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ABSTRACT

We predict a diblock copolymer melt in the lamellar phase with added spherical nanoparticles that have an affinity for one block to have a
lower tensile modulus than a pure diblock copolymer system. This weakening is due to the swelling of the lamellar domain by nanoparticles
and the displacement of polymer by elastically inert fillers. Despite the overall decrease in the tensile modulus of a polydomain sample, the
shear modulus for a single domain is unaffected by fillers.

Polymer nanocomposites are being extensively investigated
because of the improvement in material properties that results
from the addition of nanoscopic filler particles to the polymer
matrix.1-4 In addition to their practical importance, such
composites offer diverse scientific challenges, combining
ideas from colloid science, polymer physics and chemistry,
as well as material science. Polymer nanocomposites become
even more interesting when the polymer matrix consists of
a block copolymer, capable of self-assembling into a wide
range of ordered nanoscaled structures; nanoparticles can then
be sequestered in certain domains to form ordered nanocom-
posites.5-7 The simultaneous amphiphilic and colloidal self-
assembly taking place in such ordered nanocomposites
gives them complex structures8 and makes the structure-
property relationship particularly intriguing. Since there is
little understanding of the mechanical properties that arise
in ordered nanocomposites, we present in this theoretical
work a first investigation of theorigins of the elastic prop-
erties of an ordered nanocomposite with spherical nano-
fillers.

Buxton and Balazs9 have studied a phenomenological
model of nanosphere-filled block copolymer systems in
which a hybrid Cahn-Hilliard/Brownian dynamics simulation
is used as input to a lattice spring model of the elastic moduli.
Their approach provides a versatile and useful method of
predicting properties but lacks polymeric detail in the
elasticity portion of the simulation. Furthermore, they exam-
ine filled block copolymer systems in the solid state, where
all morphological evolution is disregarded as the system is
distorted.

We examine the elastic properties of a melt state nano-
sphere filled block copolymer ordered nanocomposite using
self-consistent field theory (SCFT). SCFT is a coarse-grained,
first principles approach that has been successful in dealing
with block copolymer structure.10 In the framework of this
theory, local monomer density profiles of different block
copolymer chemical species are represented self-consistently
using chemical potential fields. Both the densities and the
fields are then used to determine the free energy for the
system, and, if desired, the internal energies and entropies
can be explicitly calculated. SCFT has been extended to deal
with hard nanosphere/block copolymer nanocomposites by
the incorporation of a density functional theory particle
contribution.11,12Further, Tyler and Morse have demonstrated
that the linear elastic behavior of a melt block copolymer
system, which is quasi-statically deformed, can be well
characterized using SCFT.13 We have recently adapted this
approach to an efficient real space, pseudo-spectral method14

and found an increasing elastic modulus in multiblock
copolymer systems as a function of block number, in
qualitative agreement with experiment.15 Here, we combine
these two advances in order not only to predict the effect on
the elastic properties of adding nanoparticles to a block
copolymer melt but also to explain thephysical originsof
the observed effects.

We will study the prototypical system consisting of a
symmetric AB diblock copolymer melt in the lamellar phase
with added spherical nanoparticles that have an affinity for
the A block of the copolymer. A schematic of this system is
shown in Figure 1.

Consequently, a lamellar morphology with the particles
sequestered in the A phase is being considered, and the
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system’s tetragonal symmetry is elastically characterized by
just five independent nonzero components of the elastic
modulus tensor. Additionally, the system is in a melt state
so that deformations parallel to the lamellar structure have
no effect on the free energy of the system.14 We are thus
left with only two relevant moduli,K33 andK44. Therefore,
we deform the system quasi-statically in two ways; it is
subjected to an extension/compression, and to a simple shear.
These deformations represent changes in the free energy
caused by changes in the domain spacing, not changes in
the moduli of the polymer melt or nanoparticle constituents;
the mixture is taken to be incompressible16 and the particles
are supposed to be nondeformable.17 These deformations
allow us to determine theK33 and K44 components of the
elastic modulus tensor,18 corresponding to extension/
compression and shear moduli, respectively. These compo-
nents are found by taking the second derivative of the SCFT
free energy with respect to the relative deformation. Greater
detail on the methodology can be found in ref 14.

We chose a system with a segregation oføN ) 25 between
the A and B blocks, with the particles considered to be of
the A species.ø is the Flory-Huggins monomer segregation
parameter andN is the degree of polymerization of the entire
diblock. The particle radius was chosen to be 0.725Rg, where
Rg is the unperturbed radius of gyration of a diblock
molecule. Finally, the particle-to-diblock volume ratio was
∼3.6, and a 15% volume fraction of spherical fillers was
added. The system was deformed in the two ways described
above and compared with a neat diblock system similarly
deformed. The morphology of the system before and after
extensional deformation is shown in Figure 2.

The free energy as a function of the two deformations is
shown in Figure 3; the pure diblock system is represented
by solid curves and the 15% filled system by dashed curves.
Figure 3a shows extensions and compressions whereas 3b
shows shear. The free energies in Figure 3 and hereafter are
plotted as dimensionless free energies per volume, see for
example eq 3. All curves in Figure 3 show parabolic shapes,
indicating that linear elasticity theory is applicable. The
curves were fitted with polynomials and the second deriva-

tives were used to findK33 andK44 for both the filled and
unfilled systems according to the methodology of ref 14.
The K33 and K44 moduli in each case were used to find a
tensile modulus by averaging over a polydomain sample
according to the Hill prescription19 as described in ref 14.

For the pure diblock system a dimensionless tensile
modulus of∼0.39 was found while for the nanocomposite
system, the modulus was∼0.31. Thus we predict that the
addition of nanoparticles willweaken the material. For
regular (homopolymer) nanocomposites, one expects the
addition of nanofillers to strengthen the composite.2 The
reduction in modulus found for our present system can be
explained by decomposing theK33 andK44 moduli as shown
in Tables 1 and 2.

These tables show totalK33 and K44 moduli values,
respectively, for 0% and 15% added fillers, as well as the
difference between the filled and unfilled system moduli.
The tables also give the contributions to the moduli of the
internal energy (U), translational entropy (ST), and the A and

Figure 1. Illustration of a single domain of a block copolymer/
spherical nanoparticle-ordered composite material. The spheres are
preferentially wetted by the A-block of the copolymer, shown in
red. The black represents the B-blocks.

Figure 2. Density profiles for an ordered nanocomposite in the
lamellar phase. The black lines are the A-block distribution (solid)
and the particle distribution (dashed) before elongation. The
corresponding red lines are the same distributions after stretching.
The B block is not shown.

Figure 3. Total free energy versus relative distortion for extension/
compression (a) and shear (b) of a diblock system. The neat diblock
free energy is plotted with the solid line whereas the 15% filled
system is shown with dashed line. In (a), negative deformations
are compressions while positive deformations are extensions. In
all plots, energies have been zeroed around the equilibrium spacing,
which is represented by a relative deformationε ) 0.
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B conformational entropies of the diblocks (SA andSB). Also
listed are the ideal gas (Sid) and steric (Sst) contributions of
the filler particles. The moduli can be broken up into
components like this because the second derivative of the
free energy expression

with respect to the relative deformationε

is additive. In eqs 1 and 2, the caligraphic characters represent
dimensionless energy per volume as defined, for example,
in eq 3. Although the components of the free energy may
not be parabolic like the total free energy, and may even
have large first derivatives, it is the curvature of the
components, which is to say, the second derivatives, that
contribute to the total curvature, or moduli. For information
on how these components are calculated, see ref 14. From
Table 2 it is seen that theK44 moduli for the filled and pure
diblock systems were found to be very close to zero. Thus
the main contribution to the tensile modulus arises from the
extensional modulusK33. Furthermore, the main drop inK33

from the 0% to the 15% case is a result of the internal energy
contribution and the A block conformational entropy con-
tribution.

These two contributions can be examined separately. Upon
extension/compression, SCFT shows that the lamellar inter-
facial width remains practically unchanged in both the filled

and unfilled cases. Furthermore, the A and B domains are
well segregated both before and after deformation, indicating
that there are few A monomers in the B region and vice
versa. Thus the absolute amount of energetically unfavorable
AB contacts is the same before and after deformation,
whereas the domain size changes. Adapting an expression
of Matsen and Bates,20 the internal energy contribution to
the free energy is

whereT is the temperature,kB is Boltzmann’s constant, and
N is the degree of polymerization of an entire diblock based
on a segment volume of 1/F0. æA(r ), æB(r ), andæp(r ) are
the local volume fractions of A and B monomers and
particles, respectively. The integral in eq 3 is constant under
the conditions described above, so that the internal energy
is inversely proportional to the volumeV. The lamellar
morphology is one-dimensional, so that the internal energy
can be written as inversely proportional to the equilibrium
domain sized*.

whereR is a constant. A relative deformationε that leaves
the interfacial width and the bulk mixing unchanged changes
eq 4 into

The SCFT internal energy for extensions/compressions is
shown in Figure 4a. Both for pure diblock and for filled
systems, the behavior reflected in eq 5 is observed. An

Table 1. Components of theK33 Elastic Modulus for 0% and
15% Added Nanoparticlesa

modulus 0% 15% ∆ modulus

K33 4.71 3.76 -0.95
K33

U 2.80 1.95 -0.85
K33

ST -0.58 -0.60 -0.02
K33

SA 1.23 0.49 -0.74
K33

SB 1.25 1.58 +0.33
K33

Sid 0.0 0.19 +0.19
K33

Sst 0.0 0.14 +0.14

a The change in the modulus between the pure diblock and the filled
diblock system is recorded in the last column.

Table 2. Components of theK44 Elastic Modulus for 0% and
15% Added Nanoparticlesa

modulus 0% 15% ∆ modulus

K44 0.00 0.00 0.00
K44

U 1.16 0.99 -0.17
K44

ST -0.53 -0.50 +0.03
K44

SA -0.30 -0.30 0.00
K44

SB -0.33 -0.10 +0.23
K44

Sid 0.00 0.00 0.00
K44

Sst 0.0 -0.10 -0.10

a The change in modulus between the pure diblock and the filled diblock
system is recorded in the last column.
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Figure 4. Internal energy contribution to the free energy versus
relative distortion for extension/compression (a) and shear (b) of a
diblock system. The neat diblock free energy is plotted with the
solid line whereas the 15% filled system is shown with dashed line.
In (a), negative deformations are compressions while positive
deformations are extensions. In all plots, energies have been zeroed
around the equilibrium spacing, which is represented by a relative
deformationε ) 0.
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estimate of the modulusK33
U can be found by taking the

second derivative of eq 5 with respect to the relative
deformation, which gives

showing that theU contribution to theK33 modulus is also
inversely proportional to the equilibrium spacing. SCFT
shows that the addition of filler particles enlarges the
equilibrium domain size of the nanocomposite compared to
the pure diblock system. Equation 6 then indicates that the
modulus will drop, as observed. In other words, the modulus
is weakened partially because there is less interface per
volume in the nanocomposite compared to the pure diblock.

The A block configurational entropy also contributes to
the overall drop in modulus. The filler particles have no
configurational entropy; in the filled system theSA energy
portion will rise (drop) under extension (compression) at a
slower rate because there is a smaller fraction of chains to
stretch (relax). This can be seen in Figure 5a. Thus, filler
particles weaken the material because they displace polymers
that have stretching energy, which could contribute positively
to the elastic modulus. In other words, the modulus is
weakened partially because there is less polymer and more
elastically inert filler per volume.

As mentioned, the shear modulusK44 makes a negligible
contribution to the tensile modulus, but it is interesting to
examine it nonetheless. Table 2 shows that both before and
after the addition of nanoparticles theK44 modulus is close
to zero. Table 2 also shows that the components ofK44 do
change in the presence of nanoparticles, but that these
changes cancel out. A large increase in the B block con-
formational entropy contribution to the modulus is seen, but
this is compensated for by a drop in the internal energy
contribution and the particle steric term.

As in the extension/compression case, the interfacial
profiles do not change significantly upon shearing of the
sample. The consequence is that the internal energy again is
inversely proportional to the volume of the system, as
previously explained. The B block conformational entropy
contribution to the free energy behaves similarly; from
Matsen and Bates,20 the B block energy is

where FJ(r ) is the distribution of diblock junction points,
wB(r ) is the chemical potential field for the B monomer
distribution, andq†(r ,f) is an SCFT propagator. A detailed
explanation of eq 7 can be found elsewhere.20,10 If we for
the moment ignore the contribution of the integral in eq 7,
the B conformational contribution can be written as

where â is a constant. A sinθ has been added to the
denominator of eq 8 to account for a change in interfacial
area upon shearing the sample. When the sample is sheared,
the volume is constant but the AB interfacial area increases;
θ is a measure of the amount of shear, withθ ) π/2
representing a nonsheared system. See ref 14 for more
explanations. The internal energy (eq 4) will be similarly
affected. From ref 14, the shear angle is related to the relative
distortion throughε ) cot θ. The internal energy and B
conformational entropy are then

Figures 4b and 5b show that the internal energy and B block
contribution to the free energy obey the relationships of eqs
9 and 10, respectively, for both the filled and unfilled
systems. The moduli for these are found through the second
derivative with respect toε and are

Both K44
U andK44

SB are inversely proportional to the equilib-
rium volume, with the important difference of a minus sign.
Thus, as the equilibrium volume is enlarged upon the addition
of fillers, the SB contribution to the modulus becomes a
smallernegatiVenumber, so the material would bestronger.
This effect is countered by theU contribution to the modulus,
which becomes smaller for the larger equilibrium volume

Figure 5. Conformational entropy contribution to the free energy
versus distortion for extension/compression (a) and shear (b) of a
diblock system. The neat diblock free energy is plotted with the
solid lines whereas the 15% filled system is shown with dashed
lines. In (a), negative deformations are compressions while positive
deformations are extensions; theSA contribution is shown in (a).
The SB contribution is shown in (b). In all plots, energies have
been zeroed around the equilibrium spacing, which is represented
by a relative deformationε ) 0.
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of the filled system. In other words, diblock molecules’
entropies help shear the system: see Figure 5b. The larger
domain size of the filled system means that there is less
stretching energy per volume (see eq 10), the molecules are
more relaxed to begin with at equilibrium, and therefore are
less inclined to help deform the system, which makes the
material stronger. This effect is countered since there is less
interface per volume in the filled system, and the par-
ticles’ excluded volumes interact more. The A block is not
treated the same way, since with the fillers added theSA

contribution to the free energy cannot be written in a form
such as eq 8.

In summary, we have calculated the tensile modulus for a
neat diblock copolymer system and for a diblock nanocom-
posite with 15% added nanospheres. Both systems were
considered to be in the lamellar phase, and deformations were
applied quasi-statically. The elastic modulus tensor compo-
nentsK33 andK44 were found and used to derive a tensile
modulus for a polydomain sample. It was found that the
addition of nanoparticlesweakenedthe material. This was
attributed to the larger lamellar domain size of the equilib-
rium filled system (it had less interface per volume) and to
the displacement of polymer by the filler particles (there was
less elastic polymer per volume). Although the shear modulus
was negligible, it was acted on by similar mechanisms, with
the components canceling each other. Given that ordered
nanocomposites of the sort described here can now be
realized, we believe our predictions should be amenable to
experimental verification. It would be interesting to change
the distribution of the particles in the block copolymer
through changes of wetting properties, particle size, or
volume fraction. Such changes in structure could significantly
change the properties.
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