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 Abstract:  

 

Step strain experiments and dynamic light scattering measurements are perfomed to characterize 

the dynamic behavior of an o/w droplet microemulsion into which is incorporated a telechelic polymer. 

At sufficient droplet and polymer concentrations, above the percolation threshold, the system is 

viscoelastic and its dynamic structure factor shows up two steps for the relaxation of concentration 

fluctuations: the fast one is dominated by the diffusion but the slower one is almost independent of the 

wave vector. The terminal time of the stress relaxation τR and the slow time of the dynamic structure 

factor τS  are both presumably controlled by the residence time of a sticker in a droplet: consistently, 
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τR and τS are of the same order, they both vanishes at the percolation threshold according to power 

laws but with different exponents. We discuss these features in terms of deviations at the transition, 

from the usual mean field description of the dynamics of transient networks. 

 

*to whom correspondence should be addressed: appell@gdpc.univ-montp2.fr
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INTRODUCTION 

 

Quite a number of viscoelastic materials consist of a some kind of a transient network embedded 

within a liquid solvent. Hence, the dynamic light scattering is dominated by concentration fluctuations, 

the relaxation mechanism of which is more complex than the simple diffusion of usual brownian 

dispersions. At short times, the materials behaves like a solid and one observes a gel like mode. 

Usually this mode is overdamped due to the viscosity of the liquid solvent: it has a q2  dependence 

revealing that it is dominated by mutual diffusion. At long time however, one observes in addition a q-

independent mode revealing a second mechanism for which diffusion is not the rate limiting step. 

Indeed, the characteristic time of this second step is comparable to the terminal time in linear rheology. 

Theories reported to date [1 -3] for the interplay between mutual diffusion and viscoelastic properties 

of such materials mainly address the case of semidilute polymer solutions for which a realistic 

quantitative description [4] of the linear rheology is available. On the other hand, a somewhat wider 

variety of viscoelastic materials has been investigated experimentally by dynamic light scattering 

(polymer solutions [5,6], giant micelles [7-10], thermoreversible aqueous copolymer gel [11], 

associating random block copolymer [12,13], networks of telechelic polymers [14-17]): two modes at 

least were clearly identified and even in some cases evidence of three modes was claimed.  

Water soluble polymers with hydrophobic end blocks indeed exhibit viscoelastic behavior even at 

low concentration in binary aqueous solutions. These are indeed determined by the tendency for the 

end blocks to micellize into hydrophobic clusters linked together by the hydrosoluble threads and 

leading so to the formation of a reversible connected network. The rheological properties are controlled 

by the density of the network which determines the instantaneous elastic modulus and by the average 
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residence time of a hydrophobic sticker in a given cluster which controls the characteristic time of the 

stress relaxation. Due to their many applications as commercial thickeners, these telechelic structures 

have been the subject of many publications [18-24] in the past ten years. Most studies however have 

focussed on pure polymer/water binary solutions although most practical applications involve other 

components amongst which surfactants are ubiquitous. Besides their practical interest, ternary 

mixtures, involving surfactant micelles and telechelic polymers in water, provides the possibility to 

control separately the average distance between clusters and the average degree of connections 

between clusters : the surfactant concentration monitors the number density of the micelles (the size of 

which are essentially controlled by the self assembling properties of the surfactant component) while 

the relative amount of telechelic polymers per micelle determines the connectivity of the network. 

Another advantage of ternary systems is that the contribution of the micelles to the scattering (light or 

neutron) heavily dominates that of the polymer, making so the analysis of scattering data easier and 

less ambiguous [25-29]. 

We investigate here the dynamic properties of such a quasi ternary system using quasi elastic light 

scattering and rheometry. The system consists of an oil in water droplet microemulsion with well 

controlled droplet size and shape into which moderate amounts of a hydrophobically end modified 

poly(ethelene oxide) PEO are added. Previous structural characterization [ 30] of this system using 

neutron scattering have shown that the size and shape of the droplets are not affected by the addition of 

the telechelic polymer. Moreover, the changes in the structure factor after addition of the polymer have 

revealed the tendency for the polymer to bridge neighbouring droplets. Consistently with this structural 

picture of droplets reversibly linked to one another, the samples exhibit strong viscoelastic behavior 

provided the polymer amount is large enough. We measure the time resolved stress response to 

moderate step strains using a strain controlled rheometer as function of the polymer concentration at 
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fixed droplet concentration. And we compare these to the relaxation of the spontaneous fluctuations of 

the droplet concentration as measured by dynamic light scattering (DLS). Several characteristic 

features measured by these two techniques exhibit singular evolutions reminiscent of a percolation 

behavior: a finite minimum polymer concentration is required to built up an infinite transient connected 

network spanning the whole sample. 

 

EXPERIMENTAL SECTION. 

Preparation of the samples. 

The droplet microemulsion involves two non-ionic surfactants : TX100 and TX35, the weight ratio 

Ω of which fixes the spontaneous curvature of the surfactant film. The surfactant micelles are swollen 

with decane at a constant weight ratio Γ with the surfactant (Γ = [decane]/[TX100+TX35]). 

Appropriate choice for Ω and Γ provides spherical droplets with the desired radius : we used Ω= 0.5 

and Γ= 0.7 . Neutron scattering (figure 1) revealed 82Å spherical droplets with low polydispersity: 

their size and shape remain constant upon variation of the concentration in droplets and of the amount 

of added polymer.[30] 

The poly (ethylene-oxide) polymer has been hydrophobically modified and purified in the 

laboratory using the method described in [31,32]. The molecular weight of the starting products is 

determined by size-exclusion chromatography. After modification, the degree of substitution of the 

hydroxyl groups was determined by NMR using the method described in [33]. The degree of 

substitution is found to be equal or larger than 98% . The hydrophobically modified poly (ethylene-

oxide)-PEO-2M contains an isocyanate group between the alkyl  chain C18 H25 and the ethylene-oxide 

chain. 
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The aqueous solutions are characterized by their volume fraction Φ of aliphatic chains from 

decane, TX and PEO-2M which form the hydrophobic cores of the microemulsion droplets, and by the 

number r of C18 chains per droplet. They are prepared by weight in triply distilled water in order to 

obtain samples with given Φ and r. All the parameters necessary to calculate Φ and r from the sample 

composition are summarized in Table 1; r is calculated assuming the radius of the droplets is equal to 

82Å [30] . 

Phase behavior. 

Since the size and shape of the droplets are essentially invariant, we consider the system as a quasi 

ternary system (droplets/polymer/water) and we represent in figure 2 the phase behavior (at fixed 

pressure and temperature) as function of two variables : the droplet concentration Φ (volume fraction 

of the hydrophobic cores of the droplets) on the horizontal axis and the number r of hydrophobic 

stickers per droplet (twice the number of polymers per droplet) on the vertical axis. A phase separation 

is seen at high r and low Φ:  neutron scattering data (not shown here) taken from the upper and lower 

phase respectively reveal that both consist of droplets of the same radius (82Å) but with different 

concentrations. The critical point associated to this liquid-gas phase separation is approximately 

located by examination of the strong turbidity of the samples. Note that the critical point does not 

coincide with the lower point on the coexistence curve which means that the binodal are not horizontal 

but tilted: the upper phase, more concentrated in droplets, is also more concentrated in polymer than 

the lower more dilute phase. Of course this phase behavior is controlled by the effective attractive 

contribution arising from the bridging between droplets [ 20, 34-36]. The "percolation" line tentatively 

sketched in the lower part of the diagram is drawn according to the data reported in later sections. 



Dynamic behavior of a generic viscoelastic sample 

1) Rheometry: step strain experiments. All rheological data presented here are obtained from step 

strain experiments using a Rheometrics RFS II strain controlled rheometer in the cone and plate 

geometry. At time t =0, the sample is abruptly submitted to a sudden step shear strain of amplitude γ. 

And the time resolved shear stress response σ(t) is recorded : the time resolution of the rheometer is of 

the order of 0.02s ; so we discard data points recorded before time t =0.05s. We here restrict our 

attention to the linear regime for which : 

 G(t) =  σ(t) / γ  (1) 

does not depend on γ. Comparing stress responses after increasing step strains, we checked that the 

linear regime extend up to γ =0.3 at least for all samples investigated here. Figure 3 shows a typical 

stress relaxation : it is taken from the sample Φ =12.4 % and r =18 after a step strain of γ =20%. We 

see an almost linear decay in lin/log units which indicate an almost Maxwellian behavior. However 

a better fit is obtained using a slightly stretched exponential with an exponent of 0.82 : 

  (2) G (t) = G (0) exp  [−(t / τR)0.82]
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with G(0) = 1830 Pa and.τR = 0.125 s. Note that τR is not large compared to the time resolution of the 

rheometer : quite an important initial portion of the stress relaxation is therefore missed due to the lack 

of resolution of the rheometer. However a very similar stress relaxation pattern (same exponent for the 

stretched exponential) have been observed for a similar system but with a different surfactant 

exhibiting relaxation times of the order of 1s : the fit could therefore be extended down to much lower 

values of t / τR for this other system. We could check that the values for G(0) and τR extracted from the 

same fitting procedure was quite insensitive to the number of experimental points discarded in the 

initial decay up to values of t /τR of the order of 1. We therefore keep confidence in the here obtained 

values of G(0) and τR. Right in line with the usual interpretation in terms of the reversible network 



theory, we expect the stress relaxation to arise from the finite residence time τRt of a sticker in a given 

droplet. Since the escape of a given sticker from a droplet is presumably a thermally activated process, 

we expect τRt and therefore τR to exhibit an Arrhenius dependence versus the temperature: 

 τR = τ0 exp (ES / kBT) (3) 

where τ0 is some inverse frequency of attempts and the activation energy ES is the reversible work of 

extraction of the sticker from the hydrophobic core into the free water. Figure 4 shows the evolution of 

τR as function of the inverse temperature for the same sample as above. The Arrhenius dependence 

indicate an activation energy ES = 43 kBT . We shall see however that τR does not simply coincide with 

the life time τRt . 

2. Rheometry: steady shear measurements. Submitting the same sample to steady shears at 

increasing rates Ýγ  with the same rheometer (figure 5) we obtain a shear thinning flow curve with a 

discontinuous instability at high shear rate:  . Systematic measurements with shear cells of 

different geometries clearly indicate that this instability takes place close to the walls of the shearing 

cell, however the signature is not that of simple sliding ar the walls. We are currently investigating this 

instability which we shall discuss in a forthcoming article. At low shear rate however, a Newtonian 

behavior is recovered with a well defined low shear viscosity: η (

Ý γ ≥  τR
-1

.

Ýγ ->0). For the above sample we find 

η ( Ýγ ->0) =  195 Pa. s-1. Note that, consistently with the quasi-Maxwellian stress relaxation the low 

shear viscosity is of the same order as the product of the modulus G(0) by the terminal relaxation 

time τR: η ( Ýγ ->0) ~ G(0). τR ~ 228 Pa. s-1 . 
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3-Dynamic light scattering. The measurements are performed on a standard setup (AMTEC 

Goniometer + Brookhaven correlator) the light source is an argon ion laser (λ = 514.5nm ). The full 

homodyne intensity autocorrelation function was measured at different q’s ; the wave vector  

q =
4πn
λ

 sin
θ
2

 with λ the wavelength, θ the scattering angle and n the refractive index of the 

microemulsion; q range from 3 10-4 to 3 10-3 Å-1. If the scattered field obeys gaussian statistics the 

normalized autocorrelation function g2 (q,t) : 

 g2(q,t)  =  Iq t( ) Iq(0)  Iq
2

 (4) 

can be related to the theoretically amenable first-order electric field correlation function g1 (q,t) by the 

Siegert relationship:.g2(q,t) -1 = g1(q,t) 2 . In our system, the scattered light mostly arises from the 

droplets and the contribution of the polymer is negligible. The measurement therefore probes how 

fluctuations of the concentration of the droplets relax at a length scale 1/q: the time dependence of g1 

(q,t)  is thus given by : 

 g1(q, t) =  δΦq (t) δΦ-q(0) δΦq
2

. (5) 

The normalized intensity autocorrelation function g2(q,t)-1 taken at θ =90   (q= 2.3 10-3 Å-1) for the 

same sample as above Φ=12.4% and r =18 is shown in figure 6A; for the sake of comparison we show 

in figure 6B the same pattern obtained for a microemulsion with the same concentration but no added 

polymer (Φ =12.4%,  r=0). For the bare microemulsion, we find a single exponential relaxation (full 

line in figure 6B) driven by the collective diffusions of the droplets. This is confirmed by the q-

dependence (data not shown) of the characteristic time: τ−1 =  Dcoll  q
2 , where Dcoll=  2.9 10-11 m2 s-1 

, a value consistent with the radius for the droplets as measured by neutron scattering. The pattern in 

figure 6A is different indicating a relaxation in two steps at least, with very different time scales: the 
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first step has a characteristic time comparable to the diffusion in the bare microemulsion whereas the 

second one is thousands time slower with a time scale comparable to that of the stress relaxation in the 

above step strain experiment. Accordingly, the pattern was fitted (full line in figure 6A) with the 

expression: 

 g2(t) −1 =  Af exp− t τf( )  +  As exp  − t τs( )0.82( ) ⎡ 
⎣ 

⎤ 
⎦ 

2
          (6) 

where the indices s and f stand for the slow and the fast contribution respectively. Actually the quality 

of the fit is very good. The q-dependence of τf in figure 7: (τf ~ q-2) indicates a simple collective 

diffusion process with an effective diffusion coefficient Dcoll= 3.5 10-11 m2 s-1  close to but slightly 

larger than that of the bare microemulsion. On the other hand, τs in figure 8 appears to depend weakly 

on q : the slow step is thus not limited by diffusion. The relative amplitudes of the two relaxation 

mechanisms (cf figure 8) shows only a weak dependence on q. For the sake of consistency we derive 

from those plots τs0 and [As/(AS+Af)]0, the values extrapolated to zero wave vector. 

Evolution with r : evidence for percolation 

We investigate systematically the dynamic behavior as function of r at fixed droplet concentration: 

Φ =12.4 %. This particular concentration was chosen because it corresponds to an average distance 

between droplets comparable to the end to end distance in a gaussian coil having the same full length 

as the polymer: in such conditions, the polymer can easily bridge neighbouring droplets without being 

forced to stretch 

1) Rheometry. For all samples G(t) could be exploited following the procedure described in the 

above subsection, we use the same stretched exponential for the fit (same exponent 0.82) although 
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close to the percolation threshold the agreement is not so good as at higher r. G(0) and τR are plotted 

versus r in figure 9A and 9B whereas the variations of the viscosity η ( Ýγ ->0)  are shown in figure 10. 

All three quantities decrease with decreasing r and vanish below a finite value of r of the order of 4, 

suggesting strongly a percolation process. Accordingly [37], we fitted  the evolution of the three 

quantities according to power laws of the form r − rp( )β where rp is the number of stickers per droplet 

at the percolation point. Good fits were obtained (full lines in figure 9A, 9B and 10) for the three 

quantities with the same value for rp = 4.23, but different exponents β’s: 

  (7a) ηÝ ( Ý γ  - > 0) =  0.89(r - 4.23)2.06  Pa.s

  (7b) G(0) =  45 (r - 4.23)1.42             Pa

  (7c)   τR =  0.032 (r - 4.23)0.49         s

 

Note again that consistently with the quasi Maxwellian behavior of all samples, the exponent for 

η ( Ýγ −>0) is close to the sum of the exponents of G(0) and of τR. 

2) Dynamic light scattering. The correlation functions g2(t) -1 at various r are shown together on 

figure 11. Clearly the relative contribution of the slow mode decreases and vanishes when approaching 

the percolation point; correlatively, the relaxation time decreases as well. On figure 12A and 12B we 

plotted respectively the evolutions of [As / (Af + As)]0 and of τS0  versus r. On the same figures, we 

force fitted these quantities with power laws where the percolation connectivity index is fixed at the 

same value as derived from the above step strain measurements: rp= 4.23. Actually the quantitative 

agreement is good, again supporting strongly the idea that the percolation is indeed relevent for the 
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slow mode of concentration fluctuations as well as for the stress relaxation. The effective exponents 

extracted from these fits are: 

 As Af + As( ) [ ]0 =  0.26 (r - 4.23)0.37  (8a) 

  (8b)  τs0  =  0.06(r - 4.23) 0.9               

We notice that the stress relaxation time τR and the slow time τS in DLS not only differ in magnitude 

but have different evolutions –different exponents- as function of the density of links. 

On the other hand (figure 13), the effective mutual diffusion coefficient, as derived from the fast 

mode analysis, only shows a mild dependence on r with no singularity at the percolation point: the 

initial fast step is therefore hardly affected by the connectivity of the transient network. 

DISCUSSION 

As a main finding of our experiments, several dynamic characteristics vanish at a finite degree of 

connectivity suggesting percolation: the instantaneous shear modulus G(0), the terminal relaxation time 

τR, the low shear viscosity η ( Ýγ ->0)  , and the relative amplitude  [As / (Af + As)]0  and the 

characteristic time τS0 of the slow step in dynamic light scattering. (Others do not: the collective 

diffusion coefficient Dcoll as well as the amplitude of the fast mode in dynamic light scattering show 

no singularity). We underlined the singular evolutions at the percolation by fitting the corresponding 

data with power laws and the question arises of the accuracy of the exponents that we determine 

accordingly. The situation is not very good for G(0) and τR. As noted above, the time resolution of the 

rheometer (0.05s) is a serious limitation specially close to the percolation where the stress relaxation 

time τR is short. Values extracted by extrapolation to t = 0 may well be misestimated. In dynamic light 

scattering, the contribution of the slow process vanishes at the percolation, so the accuracy for the 
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relative amplitude and for the characteristic time is not very good either. The situation is much better 

for the low shear viscosity η ( Ýγ ->0)  for which the accuracy remains very good even for the most fluid 

samples. This is the reason why in practice we proceeded in the following manner. We first fitted the 

low shear viscosity data for which the accuracy is best even close to the threshold; we so obtained 

reliable estimations of both β η ( Ýγ ->0)   and rp. Then we fitted all the other quantities forcing the 

threshold rp at the same value and leaving the exponent as the only free adjustable parameter. Actually, 

the agreement looks good. But, if we consider each quantities separately, we can indeed obtain equally 

good fits with different thresholds and exponents: the value of the exponent then depends very 

sensitively on the value taken for the threshold. At the present time, we have no firm theoretical 

grounds to support the assumption of one common threshold for all quantities. We mention in the next 

paragraph the difference between geometrical connectivity percolation (likely relevent for DLS) and 

structural rigidity percolation (likely relevent for rheology). So, we certainly cannot claim for an 

accurate quantitative characterization of the exponents at the threshold. Another intriguing aspect of 

our data deserves to be underlined. In principle, in percolation situations, the singular power law 

dominates the evolution of a given quantity only close to the threshold. Far above, the mean field 

behavior is usually recovered. In contrast, our fits happen to be surprisingly good even far above rp, a 

feature that we do not understand. This is a further reason to be very cautious with the exponents we 

determine from such fits which include data taken far above rp. We discuss the behavior of each 

quantity in the following paragraphs. 

G(0), as measured in a step strain experiment, characterizes the immediate elastic response of the 

network to a sudden deformation, before any relaxation due to the finite life time of a link. It is natural 
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in this picture that G(0) vanishes below a finite value rp of the connectivity parameter: below rp there is 

no crosslinked infinite path, connecting continuously the cone and the plate, and capable to sustain the 

transient elastic torque. Actually, data reported in the literature for situations similar to ours displayed 

essentially the same features and were analysed accordingly. Bagger-Jörgensen et al [26] found an 

exponent βG(0) ≈ 1.5 and their percolation threshold was about 2.1 as expressed in number of polymer 

per droplet: i-e 4.2 in terms of number of stickers per droplet. These values are remarkably close to 

ours: their experimental conditions (average distance between droplets and polymer molecular weight) 

were in fact also very close to ours. The data of Schwab and Stühn [17] display a percolation behaviour 

for G(0) as well but with a slightly different exponent: βG(0) ≈ 1.7. Since by definition G(0) does not 

involve any feature related to relaxations, its evolution can be compared to theoretical predictions 

derived at true sol-gel transitions [37]. The exponent calculated for the elastic modulus is 1.7 above the 

gel point: this is very close to the value of Schwab and Stühn but higher than ours. However, as 

underlined above, one should not overestimate the accuracy of the fits. The value we find for the 

threshold rp = 4.2 is higher that expected from simulation on a cubic lattice: ≈ 1.5 [38]. Part of the 

discrepancy arises from the number of threads that loop on the same droplet and therefore do not 

participate to active links. On the other hand, the value predicted from simulations is derived assuming 

that one bond at most can link two neighbouring sites whereas in our experimental situation, two or 

even more chains may link two adjacent droplets. Moreover, polymer links only sustain central forces 

between droplets and do not oppose any resistance to reorientations at fixed length. Then, elasticity 

requires not only an infinite path of links connecting the cone and the plate but also that this path is 

sufficiently triangulated so that the stress is not immediately released by simple bond reorientations. 
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This leads to the notion of a “rigidity” threshold which is certainly somewhat higher than the usual 

“connectivity” threshold [39]. 

The terminal relaxation time τR is related to the residence time of a sticker in a droplet. In the 

usual interpretation of the stress relaxation in transient networks [ 40,41] the spatial distribution of the 

nodes is assumed to be affinely deformed by the step strain and the length distribution of the links is 

thus shifted accordingly. The transient off equilibrium length distribution is at the origin of the 

measured stress. From time to time, stretched links disengage due to the finite residence time of their 

stickers and reconnect with the equilibrium length distribution: they “forget” the initially imposed 

strain and no more contribute to the stress. In this picture the stress at time t is a simple measure of the 

number of links that still reminds the initial strain after time t and we would expect τR to be simply 

identical to the residence time. Our measurements do not support this expectation. We find that τR 

sensitively depends on the average degree of connectivity r and vanishes at rp. Whereas the residence 

time is completely determined by the adsorbtion energy of a sticker in a droplet. It should not depend 

on non local features such as the degree of connectivity of the network. To understand the discrepancy, 

we note that the above affine picture is a mean field description which assumes that the imposed strain 

distribute homogeneously within the network. Such homogeneity certainly breaks when approaching 

the percolation point. Close to the threshold, the infinite connected cluster consists of more densely 

crosslinked subclusters connected to each other by weaker parts where the links are less dense. 

Breaking a small number of links only, in a weak part, will suddenly release the stress within the whole 

adjacent dense subclusters. In this non mean field picture, we expect τR to be shorter than the residence 

time and indeed to vanish at the percolation as observed in the experiment. 



When approaching a true sol-gel transition from below, the viscosity of the sol increases with the 

degree of connectivity and diverges at the transition. Above the transition, the viscous behavior of the 

sol is replaced by the elastic behaviour of the gel. Although we have not measured systematically the 

viscosity below rp, we indeed expect it to exhibit a similar behavior related to the divergence of the 

size of the connected clusters at the percolation. Above a true gel transition, speaking of viscosity 

makes no sense because a gel is elastic and does not flow under mild enough stresses. In our system 

however, the terminal time τR is finite and the material ultimately flows beyond τR whatever low is the 

applied strain: the notion of low shear viscosity η ( Ýγ ->0)   makes sense above the percolation point. 

Just like the instantaneous elastic modulus G(0), it is dominated above rp by the behavior of the infinite 

cluster. So we expect it to decrease in a singular manner when approaching the percolation point from 

above in agreement with our measurements. Consistently with the quasi Maxwellian stress relaxation at 

all r, we find: η ( Ýγ ->0)  ≈ G(0) τR , and the exponent of the viscosity is close to the sum of that of the 

elastic modulus and that of the terminal time (β η ( Ýγ ->0) ≈ βG(0) + β τR) 

The current litterature dealing with dynamic light scattering on transient networks is more 

confusing. At least two and even sometimes three steps are reported for the relaxation of concentration 

fluctuations. In some cases[14-16] all three steps are dominated by diffusion ( τ 
-1 

∝ q2 ); in other 

reports [13, 17], the longest and the shortest steps are diffusion like whereas the intermediate step is q-

independent. In order to get rid of possible artifacts, we spent a lot of time caring about the quality of 

the samples. In some early measurements, we also found a third very slow relaxation in addition to the 

two steps described in the experimental section. The samples however appeared slightly misty due to a 
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residual amount of insoluble parrafin in the polymer batch. Further purification of the polymer 

suppressed the misty aspect. And with the purified samples, all our attempts to detect a third relaxation 

failed. The absence of the third relaxation is somewhat puzzling. A consistent coarse grained 

description of the local state in the sample involves at least three distinct internal variables: the droplet 

concentration Φ, the active links to dead loops ratio α , and the number of polymer per micelle r/2. 

Indeed, DLS only probes the relaxations of Φ, but Φ is coupled to both α and r. Φ and r are conserved 

variables (conservation of the total amount of droplets and of polymer), whereas α is not conserved 

(changing locally the link to loop ratio does not imply transport of matter). We therefore expect three 

dynamic modes: two of them being dominated by diffusion and the remaining one being essentially 

independent of q (if the caracteristic timescales are sufficiently different). 

In practice, our DLS results can be qualitatively interpreted as follows. The short time, diffusive 

regime corresponds to relaxation of concentration fluctuations at fixed connectivity for each droplet. 

The corresponding diffusion coefficient is essentially comparable to that of the bare microemulsion but 

slightly accelerated by the spring like elasticity of the links. This diffusive motion then saturates after 

some times reflecting the fact that part of the concentration fluctuations arises from fluctuations of the 

connectivity density which is frozen at short time. This accounts for the shoulder in the dynamic 

structure factor. This intermediate plateau would last for ever if the system was in a true gel state with 

infinite life time for the links. But the system is liquid and the connectivity is renewed completely after 

delays of the order of the residence time: the relaxation of the concentration fluctuation then proceeds 

to completeness. This second step still involves diffusion but the rate limiting step is not the motion of 

the free droplets but rather the renewal of the connectivity. Since, as analysed above, the connectivity 

α  is not conserved, we expect the characteristic time to be q-independent and indeed the slow time τs 
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is only weakly q-dependent. Following this analysis, τS0 should compare with the terminal time of the 

rheology τR which also corresponds to the renewal of the connectivity. However, although both times 

vanish at the percolation threshold, they not only differ up to some prefactor but clearly show different 

exponents when approaching the percolation. And the question arises of the origin of this difference in 

behavior? 

Actually, the above qualitative analysis of the dynamic structure factor would apply to any binary 

viscoelastic material [2]. Comparison with the behavior of another viscoelastic system, but having a 

very different structure, suggests that the difference between τS0 and τR is specific to our system. 

Semi-dilute solutions of wormlike micelles are known to exhibit a two step dynamic structure factor 

[9,10]. We prepared a semi-dilute solution of wormlike micelles by dissolution of cetylpyridinium 

chloride and Na-salicylate (mole ratio NaSal/CPCl=0.6) in a 0.5M NaCl aqueous solution: the total 

weight fraction of CPCl and salicylate was 12 %. At such a concentration, the solution shows up a 

strong viscoelastic behavior as revealed by the quasi-Maxwellian stress relaxation shown in figure 

14A. It indeed arises from the entanglements between the wormlike micelles so deep into the semi-

dilute regime. The dynamic structure factor shows two relaxation steps: the shorter indeed has the 

expected q-dependence for diffusion whereas the longer one is remarkably independent of q. We plot 

on figure 14B the slow step in DLS  of a typical semi-dilute solution of giant wormlike micelles. 

Interestingly, the terminal time τR of the rheology (τR = 0.52 s) and the characteristic time τS of the 

slow step in the dynamic stucture factor (τS = 0.5 s)  are almost identical. We checked that this 

coincidence actually resists to change in the experimental conditions (concentrations and temperature). 
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So there is clearly an unexpected specific feature in our transiently linked droplets. It may 

originate in the geometry of the phase diagram in figure 2. The two phase coexistence implies the 

existence of a spinodal line tangent to the binodal line at the critical point. So moving vertically in the 

phase diagram, increasing r above the percolation threshold at fixed Φ =12.4 %, one gets closer and 

closer to the spinodal line. The vicinity to this line should not affect the stress relaxation which only 

probes the connectivity renewal. But it may bring an additionnal slowing down for the slow step of the 

relaxation of concentration fluctuations for which the ultimate driving force is the inverse osmotic 

compressibility (at relaxed connectivity) which goes to zero at the spinodal line. To check further this 

point, we did the same rheology and QELS measurement for samples along a dilution line at fixed 

connectivity index r=18 in the direction of the critical point PC . τR decreases upon dilution consistently 

with the expectation that at fixed r the relative amount of active bridges (versus dead loops) indeed 

decreases upon dilution. On the other hand τS0 just shows the opposite trend: it increases although the 

density of active bridge decreases. This means that the slowing down due to the increasing osmotic 

compressibility overcompensates the accelerating effect due to the decreasing amount of active 

connections. 

To sum up briefly, we have investigated the dynamic properties of a model transient network using 

rheometry and dynamic light scattering. Several characteristic features vanish below a well defined, 

finite minimum value of the relative concentration in telechelic polymer suggesting strongly a 

percolation behavior. This is indeed not unexpected since a minimum amount of polymer is certainly 

required to build up a reversible network spanning the whole sample and thus capable either to sustain 

transiently an elastic stress or to limit for some time the complete release of a concentration fluctuation. 

But beyond this qualitative picture, some intriguing facts appear in our data. First of all, power laws 
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still fit the data far above the threshold: the mean field behavior is still not recovered at a polymer 

concentration five times larger than that of the threshold. Second, the absence of a third very slow step 

in DLS suggests that the polymer concentration is only weakly coupled to the droplet concentration. 

Finally, the different evolutions of the stress relaxation time and the characteristic time of the slow step 

in DLS probably arise from the vicinity of the phase separation determined by the attractive bridging 

interaction between the droplets. 
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Table 1 Molar Mass and density of the components of the samples 
 

Molar Mass 
(dalton) 

Density 
(g/cm3) 

 Component  (abreviated in the text)  HC(a) polar 
part 

HC(a) 

    H2O 18 - 1  

[H3C-(C-(CH3)2-CH2-C-(CH3)2)ϕ] (O-CH2-CH2)9.5 -OH  (TX100) 624 189 1.2 0.86 

[H3C-(C-(CH3)2-CH2-C-(CH3)2)ϕ ](O-CH2-CH2)3  -OH     (TX35) 338 189 1.2 0.86 

[H3C-(CH2)8 CH3]                                                           (decane) 142 142 - 0.75 

[CH3-(CH2)11]-NH-CO-(O-CH2-CH2) 227  ~11 000 506 1.2 0.81 
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                               -O-(CO)-NH-[ (CH2)17 CH3 ]          (PEO-2M) 

a) HC = hydrophobic part of the component indicated in brackets in column 1 



FIGURE CAPTIONS 

Figure 1 A small angle neutron scattering pattern in the Porod representation for the 

microemulsion droplets prepared in deuterated water. The open circles are the data points for a sample 

with a volume fraction of hydrophobic cores Φ = 0.014. The solid line correspond to the form factor of 

spherical droplets with a gaussian distribution of size with a mean  radius of 82Å and a standard 

deviation of 7Å .For more details see ref [30]  

Figure 2  Phase behavior of the quasi ternary system (droplets/ PEO-2M / water) as a function of 

the two variables: Φ the volume fraction of the hydrophobic cores of the droplets and r the number of 

hydrophobic stickers (C18) per droplet: r = twice the number of polymers per droplet. Pc is the critical 

point associated to the phase separation observed at low Φ and high r values (see text). The dotted line 

is a tentative drawing of the percolation line derived from preliminary step-strain measurements. The 

samples studied here lie on the thin vertical line with Φ=12.4%. 

Figure 3    Stress relaxation curve after a step strain of γ= 20% for the sample Φ = 12.4 % and r= 

18. The solid line is the fit of the experimental data with the expression given by (2) with                  

G(0) =1830 Pa and τR =0.125 s 

Figure 4  Arrhenius plot: LogτR= f(1/T) for the sample Φ = 12.4 % and r= 18. From the straight 

line we obtain using relation (3)  ES ~ 43 kBT  . 

Figure 5     The flow curve = viscosity η  as a function of the rate γ  for the sample                     Φ 

= 12.4 % and r= 18. η (γ  -> 0) = 195 Pa.s. Note the abrupt drop in viscosity around 2s

.

. -1 . 

Figure 6     Normalized autocorrelation curve measured at θ = 90° (q= 2.3 10-3 Å-1).Figure 6A: for 

the sample with Φ = 12.4 % and r= 18. The solid line is the fit of the data with relation (6) and the 

parameters  Af   = 0.29, τf = 46 µs and As= 0.56, τs = 0.6 s. Figure 6B for the corresponding bare 

microemulsion Φ = 12.4 % and r= 0 . The solid line is a fit to a single exponential with τ = 64 µs 
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Figure 7  For the sample with Φ = 12.4 % and r= 18, illustration of the variation of 1/τf  with q2 .  

The slope of the line yields Dcoll = 3.5 10-11 m2 s-1 . 

Figure 8  For the sample with Φ = 12.4 % and r= 18, illustration of the weak dependence on q of τs 

  figure 8A  and of As /( Af + As ) figure 8B   

Figure 9   For samples with Φ = 12.4 % : Evolution with r of G(0) and τR  derived from the 

experimental results as described in figure 3 for the sample with r=18.  Figure 9A: G(0), the solid line 

is the fit of the data with a power law given by relation (7b). Figure 9B : τR the solid line is the fit of 

the data with a power law given by relation (7c).  

Figure 10   For samples with Φ = 12.4 % : Evolution with r of the viscosity η (γ ->0) derived from 

the experimental results as described in figure 3 for the sample with r=18. The solid line is the fit of the 

data with a power law given by relation (7a). 

.

Figure 11    The normalized intensity autocorrelation curves measured at θ = 90° (q= 2.3 10-3 Å-1) 

for samples  with Φ = 12.4 % and r= 0,3,6,9,12,15,18,21 for the curves from left to right.  The solid 

line through the experimental points are the fits calculated using relation (6).  

Figure 12   Evolution with r of the relative amplitude [AS / (A f + AS )]0 and of the relaxation time 

τS0  for the slow relaxation mode derived from the curves of figure 11. 12A : [AS / (A f + AS )]0 the 

solid line is the fit of the data with a power law given by relation (8a) and 12B : τS0 . the solid line is 

the fit of the data with a power law given by relation (8b).  

Figure 13    Evolution with r of the collective diffusion coefficient Dcoll corresponding to the fast 

relaxation time from the curves of figure 11. 

Figure 14   Dynamical behavior of another type of transient network : a semi -dilute solution of 

wormlike micelles : Cetyl pyridinium chloride  + salicylate of sodium, weight fraction of micelles = 

12%. 14A: The stress relaxation curve G(t) for the same sample is an exponential with τR = 0.52s. 14B: 
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The second relaxation mode in dynamic light scattering is described by an exponential decrease with τS 

= 0.5s. 
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