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ABSTRACT  

We observe the assembly of CdS nanorod superlattices by the combination of a DC electric field and 

solvent evaporation.  In each electric field (1 V/um) assisted assembly, CdS nanorods (5 X 30 nm) 

suspended initially in toluene were observed to align perpendicularly to the substrate.  Azimuthal 

alignment along the nanorod crystal faces and the presence of stacking faults indicate that both 2D and 

3D assemblies were formed by a process of controlled super crystal growth.   

KEYWORDS Nanorod, Superlattice, assembly 



 

2

Self assembly or directed assembly of discrete nanostructures into organized patterns provides a new 

route to the formation of functional materials. Colloidal nanocrystals are suitable building blocks as 

they can be synthesized with size and shape control.1  The assembly of symmetrical nanospheres and 

nanocubes into superlattices is known; and in the case of silver nanocrystals, 3 nm in diameter, an 

insulator to metal transition is observed to occur as a function of sphere size and interparticle 

separation.2-4 In effect, the superlattice functions as a novel nanocrystal solid where it is possible to 

control the electronic coupling by manipulating the size and position of the quantum confined structural 

units. The coupling can further be modified through exchange of the insulating organic ligands on the 

nanocrystal surface with low barrier organics e.g. hydrazine.  Talapin and Murray used this approach to 

convert poorly conducting PbSe nanocrystal solids into n-and p-channel field effect transistors.5  The 

ability to direct anisotropic structures such as cylindrical nanorods into superlattices is less well 

developed but also interesting. In organized nanorod superlattices, it may be possible to simultaneously 

and independently optimize quantities which depend on the diameter (such as band gap) from quantities 

which depend on length (total absorption, cross section or conductivity). 

 

Superlattice formation with spherical nanocrystals is strongly correlated to size monodispersity and 

their entropy driven packing under slow evaporation conditions.  While dimensional control and 

monodispersity in nanorods has been achieved, their organization into superlattices is restricted as both 

positional and orientational ordering is required during assembly.  Some progress has been made in 

preferred nanorod alignment in single layers with nematic and semectic ordering achieved from gentle 

evaporation of low boiling point solvents.6-9 The rods align parallel to substrate in small domain sizes. 

There is further evidence for the preferred orientation of anisotropic nanostructured-rods, tubes and 

wires along electric field lines. The strength of the interaction is greatest in metallic nanostructures 

followed by nanostructures with permanent dipole moments e.g. CdSe, CdS nanorods.10,11 Anisotropic 

structures with low polarizability such as silicon nanowires and carbon nanotubes can also be induced to 

align when the electric field induced torque is greater than the thermal excitation energy (kT).12,13 The 
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effect is usually observed when a solution of 1D nanostructures is deposited between interdigitated 

electrodes resulting in orientation along field lines parallel to the substrate with no positional order. In 

our research, we have used the combination of a DC electric field and slow evaporation of solvent 

(toluene) to generate superlattices of  II-VI semiconductor nanorods with orientation perpendicular to a 

substrate [Footnote]. 

CdS nanorods (30 nm x 5 nm) were formed by the injection of sulphur/tri-n-octylphosphine solutions 

at high temperature into hot cadmium oxide/surfactant mixtures.14 The solution of size monodisperse 

CdS nanorods in toluene is trapped between parallel electrodes (figure 1) and allowed to dry under a DC 

electric field of 1V µm-1. Gentle evaporation is achieved through near-saturation of the entire assembly 

in a toluene atmosphere. The solvent evaporation gradually decreases the diameter of the meniscus, 

packing the nanorods into a 2D supercrystal. In this study, we observe that for, slower rates of  the 

solvent evaporation, a higher degree of positional order is present in our nano-rod assemblies.  Figure (2 

a,b) shows a 2D nanorod array evaporated from toluene in the absence of an electric field.  The centre 

of the domains consist of perpendicularly aligned rods in a 2D hexagonal array. The outer layers of 

nanorods progressively tilt towards the centre, aligning parallel to the substrate at the domain edge. This 

tilting of the nanorods from perpendicular to parallel at the edges is in good agreement with alignment 

observed in condensed 3D nanocrystal solids reported by Weller15. In that work the progressive 

perpendicular to parallel tilt over hundreds of multilayers from edge to centre was sufficient to rotate the 

polarization of light as verified using crossed polarizers. Assuming that transmitted polarized light is 

directed normal to the substrate, the observed birefringence changes with both tilting and rotation of the 

nanorod with respect to the substrate plane. The densely packed rods in figure 2 a,b demonstrate good 

positional order with 180 degree range of disorder in planar orientation across the nanorod aggregate.   

The electric field directs the perpendicular orientation of the rods along the field lines during the 

assembly process. 16The CdS nanorods (30 nm x 5 nm) are estimated to have a permanent dipole 

moment of ~ 220 Debye  because of the non-centrosymmetric Wurtzite lattice.17,18 The electric field 

will act on the nanorods producing rotation about its axis while the evaporating solvent laterally 
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confines them into an array.   The net effect is a 2D superlattice of semiconductor nanorods with all the 

c-axes aligned normal to the substrate. Figure 2(b) shows a typical TEM image of a single layer of 

hexagonally packed nanorods 30 nm  x 5 nm  showing both positional and orientational order that is 

extraordinarily resolute throughout the entire domain. The space between the nanorods, 3nm, is 

occupied by interdigitated phosphonic acid surfactants. Clearly in the approach described here, the 

electric field is acting on the nanorods during evaporation to direct high orientational order. Close 

analysis of the nanorods figure 1b under higher magnification shows the hexagonal faceted ends of the 

zinc blende nanorod structure. The 2D assembly of the nanorods is also affected by the particle shape 

where the nanorods demonstrate positional and orientational order as well as azimuthal alignment along 

their [100] and [111] crystal faces.  This azimuthal alignment strongly suggests that super crystallization 

of hexagonally faceted nanorods is entropy driven where the total growth rate is slow and each nanorod 

can dynamically add to or subtract from the growing supercrystal face before locking in. The electric 

field electrostatically interacts with the nanorod during packing ensuring that orientational order 

perpendicular to the substrate is preserved. All nanorods will be parallel aligned under the electric field 

which suggests that the collective force due to the applied field overcomes the single-particle field 

alignment energy that favours an antiparallel dipolar arrangement. In addition, the diminished solvent 

volume due to evaporation,  helps to overcome the dipole-dipole repulsion as each nanorod is 

continually drawn (entropically) into the remaining solvent by its surfactant layer.    

This mechanism for superlattice growth is further evidenced in figure 3b where slower evaporation of 

nanorods resulted in the formation of superlattice domains > 0.5 μm2. The superlattice crystal structure 

is defect free throughout the entire domain and electron diffraction inset shows sharp maxima indexed 

to the diffraction planes of a hexagonal lattice.  

 

The stacking fault observed in the domain imaged in figure 3b is further evidence for the controlled 

sequential addition of nanorods to the growing crystal face of the 2D nanorod superlattice during 

evaporation. The domain consists of ~ 4 x 103 nanorods normal to the substrate. The Fourier transform 
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shows the effective electron diffraction from selected regions of the domain with  spot sizes of 200 nm2. 

The electron diffraction from region 1 shows a hexagonal superlattice with sharp scattering maxima. 

Similarly, the electron diffraction from region 3 reflects a hexagonally ordered lattice. The stacking 

fault is observed in region 2 where the Fourier transfrom of the image shows two sharp maxima at each 

position evidencing rotation in the azimuthal alignment occurring at this location. The arrows shown in 

the magnified image of the defect region are aligned with the [100] crystal planes of the nanorod 

superlattice clearly showing the stacking fault. 

 

CdS nanorods deposited under an electric field with slow evaporation also demonstrate alignment in 

three dimensions (figure 4).  3D nanorod arrays were obtained where the incoming nanorod selectively 

sits in the interstitial spacing between the nanorods in the underlying layer creating an AB layered 3D 

superlattice. Figure 4 b is a schematic showing how this effect manifests itself as the periodic structure 

seen in figure 4a when the two layers are viewed simultaneously in transmission mode. Typically 3D 

stacking of nanorods is routinely observed when the concentration of nanorods in solution is high.   

 

The approach described here for assembling superlattices of anisotropic, size and shape controlled 

nanorods normal to a substrate is generally applicable.  This level of directional control may prove 

helpful in the formation of nanorod-polymer solar cells with increased charge transport efficiencies19. 
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Figure 1. Schematic of electrode assembly for nanorod alignment.  A substrate ( carbon coated electron 

microscopy grid or silicon nitride membrane window) and CdS nano-rod solution with toluene is placed 

between two gold coated copper electrodes.  Setup is contained with a reservoir of toluene solvent 

which is present to provide a near saturated environment to help slow the rate of evaporation.  
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Figure 2.  TEM images of perpendicularly aligned nanorod superlattices: a, Section of CdS nanorod (30 

nm x 5 nm)  domain in absence of electric field, scale bar = 30 nm; b, Magnified section of a, showing 

parallel to perpendicular alignment from edge to centre (scale bar = 10 nm); c, CdS nanorods aligned 

under a field of 1 V/(um); d, azimuthal alignment of the nanorods;  e, 30 nm CdS nanorod superlattice 

with domain size > 0.5 µm2 , inset Fourier transform of image showing electron diffraction from 

hexagonally ordered 2D array. Maxima highlighted from [01-10] and [02-20] diffraction planes with 
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remaining planes [10-10], [1-100], [0-110], [-1010], [-1100] and [20-20], [2-200], [0-220], [-2020],[-

2200] clockwise from these positions respectively .  

 

 

 

Figure 3. Electron diffraction from selected regions of electric field assisted perpendicularly aligned 

nanorod domain showing superlattice stacking fault 
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Figure 4. a, 3D superlattice of of CdS nanorods 30 nm x 5 nm scale bar = (10 nm), b Schematic 

showing the top down view of perpendicular arrangement of nanorods with AB stacking 
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FOOTNOTE:   As this work was in progress, we receieved notice of similar unpublished from the 

laboratories of Professor T.Russell and T. Emrick of U. Mass. Amherst. 
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