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Inelastic current-voltage characteristics of atomic and molecular junctions
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We report first-principles calculations of the inelastic current-voltage (I-V) characteristics of a
gold point contact and a molecular junction in the nonresonant regime. Discontinuities in the I-V
curves appear in correspondence to the normal modes of the structures. Due to the quasi-one-
dimensional nature of these systems, specific modes with large longitudinal component dominate
the inelastic I-V curves. In the case of the gold point contact, our results are in good agreement with
recent experimental data. For the molecular junction, we find that the inelastic I-V curves are quite
sensitive to the structure of the contact between the molecule and the electrodes thus providing a
powerful tool to extract the bonding geometry in molecular wires.

Inelastic scattering between electrons and phonons in
a current-carrying wire is a source of energy dissipation
for electrons. However, it can also yield a lot of informa-
tion on the underlying atomic structure of the wire. This
information can be extracted indirectly from the disconti-
nuities in conductance that occur when the external bias
is large enough to excite discrete vibrational modes of the
wire. [1] Recent experiments on transport properties of
atomic [2] and molecular [3, 4] junctions have indeed re-
vealed such inelastic features. It is, however, not straight-
forward to relate these features to specific vibrational
modes. A nanoscale junction (often described as a quasi-
one-dimensional system) with N atoms supports 3N vi-
brational modes. In a strictly one-dimensional system,
only longitudinal modes can be excited via electronic
coupling. However, the modes of a realistic junction are
not necessarily purely transverse or purely longitudinal
with respect to the direction of current flow. [5, 6, 7]
Therefore, the inelastic current-voltage (I-V) character-
istics are likely to depend strongly on the detailed atomic
structure of the full system. This is particularly relevant
for molecular junctions for which the contact geometry
between the molecule and the bulk electrodes is difficult
to control in experiments. [8, 9]

In this letter we first derive an expression for the inelas-
tic current in a current-carrying system in terms of scat-
tering wavefunctions. This expression allows us to study
the inelastic I-V characteristics of a given nanoscale junc-
tion using first-principles approaches. As an example we
study the effect of vibrations on the electron dynamics in
a gold point contact and a single-molecule junction. For
the gold point contact, the magnitude of the calculated
inelastic current as well as its onset compare very well
with recent experimental results. [2] For the molecular

junction, we analyze the case in which the molecule is
equally bonded to the two bulk electrodes and the case
in which the two contacts are different. We find that
the inelastic I-V characteristics are very different in the
two cases. This result shows that inelastic spectroscopy
could be used quite effectively to extract information on
the contact geometry of molecular wires.
Let us start by deriving an expression for the inelas-

tic current. We assume that the phonon distribution is
at equilibrium at all (small) biases, thus neglecting lo-
cal heating. [5] We have previously shown that for small
biases this effect is small, provided good thermal con-
tacts exist between the nanostructures and the bulk elec-
trodes. [5] The many-body Hamiltonian of the system is
(atomic units are used throughout this paper) [5]

H = Hel +Hvib +Hel−vib, (1)

where Hel is the electronic part of the Hamiltonian;
Hvib = 1

2

∑

i,µ∈vib

q̇2iµ + 1
2

∑

i,µ∈vib

ω2
iµq

2
iµ is the ionic contri-

bution where qiµ is the normal coordinate and ωiµ is the
normal frequency corresponding to the i-th ion and µ-
th component; finally, Hel−vib describes the electron-ion
interaction and has the following form:

Hel−vib =
∑

α,β

∑

E1,E2

∑

iµ,jν∈vib
√

~

2ωjν

Aiµ,jνJ
iµ,αβ
E1,E2

aα†E1
aβE2

(

bjν + b†jν

)

, (2)

where α = L,R; aαE and bjν are the electron and phonon
annihilation operators, respectively, satisfying the usual
commutation relations. Aiµ,jν are the matrix elements of
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the transformation from cartesian coordinates to normal
coordinates, and J iµ,αβ

E1,E2
is the electron-phonon coupling

constant which can be directly calculated from the scat-
tering wave-functions [5]

J iµ,αβ
E1,E2

=

∫

dr

∫

dK‖Ψ
α∗
E1

(

r,K‖

)

∂µV
ps (r,Ri)Ψ

β
E2

(

r,K‖

)

,

(3)
where we have chosen to describe the electron-ion in-
teraction with pseudopotentials V ps (r,Ri) for each i-th
ion. [10]

Similar to what has been done in Ref. 6, we treat
the electron-phonon interaction to first-order perturba-
tion theory. [11] Due to the orthogonality condition be-
tween phonon states, higher harmonics for each phonon
mode appear only in third-order perturbation theory
and are therefore small. [12] We develop the full many-

body wavefunctions in terms of the states
〈

Ψ
L(R)
E ;njν

∣

∣

∣
=

〈

Ψ
L(R)
E

∣

∣

∣
⊗ 〈njν |. The single-particle electronic state is

described by Ψ
L(R)
E

(

r,K‖

)

, corresponding to electrons
incident from the left (right) electrodes with energy E
and momentum K‖ parallel to the electrode surface. [10]
These electronic states are calculated self-consistently by
means of a scattering approach within the density func-
tional theory of many-electron systems. [10] The phonon
state is described by 〈njν |, where njν is the number of
phonons in the jν-th normal mode.

|δΨα
E ;njν〉 = lim

ǫ→0+

∑

α′=L,R

∑

j′ν′

∫

dE
′

Dα′

E
′

〈

Ψα′

E′ ;nj′ν′ |Hel−vib|Ψ
α
E ;njν

〉 ∣

∣

∣
Ψα′

E′ ;nj′ν′

〉

ε(E, njν)− ε(E′, nj′ν′)− iǫ
.

(4)

In the above expression Dα
E is the partial density of

states corresponding to the current-carrying states Ψα
E

and ε(E, njν) = E + (njν + 1/2)~ωjν is the energy of
state |Ψα

E ;njν〉. We have also assumed that the electrons
rapidly thermalize into the bulk electrodes so that their
statistics are given by the equilibrium Fermi-Dirac dis-

tribution, f
L(R)
E = 1/(exp[(E −EFL(R))/kBTe] + 1) with

chemical potential EFL(R) deep into the left (right) elec-

trode. [13] Using limǫ→0
1

z−iǫ
= P (1

z
) + iπδ(z), the first-

order correction |δΨα
E ;njν〉 assumes the following form:

∣

∣δΨR
E ;njν

〉

= iπ
∑

iµ∈vib

√

~

2ωjν

Aiµ,jν

[DL
E+~ωjν

√

〈njν〉 fR
E (1− fL

E+~ωjν
)·

J iµ,LR
E+~ωjν ,E

∣

∣

∣
ΨL

E+~ωjν
;njν − 1

〉

+

DL
E−~ωjν

√

(1 + 〈njν〉) fR
E (1− fL

E−~ωjν
)·

J iµ,LR
E−~ωjν ,E

∣

∣

∣
ΨL

E−~ωjν
;njν + 1

〉

], (5)

where 〈njν〉 = 1/ [exp (ℏωjν/kBTw)− 1] is the Bose-
Einstein distribution per mode at a given wire temper-
ature Tw, and 〈〉 indicates the statistical average. The
above expression allows us to calculate the inelastic cur-
rent. It is evident from Eq. 5 that for a fixed partial
density of states, the magnitude of the inelastic current
is determined by the coupling constant J iµ,αβ

E1,E2
and the

transformation matrix A = {Aiµ,jν} which contains the
information on the geometry of the structure and hence
on the character (transverse versus longitudinal) of the
different modes. [14] We will be concerned with the ex-

tra inelastic current due to the vibrational modes of the
atoms of the nanoscale constriction with respect to the
continuum spectrum of modes of the bulk electrodes. [15]
If the electronic temperature Te is zero, then, for an ex-
ternal bias V , only those normal modes with eigenener-
gies ~ωjν < eV can be excited and contribute to Eq. 5. In
addition, due to our assumption of negligible local heat-
ing, the averaged number of phonons 〈njν〉 is zero for all
normal modes. In this case the first-order correction to
the current induced by electron-phonon interaction as-
sumes the following simple form:

δI = −i

∫ EFR

EFL

dE

∫

dR

∫

dK‖

[
(

δΨR
E

)∗
∂zδΨ

R
E − ∂z

(

δΨR
E

)∗
δΨR

E)], (6)

where only the left-travelling electronic states contribute
(if the left electrode is positively biased).
We are now ready to use the above expression to study

inelastic scattering in specific systems. We choose to first
study a gold point contact for which experimental results
are available [2] and then discuss the case of a molecular
junction. In Fig. 1 we plot the inelastic conductance for
a single gold atom.
In the absence of inelastic scattering and for the bias

range of Fig. 1, the I-V characteristics of this system are
linear with differential conductance G ≃ 1.1 G0, where
G0 = 2e2/h. [5] When electron-phonon interactions are
considered, two transverse modes with energy ~ω ≃ 10.8
meV are first excited with increasing bias. However,
due to their transverse character, these modes contribute
negligibly to the inelastic current as determined by the
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FIG. 1: Absolute value of the differential conductance due to
electron-phonon interaction as a function of bias for a gold
point contact. Two normal modes corresponding to trans-
verse vibration of the gold atom between the electrodes have
energies of 10.8 meV, which are close in energy to the longi-
tudinal mode at 11.5 meV (shown in the figure).

product between the transformation matrix A and the
coupling constant J iµ,αβ

E1,E2
. An abrupt change in differen-

tial conductance appears at V ≃ 11.5 mV corresponding
to the excitation of a longitudinal vibrational mode (see
schematic in Fig. 1). [16] Both the onset bias as well as
the change in conductance (of about 1%) are in good
agreement with experimental reports on gold point con-
tacts. [2] The longitudinal and transverse modes are very
close in energy but mainly the longitudinal mode con-
tributes to the inelastic current, [6, 7] so that in exper-
iments the transverse ones would not be easily resolved.
This is even more evident in the case of the molecular
junction.
In Fig. 2 we plot the inelastic conductance in the case

in which a phenyldithiolate molecule forms symmetric
contacts on both sides of the junction, i.e., each S atom
is bonded to a flat surface. In this case there is a total
of 14 modes with energy less than 100 meV. A promi-
nent change in conductance occurs at a bias of about 18
mV, i.e., at a bias large enough to excite two modes with
large longitudinal component (see Fig. 2). [17] The in-
elastic contribution from two transverse modes at lower
bias [5] is almost four orders of magnitude smaller. Simi-
larly, three quasi-transverse modes with energies between
20 and 50 meV contribute negligibly to the inelastic con-
ductance. They only appear as small features in the sec-
ond derivative of the current with respect to the bias (see
Fig. 2). [18] It is likely that due to noise and other ef-
fects, such modes would not be resolved in experiments.
Increasing the bias further, a second large step in the
absolute value of the conductance is found at about 50
mV (see Fig. 2). This again corresponds to a predomi-

FIG. 2: Absolute value of the differential conductance due to
electron-phonon interaction as a function of bias for a sym-
metric molecular junction. The derivative of the conductance
with respect to bias is also shown (a broadening of 1 meV
is introduced). The schematics show only the modes that
contribute the most to the inelastic current.

nantly longitudinal mode (see schematic in Fig. 2). This
mode is then followed by others that have both a trans-
verse and a longitudinal component. The magnitude of
the conductance steps depends on the relative amount of
the two components as well as the product between the
transformation matrix A and the coupling constant. [17]

We conclude by showing how sensitive the inelastic cur-
rent is to any change in the bonding properties of the
molecule to the electrodes. We illustrate this in Fig. 3
where we plot the inelastic conductance for the same
molecule but with one of the S atoms bonded to a H
atom which, in turn, is not bonded to the nearby surface
(see schematics in Fig. 3). [19] Such a configuration could
be easily realized in experiments. [8] In the present case
there are 13 modes below 100 meV, of which only six
have large longitudinal component (shown in Fig. 3) [17]
and contribute to small steps in the inelastic conduc-
tance, with the one at about 11 meV showing the largest
relative contribution. All other modes contribute neg-
ligibly to the current. Comparing Figs. 2 and 3 it is
clear that contact geometry affects considerably the I-V
characteristics of the system both in the position of the
inelastic discontinuities as well as in their relative mag-
nitude. This fact, however, can be used advantageously
to extract a posteriori the contact structure of molecular
junctions thus providing a powerful diagnostic tool for
nanoscale electronics.
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FIG. 3: Absolute value of the differential conductance due to
electron-phonon interaction as a function of bias for a molec-
ular junction with asymmetric contacts. The derivative of the
conductance with respect to bias is also shown (a broadening
of 1 meV is introduced). The schematics show only the modes
that contribute the most to the inelastic current.
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gular pad at a distance of 2.3Å; and for the single-molecule
junction with symmetric contacts the initial S-surface dis-
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