2 0.5 

 

 The most populated cluster (cluster 0), which contains almost 70%, of the stored 

structures, provides the most representative disposition of the Na-Alg molecules. The geometric 

parameters dav and d values derived from the structures contained in this cluster are in very good 

agreement with those provided by the Na-Alg-DMSO/2 Langevin MD trajectory. Indeed, visual 

inspection of representative structures belonging to such cluster (Figure 9a) evidenced the co-

existence of DMSO and water inside the cavity, forming hydrogen bonded networks that 

strongly contribute to the stabilization of the ionic complexes between charged groups. Thus, 

water tends to surround the carboxylate groups of the Na-Alg chain while DMSO molecules 

mainly interact with the Na
+
. These results support the essential role played by water molecules 

in the stability of Na-Alg-DMSO gels. 

 Na-Alg-oxalic gels. Initially, DFT calculations at the M06L/6-31+G(d,p) level were 

carried out to examine the influence of the oxalic acid in the stability of the “egg-box” model. 

For this purpose, we followed a strategy similar to that described above for Na-Alg-DMSO gels. 

More specifically, the Ca
2+

 cation of the stable model complexes containing two identical or 

different Alg residues was replaced by Ox
2-

 or OxH
–
. Geometry optimization of Ox

2-
-containing 

systems led to the disruption of the complex, which was attributed to the electrostatic repulsion 
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between the Ox
2-

 and the carboxylate moieties of Na-Alg. In opposition, very stable complexes 

were found for OxH
–
 (Figure S20). In these structures, the electrostatic repulsion between the 

negatively charged carboxylate groups of OxH
–
 and Alg were compensated by the simultaneous 

formation of three O–H···
–
O stabilizing interactions, both OxH

–
 and Alg species being able to 

act as hydrogen donor. These results suggest that a mechanism similar to the “egg-box” one 

could explain the stability of Na-Alg-oxalic gels, even though the chemical nature of the 

interactions is completely different from that found for Na-Alg-Ca gels. 

 

Figure 9. Representative structures of cluster 0 derived from REMD simulations for (a) Na-Alg-

DMSO/2 and (b) Na-Alg-Ox2-/2 models. 

 Langevin MD simulations on the three models described in the Methods (see 

Experimental Section) were performed to get deeper understanding on the stability of Na-Alg-
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oxalic gels. Such models, which differ in the number of Ox
2–

 molecules or the protonation 

degree of the oxalic acid, were equilibrated. Subsequent production trajectories were used to 

evaluate the cohesion between the Na-Alg chains through the geometric parameters dav and d 

values, which were defined above.  

 Results, which are included in Table 3, reflect that the cavity formed by two Alg chains 

exhibit greater fluctuations than those previously found for Na-Alg-DMSO/2 model. These 

results, which are in apparent contradiction with DFT calculations, indicate that explicit water 

molecules soften the repulsive electrostatic repulsions between the carboxylate groups of the Alg 

chains and the dianion Ox
2–

. This effect, which is not achieved when the solvent is represented as 

a simple dielectric medium, proves how important the explicit consideration of water molecules 

is in the description of hydrogels. Furthermore, both the average geometric parameters and their 

standard deviations suggest that the stability of the Na-Alg-Ox
2–

 models depends on the 

concentration of Ox
2–

 dianions. 

 Detailed inspection of representative snapshots indicated that the Ox
2–

 species do not 

interact directly with the Alg chains in Na-Alg-Ox
2–

/1 model (Figure S21). On the contrary, the 

three Ox
2–

 molecules are surrounded by water molecules, forming stable hydrogen bonding 

networks. This feature explains the fluctuations around the averaged dav and d values (Table 3), 

which are essentially due to the first hydration shell. Thus, the thermal movements inside the 

cavity associated to each Ox
2-

 molecules are severely affected by the fluctuations of water 

molecules.  

 On the other hand, smaller fluctuations were identified for the Na-Alg-OxH
– 

and Na-Alg-

Ox
2–

/2 models (Figure S22). In the former model, the OxH
-
 molecules form stable O–H···

–
O 
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interactions with the Alg chains similar to those found using DFT calculations. Although water 

hydrogen bonded to the OxH
–
 molecule still cause fluctuations in the cavity, Alg···OxH

–
 specific 

interactions reduce the mobility of the polymer chains and stabilize the cavity with respect to Na-

Alg-Ox
2–

/1. These features support the mechanism derived from DFT calculations for Na-Alg-

oxalic gels. However, the most striking result corresponds to the Na-Alg-Ox
2–

/2 model, which 

displayed the smallest fluctuations. Although the latter result suggests that the increment in the 

number of Ox
2–

 favors the formation of interactions with the Alg chains, detailed inspection of 

representative snapshots prove the existence of a complex and very stable network of 

interactions. More specifically, Alg, Ox
2–

, water and Na
+
 species form multiple interactions, the 

role played by the latter counterions being apparently crucial. These results are fully consistent 

with previously discussed experimental observations, according to which stable Na-Alg-oxalic 

gels are formed at acid pHs. Thus, Ox
2–

 could act as cross-linkers among Na-Alg chains because 

of the shielding effects induced by the Na
+
 counterions and water molecules that compensate the 

repulsive interactions between the carboxylate moieties of Alg chains and Ox
2–

.  

 REMD simulations of the Na-Alg-Ox
2–

/2 model confirmed this complex mechanism. 

Results, which are displayed in Table 5, reflect the existence of nine clusters with populations 

higher than 1.5%. Eight of such clusters (clusters 1-8) exhibit populations lower than 4.5%, 

while the cluster 0 encloses almost 50% of the saved microstructures. Moreover, the average 

distance between all pairs of Na-Alg atoms () is significantly higher for cluster 0 than for the 

other clusters, this feature being also observed for the Na-Alg-DMSO/2 system (Table 4). 

Accordingly, the most occupied cluster displays the highest spreading of Na
+
 ions. This feature is 

particularly relevant for the Na-Al-Ox
2–

 model, which contains the highest number of Na
+
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countercations. Furthermore, the dav and d values for cluster 0 are fully consistent with those 

derived from Langevin MD (Table 3). 

Table 5. Results derived from the clustering analysis of the structures obtained using REMD on 

Na-Alg-Ox
2–

/2.  indicates the average distance between pairs of Na-Alg atoms in the cluster. 

The meaning of dav and d values, which are taken from the representative structure of each 

cluster, is described in the caption of Table 3.   

Cluster # Population (%)  (Å) dav (Å) d (Å) 

0 47.7 3.48 ± 0.91 10.6 3.9 

1 4.3 1.92 ± 0.51 14.4 3.1 

2 3.3 2.06 ± 0.68 12.5 4.8 

3 2.8 2.18 ± 0.67 15.1 13.8 

4 2.8 1.81 ± 0.65 10.5 2.3 

5 2.7 1.89 ± 0.77 10.5 2.0 

6 2.1 1.71 ± 0.68 11.8 1.8 

7 1.9 1.50 ± 0.49 13.9 9.7 

8 1.5 1.65 ± 0.58 13.4 6.9 

   

 A representative structure of cluster 0 is displayed in Figure 9b. As it can be seen, it 

presents a complex network of interactions, comprising Ox
2–

···Na
+
, Ox

2–
···Alg and Alg···Na

+
. 

The presence of these interactions is confirmed by the radial distribution functions displayed in 

Figure 10, which shows a sharp and well peak at distances lower than 2.5 Å for all pairs of above 

mentioned species. Moreover, water molecules, which surround charged species, prevent from 



 32 

repulsive interactions between the negatively charged carboxylate groups contained in both Alg 

and Ox
2–

. Overall, results obtained for Na-Alg-oxalic models indicate that the stability of the 

observed gels comes from a dense network of strong interactions that involve the species of the 

system: Alg chains, Ox
2–

 molecules, and Na
+
 counterions. These interactions, which comprise 

charged species, are strong and very frequent. Consequently, they behave as glue keeping all the 

species together.  

 

Figure 10. Radial distribution functions for pairs of interacting species (carboxilate from Ox
2–

···Na
+
, carboxilate from Ox

2–
···hydroxyl of Alg, and carboxilate from Alg···Na

+
) derived from 

REMD trajectories of the most populated cluster 0 of Na-Alg-Ox
2–

/2. 

MTX-loading and release from Na-Alg gels, beads and films  

Alginate-based hydrogels have been extensively used in tissue engineering
62,63

 and as drug 

delivery systems.
64-72

 Within this context, the possibility to prepare Na-Alg-oxalic gels in 

different forms including beads and films (Figure S23) motivated us to evaluate their ability for 

the encapsulation and controlled release of a pharmaceutical compound and compare it with the 

classical Na-Alg-CaCl2 gel as a control system. It is worth mentioning that the conjugate base of 

oxalic acid is also a competitive inhibitor of the lactate dehydrogenase (LDH) enzyme, which 

has been shown to inhibit
 
tumor formation and growth.

73 
In our study, we evaluated the 
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encapsulation and release of methotrexate (MTX) as model water-soluble therapeutic cargo. 

MTX is an anticancer drug approved for the treatment of a large variety of cancers, and has been 

also incorporated in a variety of gel systems.
74,75

 Light absorption of MTX does not overlap with 

that of oxalic acid, which makes it a good candidate for drug delivery studies. However, MTX 

constitutes a challenge drug model because of its known susceptibility to degrade in acidic 

aqueous media under light exposure and/or stored for long periods.
76,77

 Thus, the samples were 

covered with aluminum foil during the experiments.  

 UV-vis spectra of MTX dissolved in a mixture H2O:EtOH (3:1, v/v) were recorded to 

build the calibration curve (Figure S24). MTX displays the maximum absorption peak at 304 nm 

with a shoulder at 352 nm. As oxalic acid aqueous solutions absorbs at around (and below) 

300310 nm (Figure S25a),
78

 the drug-release quantification from those systems containing 

oxalic acid was done considering the calibration curve at 352 nm, whereas drug-release from 

CaCl2-based systems was monitored at 304 nm. It is important to mention that MTX UV-vis 

spectra vary depending on the solvent or pH of the media, which is in agreement with the data 

reported in the literature79,80 Spectra recorded in the calibration media and oxalic acid aqueous 

solutions are similar (peak ca. 300 nm and shoulder at 351 nm), whereas spectra recorded in 

CaCl2 aqueous solution or in water showed the absorption shoulder at ca. 370 nm (Figure S25b).  

 Na-Alg-oxalic-acid gels, beads and films were prepared as described in the Experimental 

Section, and loaded with MTX (Figure 11). The content of MTX embedded in each system 

corresponded to 2 mg/mL (gel), 126.6 ± 3.5 µg/mL (film; ca. 52% loading efficiency), 29.81 ± 

7.40 µg/mL (oxalic-based beads; ca. 30% loading efficiency) and 27.20 ± 14.61 µg/mL (CaCl2 

beads; ca. 30% loading efficiency). Cross-linking solutions were also analyzed to quantify any 

drug loss during the gelation process of films (Figure S25b). The analysis revealed drug loss of 
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0.068 mg/mL and 0.005 mg/mL when using oxalic acid and CaCl2 as cross-linker solutions, 

respectively. On the other hand, analysis of the curing solutions and washing water revealed 

minor drug loss (15 µg/mL) during the preparation of the hydrogel beads (Figure S26). 

Moreover, no leaching of oxalic acid was detected from the bulk gels to the release medium even 

after 7 days. However, some leaching of oxalic acid could be observed within the first 3 h (no 

additional leaching occurred after this time) in the case of beads and films (Figure S27). Thus, 

considering the toxicity of possible oxalate salts, the bulk gels seems to be the best choice for 

drug delivery applications. 

 

Figure 11. Representative digital photographs of MTX-loaded 2% w/v Na-Alg (a) gels, (b) 

beads and (c) films. In each photograph the sample on the left was prepared by using 0.5 M 

oxalic acid as cross-linker, whereas 0.1 M CaCl2 was used for samples on the right. 

 Figure 12 displays the cumulative release profile for each system before the concentration 

of the drug on the release media starts to decrease presumably due to hydrolysis and/or 

accidental exposure to light during the analyses (Figure S28). CaCl2-based gels displayed a 

quantitative burst release within 2 h. In contrast, oxalic-based gels showed a maximum of ca. 

18% drug release after 1 h. The use of oxalic-based beads allowed a maximum release of ca. 
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2025% of the drug within 6 h. The best results were obtained with oxalic-based films for which 

a sustained MTX release up to ca. 35% within 48 h was observed. CaCl2-based films also 

displayed a maximum of ca. 3040% albeit much faster (36 h).  

 

Figure 12. Release of MTX from 2% w/v Na-Alg gels (a), beads (b), and films (c) prepared 

using 0.5 M oxalic acid (left) or 0.1 M CaCl2 solutions (right).  

CONCLUSIONS 

In conclusion, we have demonstrated the possibility to prepare rapidly Ca
2+

-free hydrogels from 

unmodified sodium alginate by simply mixing with small organic molecules such as 

polycarboxylic acid compounds as cross-linker agents instead of CaCl2 or other metallic salts 

that can be potentially biotoxic if leached from the gel matrix. DMSO was also found to induce 

the rapid gelation of aqueous alginate solutions. The gelation process takes place at RT and 
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depending on the composition, gels with Tgel values and mechanical properties comparable to 

classical Ca
2+

-containing analogs can be obtained. DMSO-based gels could support their own 

weight and showed thixotropic properties, which could be tuned by the biopolymer 

concentration. Additionally, oxalic-based gels showed superior elasticity than HCl, CaCl2 and 

DMSO-based gels. In terms of gelation mechanism, computational studies revealed important 

differences between Na-Alg-DMSO and Na-Alg-oxalic gels. The formers are stabilized by 

hydrogen bonding networks between water and DMSO molecules, which in turn prefer to 

interact with carboxylate and Na
+
, respectively. In sharp contrast, complex ionic networks have 

been identified in Na-Alg-oxalic gels. In these systems, Ox
2-

···Na
+
, Ox

2-
···Alg and Alg···Na

+
 

interactions play a crucial role while water molecules reduces the strength of repulsive 

interactions between groups with charges of the same sign. Finally, films made of alginate and 

oxalic acid showed good potential as synergistic anticancer drug delivery carrier. Further studies 

focused on this direction are currently underway in our laboratories. 
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Challenging conventional wisdom: The replacement of divalent metals by small organic 

molecules such as polycarboxylic acids or dimethyl sulfoxide enables the preparation of metal-

free alginate hydrogels. 

 

 


