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Thermodynamics of Electrolytes. I. 

Theoretical Basis and General Eq~atioris. 

By Kenneth s. Pitzer 

Inorganic Materials Research Divisioh df the La~rence 
Berkeley Laboratory and Department of Chemistry~ 
University of California, Berkeley:, California, 94720. 

A system of equations for the thermodynamic properties 
of electrolytes is developed on the basis of th~oretical 
insights from improved analysis of the Debye-HUckel model 
as well as recently published numerical cai-culations for 
more realistic models. The most important result is the 
recognition of an ionic strength dependence of the effect 
of short-range forces in binary interactions. By modifying 
the usual second virial coefficients to include this feature, 
oneobtains a system of equations which are only slightly 
more complex t.han those of Guggenheim but yield agreement 
within experimental error to concentrations ot several molal 
instead of O.lM. If. one compares instead with the recently 
proposed equations of Scatchard, Rush and Johnson, the 
present eg·uations are very much simpler for mixed electrolytes 
(and somewhat simpler for single electrolytes) yet appear to 
yield comparable agreement with experimental results for 
both single electrolytes and mixtures. 
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The thermodynamic properties of aqueous electrolytes 

have been extensively investigated both experimentally an'd 

theoretically. The monographs of Harned and Owen1 and of. 

Robinson and Stokes 2 provide excellent summaries. While 

the detailed nature o·f these solutions is so complex that 

an ab initio quantum-statistical theory is not feasible, 

the data appear to relate to few enough independent parameters 

to make relatively exact semi-empirical representati6n 

possible. It is the present objective to develop equations 

which reproduce the measured properties substantially within 

experimental accuracy, which are .~ompact and convenient in 

that only a very few parameters nee~ be tabulated for ~ach 

substance and the mathematical calculatio~s are simple,. 

which have appropriate form for mixed ele~trolytes as well 

as for solutions of a single solute, and whose parameters 

have physical meaning as far as posslble. 

In 1960 Brewer and the writer3 selected as the 

best available system one proposed and applied to dilute 

solutions by Guggenheim4 with modifications suggested by 

Scatchard 5 for concentrated solutions. While this system 

was useful in providing a simple and compact summary of 

experimental data, it did not fully satisfy the other 

desired qualities. Recent theoretical advances of Friedman 
. I 

and collaborators8
'

7 and of Card and Valleau8 pro~ide 
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important insights and support for the greatly improved 

semi-empirical treatment proposed below. Indeed it is 

interesting that a key idea can be obtained by introducing 

the Debye-HUckel model and distribution function into 

modern equations relating such functions to the osmotic 

pressure. But first we review the Guggenheim equations. 

Guggenheim~scatchard Equations 

Since the Guggenheim4 equations have had con­

siderable success, it is desirable to recall them at this 

point and to discuss the aspects that need improvement. 

The equations for osmotic and activity coefficients are: 
1 

ln 'Y I I M,X 

q> - 1 

Ayf zMzx( r2 
---.....,--+ 

"+ + u_ 

E·E ~ mM mx MX MX 

E.mM+Emx 
M X 

3 1 
(J (X) = - [ 1 + X - l + X - 2ln ( 1 + X) J 

xs 

2u 

M 

Here the Slln!S over M and X cover all positive and negative 

·ions, respectively; A is the usual Debye-HUckel coefficient 
. 'Y 

with N
0 

Avogadro's number and dw the density of the solvent; 
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and .e is a useful parameter which expresses the distance 

at which the electrostatic energy for singly charged ions 

in the dielective just equals thermal energy. 

The quantities t3MX are constants (at given T and 

D) analogous to second virial coefficients which represen~ . 

the net effect of various short-range forces between the 

M and X ions. It should be noted that Guggenheim followed 

Bronsted's 9 principle of specific interaction and excluded 

terms related to short-range forces between ions of like 

sign. 

We shall not distinguish between.direct interactions 

of solute species at short distances and changes in solvation 

with concentration since both phenomena influence the effective · 

interionic potenti~l of average force and thereby the second 

and higher virial coefficients. Likewise the distinction 

bet~een molality and concentration will be ignored since 

the statistical calculations based upon molecUlar models are 

used only to suggest appropriate forms for empirical use 

and to provide qualitative understanding. The advantage 

of the molality in practical calculations, especially if 

the temperature varies, is overwhelming. 

~It is also useful to consider the total excess 

Gibbs energy (for a solution containing nw kg of solvent) 

which is obtained by appropriate integr~tion of the activity 

or osmotic coefficient. 

-4-
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(2) 

3 
Gex 4 - 1 

r2-r(r2) + 2EE ~MX nwRT - --A mM mx 
3 "' .M X 

T(x) L = 
x3 [£n (1 x2] + x) - x + 2 

For a single 1-1 electrolyte equations (1) and 

reduce to 

ln -y = -
1 

1 + m2. 

J.. 

+ 2~MX m 

A m2 .l 
cp - 1 - + cr(m2

) + ~MX m 

Guggenheim and Turgeon4 b showed that equations 

(8) and {9) fitted, essentially within experimental error, 

the data for 1-1 electrolytes in water at 0°C and at room 

(6) 

(7) 

{8) 

(9) 

temperature at concentrations up to 0.1 M. They acknowledge, 

however, and othershave shown that substantial discrepancies 

arise at higher concentrations. In seeking equations that 

can be used at higher concentration one may examine separately 

the first and second terms on the right side. The first term 

in equation (6) must remain a general function of ionic 

strength if these equations are to maintain their simplicity 

and utility for mixed electrolyte solutions. We shall 

return later to the question of an improved mathematical 

form of this first term. Next we note that, by taking 

differences between the properties of different electrolytes 

of the same type and at the same concentration, the first 
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term cancels and we have (for 1-1 electrolytes) 

.£n "YM"X" - .£n "YM'X' = 2m (~M"X" - ~M'X'), 

q>M"X"- q>M'X' = m (~M"X"- ~M'X'J 

These equations (10) and (11) still do no~ fit the 

experimental properties above o.lM with constant ~'s. 
. ' 

Following a suggestion of Scatchard5 , Brewer 

~I. 

(10) 

( 11) 

and the writer 3 considered ~ to vary slowly with concentration 

and produced thereby a very compact tabulation of the 

experimental data for pure electrolyte solutions. If the 

~'s are no lbngei constants, however the relationships 

l;>etween equations (1), (2), and (6) and between (8) and 
.. ' '\; 
. .·. 

(9) are no longer valid. ·We shall return to the derivation 
...,: .: 

of corre~t r~lationships corresponding to the variable.~'s , 

in a later section but here point out in figure 1 the qualitatiye 

nature of the dependence of ~ on concentration. The notable 

(and initially surprising) feature is the substantial change 

in ~ at low concentration in contrast to its relative 

constancy at higher concentration. While the change in 

~ below O.lM is- not large, there is no reason to doubt 

that the curves maintain their slope in that regio.n. Thus 

an improved theory which adequately accounts for these 

effects at higher concentration will presumably also represent 

an improvement below O~lM. 

-6-
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Recently Scatchard~ 0 and co-workers 2 ~ have 

extended and .elaborated the Guggenheim equations in 

sever~l ways4 First the Debye-HUckel term in equation 

(6) ·is subdivided into a series of terms with different 
l. 

coefficients of I 2 in ~ corresponding to different 

distances of closest approach for the s9lute components. 

Appropriate derivatives then yield correct but very complex 

formulas for the osmotic and activity coefficients. 

Secondly, the Bronsted principle of specific interaction 

is abandoned and terms are .introduced for the short range 

interaction of ions of like sign. Finally) arrays of third 

and fourth virial coefficients are added. On this basis 

Lietzke and Stoughton22 were. able to represent accurately 

the osmotic coefficients of twenty pure electrolytes; also 

several systems of mixed electrolytes have been treated. 20 '~ 2 

This system allows enough terms to be included to represent 

experimental data accurately;. but the equations are very 

complicated and there seems little promise of simple physical 

interpretation of the parameters. Consequently, it seems 

worthwhile to seek simpler equations with fewer and more 

meaningful parameters. 

Also noteworthy is the work of Reilly, Wood, and 

Robinson~ 3 which is directed primarily to the process of 

mixing of pure electrolytes. Their general pattern of 

equations is similar in many aspects to that presented 
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hereafter, but these authors did not apply their equations 

to the numerical expression of-the properties of single 

electrolytes and thus did not deal with one of the principal 

subjects of this paper. 

·. Hard Core Effects in Debye-Hlickel Theory 

Traditional Debye;._Huckel theory of elect~oly,te 

solutions 1~ 2 · reccignizes the distahce of closest approach 
> • • • • • 

a in the'calculation of the electrostatic energyof the 

·distribution of ions but ignores the kinetic effect of 
. ' the h~rd co~~ oh the osmotic pressure or other properties. 

- ., . 

As Kirkwood14 ,' among others, noted, this hard core' ~ffect 

cannot be tr~ated rigorously by the traditional ch~;gi~g 
. ' . - ,_ 

~process methods of calculating free energy. Van Rysselberghe 
;~ . 

and Eisenberg15 did add approximate hard -core term's 'to the 

traditional Debye-HUckel formulas, but the feature of 

particular interest was lost in that approximation. 

. .::.-

Recently it ha~ been sho~n6 ' 16 that there are 

severa~l equations which relate the intermolecular potential 

and the radi~l distribution function (also called the pair 

correlation function) to theimodynamic pr6perties. Each 

equation will give the same set of thermodynamic results 

if the distrib~tion function is exact, but different results 

arise from approximate distribution functions. The most 

-8-
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convenient equation for a hard-core potential is the 

so-called "pressure" equation which yields the pressure 

of a pure fluid or the osmotic pressure of a solution. 

ou .. 
~.] 

{)r 

Where IT is the osmotic pressure~ ci,cj,---are concentrations 

of species i,j,---, cis the total solute concentration 

I:ci, uij is the intermolecular potential, and gij is the 

radial distribution function. The sums cover all solute 

species. 

We introduce the potential 

, r< a 

. 2 
z.z.e 

J. .J 
Dr 

and obtain 

IT - ckT = BeD
2 

~I: c.c .z.z. ( 00 g~J.(r)411rd.r 
~ j ~ J ~ JJa ~ 

'2 + ·3 (7Ta 3 kT)I: I: c.c. g .. (a) 
i'j ~ J ~J 

Where the second term, involving g(a), the radial distribu­

tion function at the outer surface of contact, constitutes 

the kinetic effect of the hard core. Note that we have 

assumed the same core size ~ for all species of ions but 

-9-
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different charges zi, zj in accordance with Debye-Huckei 

theory. The usual Debye-Hcrckel d~starice 1/~ is defined 

47le2 

= DkT L 
. ;i 

and the function 

! ' 
Then the radial distribution functions are given by 

gij (r) = exp [-qij (r)] 

' :' 

-for r~ a; g = 0 for r <a, of course. 

In the Debye~Huckel treatment the charge 

distribution is approximated by the linear term in (17). 

Because of electrical neutrality the first term makes 
,. . 

no contribution while the third term likewise makes no 

contribution to the charge distribution for symmetrical 

electrolytes and only a small contribution in other cases. 

In contrast to the charge distribution, the 

kinetic hard-core effect arises from the first and third 

terms w~th-ri6 contribution from the second term. Thus 

the three-term exp~ession of eq~ation (17) is, for many 

purposes; an optimum approximation in view 6i its self, 

consistency ~ith the linearized Poisson-Boltzmann equation. 

-10-
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Since the theory is only approximate, however,· 

there is no reason why the exponential expressions for 

gij should not be used, if desired, and Card and Valleau8~ 

have found.good agreement between such distribution 

functions and their Monte Carlo calculations for 1-1 

electrolytes up toabout 1M. 

For our purposes it is preferable to use the 

three-term expansion of equation (17) since this allows 

simpler mathematical expres~ion of the results while 

still providing a good approximation whenever the general 

Debye-Huckel solution is valid. 

is found, on this basis, to be 

«p -1 - _]_ - 1 
ckT 

The osmotic coefficient 

If all ions have charges + z this reduces to 

1 1 

Now K = (~n£) 2 z c2 and £ = e 2 /DkT as defined earlier. 

. - ~ 

(19) 

In equations (18) and (19) the first term on the right arises 

from the electrostatic energy and the second term from the 

hard-core; each has interesting implications. 

-11- ~· 



This result for the electrostatic effects differs 

from the traditional Debye-HUckel formUla although it 

reduces to the same limiting law when Ka can be neglected 

as compafed to unity. Such a difference is not unexpected 

since the distribUtion function is ~pproximat~ except in 

the limit of small K. In figure 2 we 'compare the ·al terri.ate 

thermodynamic expressions based o-n the Deb-ye-H"dc;kel distribu­

tion function with the theoretically exact but numerically 

cumbersome Monte 'Carlo statistical treatment 8 of the. sa;m~ 

molecular inodel (a= 4.25A,· aqueous solution at 25°C.). ,,·The 

new expression)equation (19), agrees, within computational 

uncertainty, with the Monte Carlo results for concentrations 

up to I = o.5M. Substitution of the conventional term for 

the electrostatic effects causes a serious discrepancy. It 

is at so in.teresting that this theoretical· curve of equa tiori 

(19) {or the Monte Carlo results) fits the experimental data 

for HBr very well. 

In view of the approximations of the molecular 

model, howeverj we shall regard both e~pressibns for the 

thermodynamic effect of the charge distribution as candidates 

for adoption on the basis of success in fitting experimental 

.. data. ' 

df greater intere~t is hard~cord term in equations 

{18) and (19). The first term within'the brackets, 2~a 3 /3, 

is independent of concentration and was considered by 

-12-
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Van Rysselberghe and Eisenberg~5 • The second term within 

the brackets, however, does depend, through K, on the ionic 

strength of the solution. Furthermore, this expression in 

brackets varies with concentration in just the same manner 

as was shown in figure 1 with an initially rapid decrease 

from the value at zero concentration to a smaller and 

relatively constant value at high concentration. 

This decrease in the second virial coefficient 

with ionic strength arises from a simila~ decrease in the 

average radial distribution function at contact: Thus it 

is important to note that the more rigorous statistical 

treatment8 by the l>'lonte Carlo method yields a similar 

behavior of the radial distribution function at contact. 

Furthermore, the calculations of Ramanathan and Friedman7 

on a model with a soft repulsive potential show a similar 

decrease with increase in ~onic strength in the average 

radial distribution function at a comparable radius. 

The Debye-Htickel distribution function was also 

inserted· in the so-called "compressibility" equation of 

statistical mechanics. 6 The result is much more complex, 

mathematically, although similar in qualitative behavior. 

Henc~ it doe~ not add anything useful for our present 

purposes. 

While th~ Debye-Hlickel treatment does not allow 

the consideration of different ionic radii within the same 

solution, we can compare the properties of different 



solutions, each of a single solute with a particular 

radius sum. We consider the difference in osmotic 

coefficient for symmetrical electrolytes with radius 

sums a and a and ion charge z. _... _g_ 

a ) 
~ -

2 ~ 
·[{a ...: a )(i 

Where the first term inside the braces arises from the, 

electfostatic effects and the second and thiidcterms from. 

the hard-riore effects {i.e. the same order.as in equat~on 

(19))':- ·The 'quantity (cp - cp )/c corresponds to the quantity 
. 2 ' ~ . . . . ·.. .. . ... . . 

( cp - ~· ) /~ which was shown in figure 1 and woUld be a 
2 ~ 

constant if the Guggenheim equations were valid. It is 

apparent from equation (20) that it will yield the same 

qualit~ti~e ~ehavior as was shown in figure 1; specifically, 

the ~econd term is constant, but both the first and third . 

terms decrease from a finite value at zero concentration to .. · 

very small values as K increases. 

The principal consequence of this section, is 

to suggest'that the.properties of electrolyte solutions 

can be expressed by an "electrostatic" term plus a virial 

.,.14-



coefficient series in which the virial coefficients may 

be functions of the ionic strength of the solutiOn. More 

particularly it is suggested that the ·second virial 

coefficient will vary with ionic strength in the pattern 

indicated by figure 1 or equations (18) and (19). An 

alternate and probably improved form is also proposed 

for the "electrostatic" term. 

General Equations 

Let us now set up a system of equations for the 

thermodynamic prqperties of pure or mixed electrolytes in 

rather general form. We will later choose the exact form 

for certain functions by comparison with experimental data. 

The total excess Gibbs energy for a solution containing 

n kg of solvent and n.,n., .... moles of solute species w . ~ J . 

i,j, .... is taken to be 

Here f(I) is a function of ionic strength (also temperature 

and solvent properties) expressing the effect of the long­

range electrostatit forces; f(I) may have the form of the 

first term of equation (£) or the similar form which can 

be obtained by integration of equation (18); A. • • (I) is a 
~J 

-15-
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function <;>f ionic strength with the qualitative behavior 

indicated by figure 1 or the second term on the right in 

equation (18) or (19). The effect of short-range forces 

between species~ and j is, or course~ the basis f6r ~ij(I). 

We also include a te:rm .. for triple ion interac·t"ion which may ' 
. . • • . .,: . " • . . ... <: •. . •.. ~· ,J. { 

be significant at high concentration but' i:gnore any-dependence--
. . f.; . ~ . .{ ...... 

of ~- "k on ionic strength. 
~J 

We ass·um-e that the A and ~-~ matrices· 

are symmetric, i.e. A.ij = ~ji' etc. 

Theequat1ons for the activity and. osmotic 
. ·: 

coeffic~ents. follbw~fro~ 

oGex;o nw 
q> - 1 = -

the appiopriate de~iv~tives oi-Gex 

RTL mi 
i ; _ __.,. 

'j, •• 

.. . 'I . 
. (If . - f') + .'E _ (_A.ij + IA.~j) L: J.L:i,j};:mim jmk 

i . k = ------------~~--~----~---------------=~~--~-----­

z~ 
__]._ I 

= 2 f +2l: 
j 

I I 

A.ij mj + 

2 

;i 'E I 

~jk mjmk + 3 L: 
j,k j ,k 

where f = df/di, A.ij,... dA.ij/di, and mi = ni/nw, etc. 

Combination of terms for the neutral electrolyte M X 
_uM uX 

yields for its activity coefficient 

i' 

;,I 

t. \.~ .· ...• 

{22) 

J.L. "1 m .mk lJ ( J 

(~3) 



In a solution of the single electrolyte MX these equations 

reduce to 

(f'- i) + m 
i) 

+ "~ ( ~ + n~) + "~ ( Axx + IA~x)} 

'ZMZXI I 

+ ~ f"M"x (2AMX + rx~) .£n.-y = 2 f. 

+ u2 
M (2xMM:-+ rx' ) + MM 

u2 
X (2Axx + n~x)} . 

--17-
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. . 
where u = uM + uX. The terms for triple interactions 

with all ions of the same sign ( 1-LMMM and 1-Lxxx) have been 

dropped in equations (25) and (2"6) and hereafter since 

they seem certain to be exceedingly small. 

From equations (25) and (26) it is apparent 
~ ~ .~ 

. that the. prop~rtie~"'~of single ele-ctrolytes are determined 

by the combinations: (2uMuX AMX + uM AMM + u~ AXX) and 

( uM 1-LMMx: + ux 1-LM:}cx) . ·: A similar but much more cumbersome 

examination of the equations for mixed electrolytes 

indicates additional observable combinations of the A and 

1-L functions; 1h~ following definitions of the more directly 

observable quantities appear to be most converiient. Quanti-

ties appearing only for mixed. electrolytes are distinguished 
{. ' 

by the use of Greek instead of Latin letters. 

~ (I) 
I 

. UM ( • ) UX ( • ) = A . + IAMX + 2ux ~M + I~M + 2uM Axx + IAxx . MX 

(27) 

B'Y 
I UM 

( 2AMM + ' ) ux 
(2Axx IA~x) (I) = 2AMX + I~+ IAMM + 2uM .L 

MX 2ux I 

(28) 

B'Y (I) = B<p (I) + i 1I B<p (x) dx (29) MX MX 0 MX 

-18-



[ "M J.LMMX + "x . J.LMXX] 

'Y .. 3 cp 
CMX = 2 CMX 

aMN = AMN -

' dSMN 
aMN = di 

ZN 
-A 2zM MM 

' = AMN -

VtMNX = 61-LMNX - 3zN 
ZM 

Also we define 

-'"V 1 I 
f I = 2 f 

ZM 
ANN -

2zN 

ZN I ZM I 

2zM ~M 
... 

ANN 2zN 

J.LMMX 
_ 3zM 

J.LNNX ZN 

In these terms the properties of the single 

electrolyte take the simple form 

-19-
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(34) 

(35) 
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In the case of symmetrical electrolytes the coefficients 

of mB and m2 C reduce.to unity; m is the usual stoichometric 

molality. 

The expressions for mixed electrolytes become 

somewhat cumbersome anQ. we will restrict ourselves at 

this time to a few examples. Consider first amixtcire 

of two ions o~ one sign M and.N with a common ion x·of 
J ~ 

opposite sign but with unrestricted magnitudes of charge 

• zM~ zN, and zX. Electrical neutrality.requires that 

The osmotic coefficient for this solution is 

<p - 1 (mM + 
2 

+ '"x) ff"' + Yx = 
mN 

Bcp 
MX + mNIIJc Bcp 

·. NX 

1 I zx 
2 

+ m~N ( $MN + I~~) + m~~ ccp 
ZM MX 

and the ionic strength in this case is 

-20-
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' 
.I .. ; t.) ·~ ·:,)· '. i I •) ~~ .... ~ •..)' *"*,·" 0 ;,.J v ./ .: ·, 

r.~-.~!:1 

If the two electrolytes are symmetric this 

expression c~n be readily expressed in terms of the 

molality ~ of the common ion and the solute mole fraction 

y of NX. Thus for MX - NX mixtures one obtains for the 

two activity coefficients as well as the osmotic coefficient: 

q>-1 = z 2 fq> + m {1-y)~ + yB~ + y (1-y)(SMN + rs~} 

+ m
2 

{ 1-y) c:X + yC~ + y ( 1-y) l'!MNX} 

ln-yMX = z
2 f1' + m {BJx + y (B~ - B:x + SMN) 

+ y (1-Y) IS~} + m
2 r~ + Y ( C~ " c:X, + ~ l'!MNX) 

+ ~ y (1-y) \'IMNX~ 

.tn-yNX = z
2 f1' + mr~ + (1-y)(~ - B~ +0MN) 

+ y(1-y) rs~} + m2 

+ ~ y ( 1-y) \'IMNX} 

fc"~ + ( 1-y) fcr:p ,.. LNX \MX 

-21-
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This formulation shows clearly the quantities 0 and 7./J 

which arise for mixtures in contrast to th~ other terms 

which can be determined by the properties of the p~re MX 
I 

and NX solutions. It is interesting that 0 and 0 show 

different composition dePendehce in equations (41) and 

(42) but the same dependence in (40). 

The mixture MX - NY where there is no common 

ion yields more complex equations. 

cp-1 = z
2 fcp + m f (1-y) (B~ + B:X + eMN + re~ + eXY + re~) 

+ (l-y) 2 B~ + y2B~} ,+ m2 {(l-Y) 2 C~ + 

- ' 

+ y (1-y)(c~ + c:X) + y (l-y) 2 (1/'MNX + tMXyl 

+ y2 (1-y)(l/'MNY + 1/'NXY~ 

.tn-yMX = z
2 f>' + m {(1-y2)B~ + y (eMN + eXY) 

y (1-y)(Bcp Bcp 2Bcp 
, I 

I0~y) + + + I0MN + MY NX MX 

+ y 2 ( B 'Y - Bcp - + B 'Y 
MY MY NX 

Bcp 
NX + 2Bcp 

NY BJy)} 

' -" 

+ m2 {l-y)2 c"~ + 
MX 

y (1-y) ( '1/!MNX + '1/!MXY + ccp + 
MX 

-22-

(43) 

ccp 
NX + c~) 

(44) 



The expression for ln-yNY may be obtained from that for 

£n-yMX by replacement of M by N, X by Y, and y by ( 1-y) 

throughout equation (44). Although the formulas for 

this case are more complex, no new quantities are 

introduced as compared to those for the set of solutions 

with common ions: . MX - NX, MY - NY, MX - MY, and NX - NY. 

Hence the measurement of the set of solutions with common 

ions provides all the parameters needed to calculate the 

properties of the mixture without a common ion. Reilly 

an~ wood13a discuss in greater detail the process of 

mixing electrolytes with equations whose terms can be 

related to those presented here. We turn now to the use 

of these equations for the numerical representation of 

experimental data. 

Single Electrolytes 

A comprehensive program is now underway for 

the selection of optimum functions for f and Bij and 

the evaluation of constants in B
1
. J' as well as C .. for 

l.J 

various electrolytes. At this time a few initial results 

will be reported showing the accuracy of agreement which 

has already been obtained. The comprehensive tables of 

osmotic coefficients presented by Robinson and Stokes 2 

provide the experimental data for this initial phase of 

evaluation. 
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Three functions were considered for f~, the 

electrostatic term: 

1. 

rriHo 
..;.A I2 

= 
~· 1. 

1 + bi2 

~ 
1 . 1 

.fDHC = -A i2 (] (bi2 ) 
. ~· 

. ~ I - .,: ·., - 1 

1 

bi2 < 2.0 

1. 1 1 .. 3 

= -A (2I/b) for bi2 > 2.0 3 cp 

.. 

1 3 

1 A. 1 (211N0dw) 2 
2 

Aq; - ....,..y = 3 1000 
.£ 3 ... 

.. 

A~ is the usual Debye~Hlickel constant for the osmotic 

coefficient and all three forms reduce to the usual 

limiting law at small I. The first form, DHO· for "DebyE2-

HUckel-Osmotic", is that derived apove, equations (18) 

and (19), by use of the Debye-Hlickel radial distribution 

function in the "pressure" equation of statistical 

mechanics which yields the osmotic pressure directly. 

The second form,. DHC for "Debye-Hlickel-Cha.rging" is the 

familiar result obtained by initially calculating the 

' 

activity coefficient from a charging process and subsequent 

conversion by the Gibbs-Dukem equation to the osmotic 

coefficient. The third form is one recommended by 
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Glueckauf17 which goes smoothly from the limiting law 

Two forms we.re tested for the second virial 

coefficient 

Bq> = t3 ( o ) + t3 ( 1 ) 
II 

.The first form is suggested directly by equations ( 18) 

and (19) while the second is considered because it is 

an especially simple form having the same general 

properties, namely: (a) finite value at zero ionic 
1 

strength, (b) rapid change linear in r2 at low ionic 

strength, and (c) smooth approach to a constant value 

at high ionic strength. Although in principle all three 

paramet~rs a, t3(o)~ and t3(l) may be adjtisted for each 

solute, it was hoped that a might remain the same for 

broad classes of electrolytes and that there would be 

a systematic relationship between t3(o) and t3( 1
). In 

special cases, however, the form of t3q> can be modified 

or terms added without affecting the simple form for 

most solutes. For this initial test the third virial 

coefficient c<~> was omitted. 
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The six possible combinations of f~ and B~ 

were tested systematically with the osmotic coefficient 
' I 

values up to 2M for the thirteen electrolytes listed in 

Table I, by varying b and a. independently but holding 

each 'the sanie :for all substances. The best general 
. ., 

agreement was obtained for f~HO and Bii with b = 1.2 

and a.~- 2.0; in this case the over-all standard 

deviation was 0.0015. The other combinations of£' and 

B' gave standard deviations about twice as large and 

·not significaritly differing one from another. 

'!'able I shows the values of t3( 0
) and t3 ( 1 ) for 

each substance with f~HO and B±I equation and the'standard 
' . 

deviations for each .solute. Since osmotic coefficients are 

ordinarily reported to only 0.001, it is apparent that 

the agr~ement is well within experimental undertainty- · 

in most, if not all, cases. 

With this choice of form of f~ and B~ and these 

values of b and a. the third virial coefficient C~ was 

restored to equation (37) and data for several electrolytes 

was fitted up to 6M. The experimental data are from 

Robinson and Stokes 2 with recent revisions for NaN03 and 

KN0 3 .from Bezboruah, Covington, and Robinson 18
• The·. 

results, given in Table II, show excellent agreement'Within 

experimental error. It is_also.significant that:t3(o} and· 

t3( 1
) have n~t changed much with the t;ddition of the-third 

virial coefficient and the extension to more concentr~ted 

solutions. Thus the second virial coefficient expression 

II 
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appears to be well established even though its physical 

interpretation in terms of molecular quantities is not 

simple. 

Lietzke and Stoughton~ 2 fitted the osmotic 

coefficient data for several electrolytes to the four 

constant equation comprising the conv~ntional Debye-

·HUckel term f~HC with adjustable distance of closest 

approach and second, third, and fourth virial coefficients, 

each taken as a constant. While the respective calculations 

of Lietzke and Stoughton and the present research are not 

precisely comparable, the new results of. Table I with two 

adjustable parameters for each substance fit the data up 

to 2M as well or better than the earlier work·with four 

adjustable constants fitted to data ranging up to 

concentrations from 3 to 6M. Likewise the results in 

Table II with three adjustable constants compare favorably 

with those of the earlier equation using four adjustable 

constants. 
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Table I 

Parameters for Thermodynamic Functions for 

Dilute Aqueous Electrolytes at 25°C. 

(b = 1.20, a= 2.00, c~ = o, range 0-2M) 

Electrolyte 

HCl 

LiCl 

NaCl 

KCl 

C'sCl 

.RbNOs 

Ca{Cl04)2 

MgCl2 

CaCl2 

Na2Cr04 

Na2S04 

f3(o) 

0.1802 

.1575 

.0781 

.0460 

.0320 

.0059 

-.0143 

-.0663 

.5789 

.4869 

.4162 

.1186 

.0428 

-27a-

B(J.) 

.2753 

. 2811 

.2659 

.2186 

.0273 

.1714 

.1045 . 

-.0623 

2.5883 

2.1062 

2.2324 

1.8765 

1.3491 

0. 6 . 

.8 

.7 

.4 

1.5 

.7 

1.5 

1.9 

1.1 

3.3 

1.6 

2.1 

1.6 



Table. II 

Parameters for Thermodynamic Functions for Aqueous 

Electrolytes at 25°C from 0-6M. 

(b = 1.20; a= 2.00 throughout) 

Electrolyte B(o) B(~) C~ 

HCl 0.18352 0.25503 -0.00059 1.7 

NaCl .07670 .26495 + .00122 .7 

KCl .04827 .20887 - .00082 .4 

CsCl .03449 .01336 - .00049 1.5 

NaNOs .00661 .17964 - .00067 1.4 

KNOs -. 08155 . 04939 + . 00660 1.2 

RbNOs -. 07885 -. 01736 + . 00528 1.0 
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More definitive results for 1-1 and 1-2 

electrolytes as well as calculations for higher 

valence types will be presented in a subsequent paper. 

Comparison of the t3(o) and t3( 1
) values in 

Table I shows a generally parallel trend but·substantial 

individual variation. In order to understand the 

difference between t3(o) and t3( 1
) it is desirable to 

consider the relative values of the radial distribution 

functions at contact for hard cores. Figure 3 shows 

g+_(a) and g++(a) .= g_...;(a) as a function of concentration 

from the Monte Carlo calculations of Card and Valleau8 a 

which.were for a 1-1 aqueous electrolyte with~.= 4.25A. 

The results of Ramanathan and Friedrnan7 for soft core 
' models show the same general trend but are not as directly 

interpretable. The curves on figure 3 show clearly that 

the short range interaction of unlike charged ions becomes 

relatively much more important at low ionic strength. At 

high ionic strength the short range interactions are weighted 

approximately 3.5 to 1 for unlike and like charged ions, 

respectively. This ratio increases to more than 10 to 1 

at low ionic strength. Since it is the sum of short range 

interaction effects in equations (27) and (28) which con­

stitute the t3~ and t3~ functions, it is clear that the 

principal contribution to t3( 1
) will come from the short 

range interaction of unlike charged ions while the 
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I' 

interactions of like and unlike charged ions will both 

contribute to ~(o) in a proportion given by the magnitudes 

of g+_{a), g++(a) and g __ (a) at high concentration. With 

multiply charged ions the short range interaction of like­

charged ions will be less important, of course, and may be 

negligible even for ~(o). 

It is apparent from Table I that the ratio of 

~(l.) to ~(o) _fo; 2-1 electrolytes is much greater than 

for 1-1 solutes. This is in general accord with equation 

(18) where the two terms in the brackets correspond to 

the two terms in B~. In the limit of zero concentration 

the ratio of the second term to the first. is (£ 2 /2a 2
) for 

1-1 electrolytes and (2£ 2 /a 2
) for 2-1 solutes. Since 

.£ = 7 .lA and ~is frequently near 4A, ratios near 1.5 and 

6 would be plausible for ~(~);~(o) for 1-1 and 2-1 solutes, 

respectively. While the values in Table I show too much 

~ariability to give much meaning to this comparison, 

nevertheless it seems likely .that this increase in ~(~) 
as compared to ~(o) arises from the increased ionic 

charge as it affects the last term in equation (18) • 

Since the electrostatic interactibn function f 

was not changed for individual solutes, the B~ function 

also includes a correction to f for the effective distance 

of closest approach. Equation (20) and the accompanying 

discussion describe this correction which will contribute 
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to both ~(o) an~ ~( 1 ). If the effective distance of 

closest approach for a particular solute is less than 

that implied in f, this coritrib~tion to ~(b) and ~( 1 ) 

will be negative. Hence the small negative values in 

Table I are understandable. 

In conclusion of this section the chosen forms 

of f and B are summarized for excess Gibbs energy and 

activity coefficient as well as osmotic coeffi~ient. 

The subscripts are omitted since the alternate forms 

will not be used further. 

1 

fcp -A 
r2 

= q> 1 

1 + bi2 

L 
.!. 

(l + bit~ f"~ I2 2 = -A . + - .£n q> 1 b 
+ bi2 

fGx (~) 
1 

= -A .£n (1 + bi2 ) q> 

1 

Bq> ~(o) + ~(1)e- ar"2 
= 

B'Y 2~(o) + 2(3(1) [ -art 1 
- l. a2 r)] = 1-e (1 + ar2 

a 2 I 2 

2f2(1) [1-e- 1 

(1 + art)] BGx = ~( o) + ai2 

a 2 I 

-:-30-
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The superscript "Gx" indicates the form for the excess 

Gibbs energy; the value b = 1.2 has been selected for use 

with all substances at 25°C ir. aqueous solution; also 
~·~··· 

the value a = 2. 0 was i'ound I :~,be satisfactory for the 
. :l~/'. 

1-1 and 2-1 electrolytes list;Jd in Table 1 but a !!lay be 

adjusted for each substance if desired. 

Mixed Electrolytes 

The thermodynamic treatment of isopiestic data 

for mixed electrolyt~s has been simplified considerably 

by the use of equations which clearly distinguish the 

effects of mixing from those of the pure components. This 

is further facilitated by analytical equations repre~enting 

accurately the properties of the pure components. R€cent 

papers of Rush, Scatchard, and other~ 11 ' 19 offer excellent 

illustrations. Fo.r . . mixing sc,-1-J;!tions of equal ionic strength 

with a common ion, equations (40) to (42) show clearly that 

any non-linear effect arises only from interactions of-ions 

of the same sign either as pairs in 19MN or in combination 

with one ion of the opposite sign in 'if!MNX. The linear terms 

for the activity coefficient (but not the osmotic coefficient) 

also include 19MN and 'if!MNX as well as functions for the pure 

components. 

It is desirable to estimate theoretically the 

expected dependence of 19MN on ionic strength. Equation 

(32) shows that this term is a difference in second virial 

coefficients for ions of the same sign. F~gure 3 shows 
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that g++ rises from a very small value at zero concentration 

to a value somewhat larger but still much less than unity at 

high io~ic strength. 
·. 

;_., . 

ThuL." '..·;l- expect $MN to increase from a 
~:· 

smaller .. value at zero conr~.eut.ration to a relatively constant. 
~- ~ 

value at high concentratio'ri. 
. . 

The best test of this picture is the extensive 

array of galvanic cell measurements which yield the activity 

coefficient of HCl in mixtures with LiCl, NaCl, KCl, and 

CsCl. Harned and Owen 1 summarize this.work and express the 

results in terms of coefficients a and d which are 
12 . 21 

given in our terminology by the equations (where y is the 

solute fraction MCl) 

£n-yHCl = £n-y~Cl - 2.303 a my 
12 

(57 a) 

....... ·.~ . 
£n-yMCl = .e 0 I - 2.303 a m (1-y) n-yMCl 21 

(57b) 

0 0 Here -yHCl and -yMCl are the activity coefficients of the 

pure electrolytes at the molality m. 

Comparison of equations (57) with (38), (41), 

and (42) indicates consistency provided the term~ mi(l - y) 

I$~N and ~ m2 y (l - y) 'ljtMNX may be neg1ected. On that 

basis one obtains 

eH,M + m '!ft - 2.303 
(a + a21) (58) = 2 H,M,Cl 2 12 

·<p - Bcp + m (c~cl c~cl) 2.303 
(a12 - a ) (59) BHCl MCl = 2 . 21 

-32-



Figure 4 shows the values of t9H,M + (m/2) 7/IH,M,Cl 

obtained from Harned and Owen with the size of the circles 

indicating their estimates of experimental error. Since the 

second term will be negligible in dilute solutions, we may 

interpret the curves below 1M with respect to t9H,M" It is 

clear that the general nature of these c,urves corresponds 

to the argument given above; the decrease in t9 at low 

concentration corresponds to the decrease in radial distri-

bution function at hard-core contact for pairs, of ions of 

like sign. 

In the more concentrated solutions the slope of 

·the curve for CsCl-HCl indicates a significant value of 

7/t For the other curves the corresponding term H,Cs,Cl" 
is very small. 

One can also compare, in accordance with equation 

(59))· our B~ values with the differences (a - a ) from 
. 12 21 

Harned and Owen. The agreement is satisfactory for the 

constants.of Table I (through 2M) or those of Table II. 

Since we find t9H,M to vary with ionic strength, 
I 

BH,M cannot be zero. The resulting non-linear term in 

equation (41) is, however, very small and within experimental 

error at O.lM. This effect might have been detected at 

higher concentrations, especially in Hcl~cscl solutions, 

put tpe appropriate measure~ents were not maoe. Hence 

there is no ·conflict between our interpretation and available 

data. 
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We consider n~xt the change in osmotic coefficient 

for mixtures MX-NX with a common ion. From equations (37) 

and (40) one obtains 

6<p = y (1 - y) 
m 

(60) 

It is of interest to consider a series~ of systems 

with the same pair of ions of like sign, M and N, but with 

' different common ions X, X , etc. In this situation the 

eMN term must be the same throughout but 7{;MNX will differ 

with X. We considered the series NaCl-KCl, NaBrTKBr, ~hd 

NaN03-KN03 for which osmotic coefficients have been measured 
, 

by several investigators 18' 20,~1 It is found, however, that 

the bromides differ so slightly from the chlorides that little 

is gained.by their inclusion. The data for the chlorides 

and nitrates are shown in the middle of figure 5. Actually 

there are many points for the system NaCl-KClj the tw·o 

shown define the straight line which represents all the 

points quite well. 

It is apparent from figure 5 that the data for 

systems with a common ion can be represented by straight 

lines. But there is so little information at concentration 

below 1M that one cannot determine whether there is curvature 

in that region. In view of the theory and the data on the 

HCl-MCl systems given above one. would expect curvature 

toward zero in 6~ in the dilute region. Since the~ values m 

of [6~m/my(l- y)] for mixtures with a common ion are small, 

-34-



this uncertainty from possible curvature in the dilute 
I 

region is .also small and we can omit the terms in & 

from osmotic coefficient treatments until such time as 

improved experimental accuracy justifies their inclusion. 

On this basis we find $ Na,K = -0.012, SCl,N03 = +0.016, 

~Na,K,Cl = -0.0018, ~Na,K,N03 = -0.012, 

~ Cl NO = ~K Cl NO = -0.0060 · Na, , 3 , , 3 

These values determined from the mixtures with 

a common ion suffice, when combined with values from 

Table II for the pure electrolytes, to calculate 6q>m for 

the mixtures without common ion. The equation for mixing 

MX with NY, which follows from (43) and (37) and with the 
1 

omission of S , is 

· + [B<fl + B<fl - R~ - B<fl + m( c<ll + c<ll - c<ll - cNY<fl )] ( 61) . MY NX r4X NY \ MY NX MX 

It is notable that all terms in the first brackets remain 

unchanged if M and N (or X and Y) are interchanged whereas 

all terms in the second brackets change sign. Thus the 

sum of [ 6q:Jm/my( 1 - y)] for mixing MX - NY and for NX - MY 

is just twice the first brackets and is exactly the sum 

of the four corresponding quantities for the mixing processes 

with a common ion. This last equality is just the cross-
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square rule of Young, Wu and Krawetz, 22 although it is­

more commonly applied to heamor Gibbs energies of mixing. 

Figure 5 shows the experimental values of 6~ . , m. 

for mixing NaCl - KN03 and KCl - NaN03 together with the 

curves calculated from equation (61). · The fit for the 

NaCl - KN03 system is almost perfect. For the KCl - NaN03 

mixtures the agreement is less perfect but appears to be 

within experimental uncertainty. If the data for the 

mixtures without a common ion had been included in an 

adjustment of all parameters, a better fit would doubtless 

be pbssible, b~t it seems preferable in most cases, and 

much easier, to evaluate parameters from the simplest 

systems tb which they are related. 

The agreement shown on figure 5 suggests that 

the cross-square rule is satisfied for this system whereas 

Bezboruah, Covington, and Robinson18 concluded th:St the 

difference probably exceeded experimental error. These 

autho~s did not compare the 6~ of mixing quantities directly 

but rather calculated 6G of mixing instead. This calculation 

of 6G involves the integral of (ncpm/m) dm from zero to the 

molality of interest. It i& evident f~om figure 5 the 

curves we predict in the very dilute region are quite 

different from the lines one might dtaw through the points 

without reference to other information. Application of 

the cross-square condition directly to 6~ avoids this m 
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difficulty and appears to me to yield agreement within 

the uncertainty of experiments. It should be emphasized 

that. our present approach and equation (61) predict much 

more than the cross-square rule; they predict the two I 

individual·curves for the systems without a common ion 

instead of predicting only their sum. 

Although the point23 has been made previously 

that an ion pair interaction quantity such as ~MN must 

be the same regardless of the ion of opposite sign, most 

experimental data have been interpreted without considering 

this limitation. An exception is the very recent work of 

Scatchard, Rush, and Johnson~~ where it is shown that this 

limitation can be imposed without difficulty for the various 

mixed electrolytes formed from NaCl, Na2S04, MgCl2, a;nd 

MgS04. This point was also recognized by.Wood and Smith24 

in making their very convincing case that the heat.~f 

mixing of 1-1 electrolytes with a common ion arises 

primarily from differences in the intera~tion of pairs 

of ions of the same sign and consequently disproves 

Bronsted's princ~ple of specific ion interaction. 

Summary 

It is shown from an improved statistical treatment 

based upon the Debye-HITckel ion distribution function that 

the effect 9f short-range forces between pairs of ions, i.e. 

the second virial coefficient, should depend also on the 

ionic strength. Numerical calculations on more realistic 
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models confirm this general effect in which second virial 

coefficients for pure electrolytes decrease rapidly with 

increase in ionic strength in the very dilute region yet 

become nearly constant at higher concentrations. This 

pattern of behavior was known experimentally and seemed 

puzzling heretofore. 

By including the appropriate ionic strength 

dependence-in the second virial coefficients a relatively 

simple system of equations for the thermodynamic properties 

of·electrolytes is developed which appea~s to represeni 

experimental .. behavior to much higher concentration than 

any previous system of comparable complexity. Numerical 

parameters and· comparisons with experimental dat~ ·are 

presented for the osmotic ~oefficients of several pure 

ele~trolytes, for the activity coefficierits of a series 

of mixtures HCl-MCl, and for the osmotic coefficient for 

all possible mixtures of sodium and potassium chlorides 

and nitrates. A much ~ore extensive-treatment of m~ny 

particular systems is in progress, and it is expected 

that a very compact summary can be given of the extensive 

array of experimental· information on aqueous electrolytes. 

I wish to thank Mr. Guillermo Mayorga for carrying 

out some of the numerical calculations. This research was 

sponsored by the u.s. Atomic Energy Commission. 
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Figure Captions 

Fig_ure 1. The difference in osmotic coeffi.cient of 

several electrolytes from that of RbN03. 

Figure 2. The osmotic coefficient for the Debye-HUckel 

model (a= 4.25A, aqueous solution at 25°C.): the 

solid circles are calculated values ~y·the Monte Carlo 

method 8 a, the solid curve is from the present theory 

with equation (19), the dashed. curve differs from the 

solid curve by substitutipg the conventional D-H 

expression for the el:ec trqs·ta tic energy for the correspond­

ing term in equation,(l9), the triangles are experimental 

values f'or HBr. 
' . 

Figur~ .3~ The radial distribution function at hard-core 

contact as a function of ionic strength from Monte Carlo 

calc ula tions8 a. 

Figure 4. The· ·parameter. for the difference in short-range 
.. 

interactions of like charged ions as,a function of molality . 

. Data from Harned and Owen 1 ;.tti~ sizes bf the circles show 

·their e~timates of experimental error. 

Figure 5. The difference in osmotic coefficient of mixed 

electrolytes from pure components at the same ionic 

strength. The curves for NaCl-KN03 and KCl-NaN03 are 

calculated by equation (61) with parameters from pure 

electrolytes and mixtures with a common ion. 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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