

NIH Public Access Author Manuscript

Org Lett. Author manuscript; available in PMC 2013 June 21

Published in final edited form as:

Org Lett. 2007 June 7; 9(12): 2333–2336. doi:10.1021/ol070697u.

Direct Pd-Catalyzed Arylation of 1,2,3-Triazoles†

Stepan Chuprakov, Natalia Chernyak, Alexander S. Dudnik, and Vladimir Gevorgyan^{*} Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061

Abstract

A highly efficient method for the synthesis of multisubstituted 1,2,3-triazoles via a direct Pdcatalyzed C-5 arylation has been developed.

1,2,3-Triazoles, due to their unique chemical and structural properties, have received much attention over the past decades and found wide application in medicinal chemistry and material science.¹ The importance of 1,2,3-triazoles has resulted in the development of several synthetic methods for their construction.² One of the most important and useful approaches to the synthesis of 1,2,3-triazoles utilizes Huisgen's 1,3-dipolar [3+2]-cycloaddition of azides and alkynes.³ However, this methodology, in most cases, leads to the formation of a mixture of regioisomeric products and requires the presence of a strong electron-withdrawing substitutent at the alkyne.^{1a,4} Recently, Fokin and Sharpless reported Cu(I)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles,⁵ and later, in collaboration with Jia, the Ru(II)-catalyzed approach toward complimentary regioisomers, the 1,5-disubstituted 1,2,3-triazoles.⁶

Known methods for the regioselective synthesis of fully substituted 1,2,3-triazoles include reactions of azides with active methylene compounds⁷ or bromo-magnesium acetylides, with subsequent addition of electrophile;⁸ metalation of the existing triazole ring followed by reaction with electrophile;⁹ and cross-coupling reactions of 5-halo-1,2,3-triazoles.¹⁰ However, these methods have certain limitations, as they require employment of organometallic reagents or halotriazoles. An alternative approach may involve direct transition metal-catalyzed arylation and heteroarylation, which has been recently shown to be a powerful synthetic tool for functionalization of aromatic heterocycles.¹¹ Recently, Daugulis demonstrated an efficient Pd-catalyzed arylation of 1,2,4-triazole.¹² However, to the best of our knowledge, arylation of 1,2,3-triazoles has not been reported to date.¹³

Motivated by the importance of developing new general methods toward multisubstituted 1,2,3-triazoles, we examined the feasibility of a direct Pd-catalyzed arylation reaction with aryl bromides: a method proved efficient in the highly regioselective C-3 arylation of indolizines.¹⁴ It was found that C-5 arylation of 1,4-disubstituted 1,2,3-triazoles **1a–h** in the presence of Pd catalyst and tetrabutylammonium acetate in NMP proceeded smoothly to

^{© 2007} American Chemical Society

ylad@uic.edu.

⁷Dedicated to Prof. Ivars Kalvins on occasion of his 60th birthday.

Supporting Information Available: Preparative procedures and analytical and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

provide C-5 arylated triazoles **2a–m** in good to excellent yields (Table 1).¹⁵ It was found that this methodology allows for efficient introduction of both electron-deficient and electron-rich aryl groups at the C-5 position of a triazole ring. Thus, a variety of 1,4-disubstituted 1,2,3-triazoles, containing electron-withdrawing aryl- (entry 12) or carbethoxy groups (entries 8 and 9), electron-donating aryl groups (entries 10 and 13), as well as secondary aliphatic alcohol (entry 11), at the C-4 position and alkyl, aryl, and benzyl groups at nitrogen, were shown to undergo C-5 arylation successfully. It was also demonstrated that a variety of functional groups such as methoxy (entries 2, 10, and 13), carbethoxy (entries 8, 9, and 12), nitro (entry 3), hydroxy (entry 11), *N*,*N*-dialkylamino (entry 6), and trifluoromethyl (entry 8) were perfectly tolerated under these reaction conditions. Notably, aryl bromides bearing 2-naphthyl (entry 4), bulky 1-naphthyl (entry 5), and *m*-tolyl (entry 11) groups and an electron-deficient heteroaromatic 3-pyridyl moiety (entry 7) can also be employed in this reaction.

Encouraged by these results, we next examined the arylation of the 4,5-unsubstituted 1,2,3triazole core. To our delight, a direct Pd-catalyzed arylation of *N*-monosubstituted triazole **1i** with phenyl bromide proceeded highly regioselectively producing C-5 arylated triazole **3a** as a single regioisomer¹⁶ (entry 1, Table 2). Although 1,5-disubstituted 1,2,3-triazoles can be accessed regioselectively from organic azides and terminal acetylenes⁶ or bromomagnesium acetylides,⁸ only syntheses of 1,2,3-triazoles employing an electron-withdrawing or a simple phenyl group at alkyne were demonstrated by these methods. Thus, we were interested in the development of an alternative regioselective approach toward 1,5-disubstituted 1,2,3triazoles with an orthogonal substitution pattern at C-5. Gratifyingly, we have found that C-5 arylation of *N*-monosubstituted 1,2,3-triazoles with aryl bromides bearing electron-donating functional groups such as methoxy (entry 2) and *N*,*N*-dialkylamino (entry 3) afforded triazoles **3b** and **3c** regioselectively in good yields. Moreover, this direct arylation approach allows for efficient and regioselective introduction of electron-withdrawing aryl substitutents at C-5 (entries 5–7), thus revealing good generality of this methodology and extending the scope of the existing methods toward 1,5-disubstituted 1,2,3-triazoles.

As shown above, only trace amounts, if any, of bisarylated products were detected in the arylation of 1-monosubstituted triazole **1i** (entries 1, 2, and 4, Table 2). To verify whether efficient C-4 arylation of 1,5-disubstituted 1,2,3-triazoles is possible, we examined arylation of triazoles **4a** and **4b** under standard conditions. It was found that arylation at C-4 is extremely sluggish compared to that for C-5, providing only moderate yields of products **2m** and **2n** even upon prolonged heating with 10 mol % of Pd catalyst and 3 equiv of aryl bromide (Scheme 1).

Naturally, we were interested in elucidating the mechanism for this Pd-catalyzed arylation reaction. Thus, our kinetic isotope effect studies (Scheme 2) revealed no isotope effect ($k_{H/D} = 1.0$). Additionally, no deuterium scrambling for **1e**-*d* was observed under these reaction conditions. These data, in combination with the lack of an observed change in reaction rates in the presence of Cu-salts¹⁷ and failure when performing reactions in the presence of hydride sources,¹⁷ are not supportive for the possible involvement of C–H activation,¹⁸ cross-coupling,¹⁹ and Heck-type²⁰ mechanisms earlier proposed for arylation of certain heterocycles.²¹ The observed higher reactivity in arylation of electron-rich triazole **1h** during competitive kinetic studies provided certain support for an electrophilic mechanism for this reaction (Table 3).^{22,23}

Finally, we performed DFT calculations (B3LYP/6–311+G**) of electrostatic potential charges at C-4 and C-5 positions of model triazole **5** (Figure 1). Development of substantial negative charge at C-5 and positive charge at C-4 in **5** provided additional support for an electrophilic mechanism and explained the origins of the observed high regioselectivity in

the C-5 arylation of *N*-monosubstituted 1,2,3-triazoles as well as deminished reactivity in C-4 arylation (Scheme 1). It is believed that the combination of experimental and computational data presented above strongly supports involvement of an electrophilic mechanism²² as the most probable pathway for the Pd-catalyzed C-5 arylation of 1,2,3-triazoles (Scheme 3).

In summary, we have shown that a variety of unsymmetrically substituted 1,2,3-triazoles can be easily synthesized via a direct Pd-catalyzed arylation of 1,4-disubstituted triazoles, compounds readily accessible via "click" chemistry. We have also found that 1,5-disubstituted 1,2,3-triazoles can be efficiently synthesized via a highly regioselective C-5 arylation of *N*-monosubstituted triazoles. Experimental and computational studies strongly support the electrophilic nature for this transformation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The support of the National Institutes of Health (Grant GM-64444) is gratefully acknowledged.

References

- (a) Fan, W-Q.; Katritzky, AR. Comprehensive Heterocyclic Chemistry II. Katritzky, AR.; Rees, CW.; Scriven, EFV., editors. Vol. Vol. 4. Oxford, UK: Elsevier; 1996. p. 1-126.(b) Whiting M, Muldoon J, Lin Y-C, Silverman SM, Lindstrom W, Olson AJ, Kolb HC, Finn MG, Sharpless KB, Elder JH, Fokin VV. Angew. Chem., Int. Ed. 2006; 45:1435.(c) Bourne Y, Kolb HC, Radi Z, Sharpless KB, Taylor P, Marchot P. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:1449. [PubMed: 14757816] (d) Lewis WG, Green LG, Grynszpan F, Radi Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Angew. Chem., Int. Ed. 2002; 41:1053.(e) Alvarez R, Velazques S, San F, Aquaro S, De C, Perno CF, Karlesson A, Balzarini J, Camarasa MJ. J. Med. Chem. 1994; 37:4185. [PubMed: 7527463]
- For recent reviews, see: Krivopalov VP, Shkurko OP. Russ. Chem. Rev. 2005; 74:339. Tome AC. Stor R, Gilchrist T. Product class 13: 1,2,3-triazoles. Science of Synthesis. 2004; Vol. 13New YorkThieme:415–601.
- 3. Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry. Padwa, A., editor. New York: Wiley; 1984. p. 1-176.
- 4. Padwa, A. Comprehensive Organic Synthesis. Trost, BM., editor. Vol. Vol. 4. Oxford UK: Pergamon; 1991. p. 1069-1109.
- Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem., Int. Ed. 2002; 41:2596. See also: Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67:3057. [PubMed: 11975567]
- Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127:15998. [PubMed: 16287266]
- 7. L'Abbè G. Ind. Chim. Belge. 1969; 34:519. and references therein.
- 8. Krasinski A, Fokin VV, Sharpless KB. Org. Lett. 2004; 6:1237. [PubMed: 15070306]
- 9. (a) Holzer W, Ruso K. J. Heterocycl. Chem. 1992; 29:1203.(b) Ohta S, Kawasaki I, Uemura T, Yamashita M, Yoshioka T, Yamaguchi S. Chem. Pharm. Bull. 1997; 45:1140.(c) Uhlmann P, Felding J, Vedsø P, Begtrup M. J. Org. Chem. 1997; 62:9177.(d) Felding J, Uhlmann P, Kristensen J, Vedsø P, Begtrup M. Synthesis. 1998:1181.
- 10. Deng J, Wu Y-M, Chen Q-Y. Synthesis. 2005:2730.
- For recent reviews, see: Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007 Alberico D, Scott ME, Lautens M. Chem. Rev. 2007:107–174.
- 12. Chiong HA, Daugulis O. Org. Lett. 2007; 9:1449. [PubMed: 17358073]

- 13. For intramolecular Heck-type vinylation of 1,2,3-triazole, see: Chen W-L, Su C-L, Huang X. Synlett. 2006:1446.
- Park C-H, Ryabova V, Seregin IV, Sromek AW, Gevorgyan V. Org. Lett. 2004; 6:1159. [PubMed: 15040747]
- Notably, we did not observe triazole-directed arylation of *N*-aryl or *N*-benzyl substitutents under these reaction conditions. For amide- and heterocycle-directed arylation of arenes via C–H activation, see, for example: Shabashov D, Daugulis O. Org. Lett. 2005; 7:3657. [PubMed: 16092843] Kametani Y, Satoh T, Miura M, Nomura M. Tetrahedron Lett. 2000; 41:2655. Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127:7330. [PubMed: 15898779]
- Fundamental differences in C-5 and C-4 reactivity of 1,2,3-triazoles are also observed during lithiation reactions. See, for example: Grimmett MR, Iddon B. Heterocycles. 1995; 41:1525. Raap R. Can. J. Chem. 1971; 49:1792. Ghose S, Gilchrist TL. J. Chem. Soc., Perkin Trans. 1. 1991:775.
- 17. See the Supporting Information for details.
- Okazawa T, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2002; 124:5286. [PubMed: 11996567]
- 19. Pivsa-Art S, Satoh T, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71:467.
- Glover B, Harvey KA, Liu B, Sharp MJ, Tymoschenko M. Org. Lett. 2003; 5:301. [PubMed: 12556177]
- For a detailed discussion of these mechanisms, see refs 11a and 14. See also: Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127:8050. [PubMed: 15926829]
- 22. For a discussion on the electrophilic mechanism in the arylation of heterocycles, see refs 19, 21, 12.
- 23. Although nearly equal reactivity of 1a vs 1g is not clearly understood, a similar trend was observed in cationic Heck reactions in the styrene series (*k*_{rel} *p*-OMe:H:*p*-CO₂Me = 1.21:1.00:0.96), see: Fristrup P, Le Quement S, Tanner D, Norrby P-O. Organometallics. 2004; 23:6160.

Figure 1. Electrostatic potential charges at C-4 and C-5.

1e / 1e-d

1.5eq *p*-MeO-C₆H₄Br 5mol% Pd(PPh₃)₂Cl₂ 2eq Bu₄NOAc

0.5M NMP, 100°C

2j

Scheme 2. Kinetic Isotope Effect Studies

Scheme 3. Proposed Mechanism for Arylation of 1,2,3-Triazoles

NIH-PA Author Manuscript

NIH-PA Author Manuscript

 d Pd2(dba)3·CHCl3 was used as the catalyst.

 $^{\mathcal{C}}\mathrm{Pd}(\mathrm{OAc})_2$ was used as the catalyst.

Table 2

Regioselective C-5 Arylation of 1-Benzyl-1,2,3-triazole

Ph	H N N 1i H ArBr	5mol% Pd(OAc) ₂ 2eq Bu₄NOAc 0.5M NMP, 100°C	Ar H Ph N N N
#	ArBr	Product	Yield, % ^a
1	Ph	Ph_N_N^N 3	80 ^b
2	MeO-	Ph_N_N'N	71 <i>b</i> 3 b
3	Me ₂ N-Br	Me ₂ N Ph_N ^N N	83 3c
4	Br	Ph_N_N'N	77 <i>b</i> 3d
5	EtO ₂ CBr	EtO ₂ C	64 3e
6	F ₃ C-	F ₃ C Ph_NNN	67 Bf

^aIsolated yield; 0.5 mmol scale.

 b A trace amount of bisarylated product was detected by GC/MS analysis of the crude reaction mixture.

Table 3

Kinetic Studies

