Review Article
Toward Understanding Insulin Fibrillation

https://doi.org/10.1021/js960297sGet rights and content

Abstract

Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular β-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

References and Notes (78)

  • F. Bischoff et al.

    Biol. Chem.

    (1929)
  • N.R. Blatherwick et al.

    J. Biol. Chem.

    (1927)
  • D.F. Waugh

    Adv. Protein Chem.

    (1954)
  • T. Blundell et al.

    Adv. Protein Chem.

    (1972)
  • J.L. Farrant et al.

    Biochim. Biophys. Acta

    (1952)
  • N.T. Yu et al.

    Arch. Biochem. Biophys.

    (1974)
  • W.G. Turnell et al.

    J. Mol. Biol.

    (1992)
  • J. Lens

    J. Biol. Chem.

    (1947)
  • E.K. Perry et al.

    Neurosci. Lett.

    (1981)
  • W.F.H.M. Mommaerts et al.

    J. Biol. Chem.

    (1950)
  • H. Jensen et al.

    J. Biol.Chem.

    (1936)
  • W.G. Turnell et al.

    J. Mol. Biol.

    (1992)
  • H. Buchwald et al.

    Lancet

    (1981)
  • U. Derewenda et al.

    J. Mol. Biol.

    (1991)
  • F.G. Banting et al.

    J. Lab. Clin. Med.

    (1922)
  • A. Krogh et al.

    Biochem. J.

    (1928)
  • D.F. Waugh

    J. Am. Chem. Soc.

    (1946)
  • F. Dickens et al.

    Biochem. J.

    (1927)
  • V.,du Vigneaud et al.

    J. Pharmacol. Exp. Ther.

    (1928)
  • T.D. Gerlough et al.

    J. Pharmacol. Exp. Ther.

    (1932)
  • V.,du Vigneaud et al.

    J. Biol. Chem.

    (1933)
  • I. Langmuir et al.

    J. Am. Chem. Soc.

    (1940)
  • D.F. Waugh

    Am. J. Physiol.

    (1941)
  • D.F. Waugh

    Fed. Proc.

    (1946)
  • D.F. Waugh et al.

    J. Am. Chem. Soc.

    (1953)
  • D.F. Waugh

    J. Cell. Comp. Physiol.

    (1957)
  • D.F. Waugh

    J. Am. Chem. Soc.

    (1944)
  • M.J. Burke et al.

    Biochemistry

    (1972)
  • J. Brange et al.

    Diabetic Med.

    (1986)
  • M. Dathe et al.

    Int.J. Pept. Protein Res.

    (1990)
  • V. Sluzky et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1991)
  • V. Sluzky et al.

    Biotechnol. Bioeng.

    (1992)
  • J. Brange et al.
  • J. Brange et al.

    Pharm. Res.

    (1992)
  • H.R. Costantino et al.

    Pharm. Res.

    (1994)
  • J. Brange et al.
  • J. Brange et al.
  • A.S. Chawla et al.

    Diabetes

    (1985)
  • V. Feingold et al.

    Diabetologia

    (1984)
  • Cited by (0)

    View full text