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ABSTRACT

We predict a diblock copolymer melt in the lamellar phase with added spherical nanoparticles that have an affinity for one block to have a
lower tensile modulus than a pure diblock copolymer system. This weakening is due to the swelling of the lamellar domain by nanoparticles
and the displacement of polymer by elastically inert fillers. Despite the overall decrease in the tensile modulus of a polydomain sample, the
shear modulus for a single domain is unaffected by fillers.

Polymer nanocomposites are being extensively investigated We examine the elastic properties of a melt state nano-
because of the improvement in material properties that resultssphere filled block copolymer ordered nanocomposite using
from the addition of nanoscopic filler particles to the polymer self-consistent field theory (SCFT). SCFT is a coarse-grained,
matrix}~* In addition to their practical importance, such first principles approach that has been successful in dealing
composites offer diverse scientific challenges, combining with block copolymer structur®.In the framework of this
ideas from colloid science, polymer physics and chemistry, theory, local monomer density profiles of different block
as well as material science. Polymer nanocomposites becomeopolymer chemical species are represented self-consistently
even more interesting when the polymer matrix consists of using chemical potential fields. Both the densities and the
a block copolymer, capable of self-assembling into a wide fields are then used to determine the free energy for the
range of ordered nanoscaled structures; nanoparticles can thegystem, and, if desired, the internal energies and entropies
be sequestered in certain domains to form ordered nanocomrgan be explicitly calculated. SCFT has been extended to deal
posites>” The simultaneous amphiphilic and colloidal self-  ith hard nanosphere/block copolymer nanocomposites by
assembly taking place in such ordered nanocompositesthe incorporation of a density functional theory particle
gives them complex structufeand makes the structure  congribution*22Further, Tyler and Morse have demonstrated
property relationship particularly intriguing. Since there is nhat the linear elastic behavior of a melt block copolymer
little understanding of the mechanical properties that arise system, which is quasi-statically deformed, can be well
in ordered nanocomposites, we present in this theoretical .paracterized using SCPTWe have recently adapted this
work a first investigation of therigins of the elastic prop- approach to an efficient real space, pseudo-spectral nméthod
erties of an ordered nanocomposite with spherical nano-,n4 found an increasing elastic modulus in multiblock
fillers. _ . copolymer systems as a function of block number, in
Buxton and Balazshave studied a phenomenological qualitative agreement with experiméftiere, we combine

mr?.dﬁl Or: Ba}g%spr:ler:_-l:‘_llleocli/Bblock_ cogolymgr systelmt§ N these two advances in order not only to predict the effect on
which a hybnd L.ahn-Hifiard/srownian dynamics simuiation ¢ - g|4gtjc properties of adding nanopatrticles to a block

is us_ed asinputto a Igttlce spring model of the elastic moduli. copolymer melt but also to explain thhysical originsof
Their approach provides a versatile and useful method of
the observed effects.

predicting properties but lacks polymeric detail in the i ) .
We will study the prototypical system consisting of a

elasticity portion of the simulation. Furthermore, they exam- X / ;
ine filled block copolymer systems in the solid state, where Symmetric AB diblock copolymer meltin the lamellar phase

all morphological evolution is disregarded as the system is with added spherical nanoparticles that have an affinity for
distorted. the A block of the copolymer. A schematic of this system is

shown in Figure 1.
* Corresponding author. E-mail: thompson@uwaterloo.ca. Present ad- : ;
dress: Department of Physics, University of Waterloo, 200 University Consequently’ a lamellar morphology with the pamdes

Avenue West, Waterloo, Ontario, Canada N2L 3G1. sequestered in the A phase is being considered, and the
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Figure 1. lllustration of a single domain of a block copolymer/  Figure 2. Density profiles for an ordered nanocomposite in the

spherical nanoparticle-ordered composite material. The spheres aréamellar phase. The black lines are the A-block distribution (solid)

preferentially wetted by the A-block of the copolymer, shown in and the particle distribution (dashed) before elongation. The

red. The black represents the B-blocks. corresponding red lines are the same distributions after stretching.
The B block is not shown.

system’s tetragonal symmetry is elastically characterized by . . . . ‘
just five independent nonzero components of the elastic R
modulus tensor. Additionally, the system is in a melt state == 19% nanopatides
so that deformations parallel to the lamellar structure have
no effect on the free energy of the syst€hWe are thus
left with only two relevant moduliKs; andKas. Therefore,

we deform the system quasi-statically in two ways; it is
subjected to an extension/compression, and to a simple shear. 1
These deformations represent changes in the free energy
caused by changes in the domain spacing, not changes in
the moduli of the polymer melt or nanoparticle constituents;
the mixture is taken to be incompressil§land the particles

are supposed to be nondeformablélhese deformations O 015 o4 oo o o od o1 o2
allow us to determine th&s; and K44 components of the Relative deformation

elastic m_OdU|US tensof, corr_espondin_g to extension/ Figure 3. Total free energy versus relative distortion for extension/
compression and shear moduli, respectively. These compo-compression (a) and shear (b) of a diblock system. The neat diblock
nents are found by taking the second derivative of the SCFT free energy is plotted with the solid line whereas the 15% filled

free energy with respect to the relative deformation. Greater System is shown with dashed line. In (a), negative deformations
detail on the methodology can be found in ref 14. are compressions while positive deformations are extensions. In
We chose a system with a segregatiopf= 25 between allhplﬁt_s, energies have been zer_oed around t_he equilibrium spacing,
; ; . which is represented by a relative deformatéos 0.
the A and B blocks, with the particles considered to be of
the A speciesy is the Flory-Huggins monomer segregation tives were used to finds; and K44 for both the filled and
parameter andll is the degree of polymerization of the entire unfilled systems according to the methodology of ref 14.
diblock. The particle radius was chosen to be ORR%/here The Ks3 and Kss moduli in each case were used to find a
Ry is the unperturbed radius of gyration of a diblock tensile modulus by averaging over a polydomain sample
molecule. Finally, the particle-to-diblock volume ratio was according to the Hill prescriptidf as described in ref 14.
~3.6, and a 15% volume fraction of spherical fillers was  For the pure diblock system a dimensionless tensile
added. The system was deformed in the two ways describedmodulus of~0.39 was found while for the nanocomposite
above and compared with a neat diblock system similarly system, the modulus was0.31. Thus we predict that the
deformed. The morphology of the system before and after addition of nanoparticles willweakenthe material. For
extensional deformation is shown in Figure 2. regular (homopolymer) nanocomposites, one expects the
The free energy as a function of the two deformations is addition of nanofillers to strengthen the compositEhe
shown in Figure 3; the pure diblock system is represented reduction in modulus found for our present system can be
by solid curves and the 15% filled system by dashed curves.explained by decomposing tikgs andK44 moduli as shown
Figure 3a shows extensions and compressions whereas 3in Tables 1 and 2.
shows shear. The free energies in Figure 3 and hereafter are These tables show totds; and Kss moduli values,
plotted as dimensionless free energies per volume, see forespectively, for 0% and 15% added fillers, as well as the
example eq 3. All curves in Figure 3 show parabolic shapes, difference between the filled and unfilled system moduli.
indicating that linear elasticity theory is applicable. The The tables also give the contributions to the moduli of the
curves were fitted with polynomials and the second deriva- internal energyl), translational entropys), and the A and

—
&
o
o
&

o

o

=
T

Free energy

0.02

-02 -015 -01 -005 0 005 01 015 02
x107°

_
KX

051"

Free energy

2456 Nano Lett, Vol. 4, No. 12, 2004



. @ ' — pure diblock
Table 1. Components of th&s; Elastic Modulus for 0% and | i nanoparticies
15% Added Nanoparticlés g
modulus 0% 15% A modulus g
E
Kss 4.71 3.76 —0.95 -
KY 2.80 1.95 —-0.85
K3t -0.58 —0.60 —0.02 b 008
K5 1.23 0.49 ~0.74 © o
K3} 1.25 1.58 +0.33 g 002l
Ko 0.0 0.19 +0.19 s
Ko 0.0 0.14 +0.14 £ o001}
£
aThe change in the modulus between the pure diblock and the filled

diblock system is recorded in the last column. 02 -015 -04 -005 O 005 01 045 02
Relative deformation

Table 2. Components of th&y, Elastic Modulus for 0% and

) Figure 4. Internal energy contribution to the free energy versus
15% Added Nanoparticlés g gy 9y

relative distortion for extension/compression (a) and shear (b) of a

modulus 0% 15% A modulus diblock system. The neat diblock free energy is plotted with the
solid line whereas the 15% filled system is shown with dashed line.
K# 0.00 0.00 0.00 In (a), negative deformations are compressions while positive
Kiy 1.16 0.99 —0.17 deformations are extensions. In all plots, energies have been zeroed
K -0.53 -0.50 +0.03 around the equilibrium spacing, which is represented by a relative
K5 -0.30 —0.30 0.00 deformatione = 0.
K3 -0.33 -0.10 +0.23
id » .
g‘i 8'80 8'28 g'gg and unfilled cases. Furthermore, the A and B domains are
44 . —VU. —VU.

well segregated both before and after deformation, indicating

2 The change in modulus between the pure diblock and the filled diblock that there are few A monomers in the B region and vice
system is recorded in the last column. versa. Thus the absolute amount of energetically unfavorable
AB contacts is the same before and after deformation,
whereas the domain size changes. Adapting an expression
of Matsen and Bate®, the internal energy contribution to
the free energy is

B conformational entropies of the diblockS,(andSs). Also
listed are the ideal gas§) and steric &) contributions of

the filler particles. The moduli can be broken up into
components like this because the second derivative of the

free energy expression NU 1
=iz 05 e T e Ole) @)
T=U—=T( s+ Iy + Sy + oy + ) 1) 0
) ) ) whereT is the temperaturdsg is Boltzmann’s constant, and
with respect to the relative deformatian N is the degree of polymerization of an entire diblock based
on a segment volume of dd. @a(r), @s(r), and ¢y(r) are
R Ry P P Py By 05 the local volume fractions of A and B monomers and
? - ? N ? 32 92 92 92 2 particles, respectively. The integral in eq 3 is constant under

the conditions described above, so that the internal energy
{s inversely proportional to the volum¥. The lamellar
morphology is one-dimensional, so that the internal energy
can be written as inversely proportional to the equilibrium
domain sized*.

is additive. In egs 1 and 2, the caligraphic characters represen
dimensionless energy per volume as defined, for example,
in eq 3. Although the components of the free energy may
not be parabolic like the total free energy, and may even
have large first derivatives, it is the curvature of the

components, which is to say, the second derivatives, that VY= 4)
contribute to the total curvature, or moduli. For information

on how these components are calculated, see ref 14. From ) ) )
Table 2 it is seen that thi€s, moduli for the filled and pure ~ Wherea is a constant. A relative deformatienthat leaves

diblock systems were found to be very close to zero. Thus the interfacial width and the bulk mixing unchanged changes
the main contribution to the tensile modulus arises from the €d 4 into
extensional modulukss. Furthermore, the main drop Kgs

from the 0% to the 15% case is a result of the internal energy = a (5)
contribution and the A block conformational entropy con- d*(1 +¢)
tribution.

These two contributions can be examined separately. UponThe SCFT internal energy for extensions/compressions is
extension/compression, SCFT shows that the lamellar inter-shown in Figure 4a. Both for pure diblock and for filled
facial width remains practically unchanged in both the filled systems, the behavior reflected in eq 5 is observed. An
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As in the extension/compression case, the interfacial
profiles do not change significantly upon shearing of the
sample. The consequence is that the internal energy again is
inversely proportional to the volume of the system, as
previously explained. The B block conformational entropy
contribution to the free energy behaves similarly; from
Matsen and Bate¥,the B block energy is

S A contribution

G

-
-
PEae

5 Ny 1

o = oy D dredn a1 + we(n)ge(n)

o (7
-5 L L
-02 -01 Relative d‘;formaﬁon ' ' where py(r) is the distribution of diblock junction points,

wg(r) is the chemical potential field for the B monomer

Figure 5. Cor_lformational entropy contrib_ution to the free energy distribution, andgl(rf) is an SCFT propagator. A detailed
versus distortion for extension/compression (a) and shear (b) of a | s f 7’ be f d el S | f
diblock system. The neat diblock free energy is plotted with the explanation of eq 7 can be found elsewnere.lt we for

solid lines whereas the 15% filled system is shown with dashed the moment ignore the contribution of the integral in eq 7,
lines. In (a), negative deformations are compressions while positive the B conformational contribution can be written as
deformations are extensions; tBg contribution is shown in (a).

The S contribution is shown in (b). In all plots, energies have

been zeroed around the equilibrium spacing, which is represented —Jy=— ﬂ (8)

by a relative deformatiom = 0. Vsin6

estimate of 'the. moduluky, can be found by taking thg where 8 is a constant. A sif has been added to the
second derivative of eq 5 with respect to the relative genominator of eq 8 to account for a change in interfacial

deformation, which gives area upon shearing the sample. When the sample is sheared,
. the volume is constant but the AB interfacial area increases;
KY :d_//| _ _ 20 (6) 6 is a measure of the amount of shear, with= /2
Boge2 T representing a nonsheared system. See ref 14 for more

explanations. The internal energy (eq 4) will be similarly
showing that theJ contribution to theKss modulus is also  affected. From ref 14, the shear angle is related to the relative
inversely proportional to the equilibrium spacing. SCFT distortion throughe = cot 6. The internal energy and B
shows that the addition of filler particles enlarges the conformational entropy are then
equilibrium domain size of the nanocomposite compared to

the pure diblock system. Equation 6 then indicates that the , o /5o

modulus will drop, as observed. In other words, the modulus U= (VAN +1 ©)
is weakened partially because there is less interface per

volume in the nanocomposite compared to the pure diblock. — = \ﬁ/ [+ 1 (10)

The A block configurational entropy also contributes to
the overall drop in modulus. The filler particles have no
configurational entropy; in the filled system tiss energy Figures 4b and 5b show that the internal energy and B block
portion will rise (drop) under extension (compression) at a contribution to the free energy obey the relationships of eqs
slower rate because there is a smaller fraction of chains to9 and 10, respectively, for both the filled and unfilled
stretch (relax). This can be seen in Figure 5a. Thus, filler systems. The moduli for these are found through the second
particles weaken the material because they displace polymerglerivative with respect te and are
that have stretching energy, which could contribute positively
to the elastic modulus. In other words, the modulus is
weakened partially because there is less polymer and more
elastically inert filler per volume.

As mentioned, the shear modullis, makes a negligible KS = — B (12)
contribution to the tensile modulus, but it is interesting to v
examine it nonetheless. Table 2 shows that both before and
after the addition of nanoparticles tkg, modulus is close Both Kf4 and Ki‘j are inversely proportional to the equilib-
to zero. Table 2 also shows that the component&gfdo rium volume, with the important difference of a minus sign.
change in the presence of nanoparticles, but that theseThus, as the equilibrium volume is enlarged upon the addition
changes cancel out. A large increase in the B block con- of fillers, the S contribution to the modulus becomes a
formational entropy contribution to the modulus is seen, but smallernegative number, so the material would &onger
this is compensated for by a drop in the internal energy This effect is countered by thé contribution to the modulus,
contribution and the particle steric term. which becomes smaller for the larger equilibrium volume

o

Ka=g (11)
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