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AbstracL In this anicle we present a method for alculating the chemical potential 
of arbitrary chain molecules in a mmpuier simulation. The method is based on a 
generalization of Siepmann's method tor mlculaling the chemical potential of chain 
molecules with a finite number of conformations. Next. we show that i t  is also possible 10 
atend the configurational-bias Monte Carlo scheme developed recenty by Siepmann and 
Frenkel to continuously deformable molecules. ?he utility of our technique for computing 
the chemical potenlial of chain molecules is demonstrated ty computing the chemical 
potential of a fully flexible chain mnsisting of 10-20 segments in a moderately dense 
atomic fluid. Under these mnditions the conventional particle.inserlion schemes [ail 
mmpletely. In addition, we show h a t  our novel configuralional-bias Monre Carlo scheme 
a m p a m  favourably vlith conventional Monte Carlo procedures for chain molecules. 

1. Introduction 

When two phases are in thermodynamic equilibrium, the pressure and temperature 
should be the same in both phases. In addition, the chemical potential of any 
component in the system should be equal in the two co-existing phases. 

In a numerical study of phase co-existence, the first two conditions are easy to 
satisfy because the temperature and pressure can be measured, or even imposed, in 
a Monte Carlo or molecular dynamics simulation. In principle, the same is true for 
the chemical potential 121. But whereas temperature and pressure can be routinely 
determined at any density and for any molecular substance, the available techniques 
to compute (or impose) the chemical potential, have a rather limited range of ap- 
plicability. 'Ib give a specific example, the most widely used technique to measure 
the chemical potential is based on an expression due to Widom, that relates the 
excess chemical potential to the change in potential energy of a test particle that is 
added to the system at a random position. For the canonical (N, V, T) ensemble this 
expression reads [3] 

where p = I/k,T and A U  denotes the interaction energy of the test particle with all 
other particles that are present in the system. Although this expression is completely 
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general, its practical applicability is limited to moderately dense fluids of atoms or 
simple molecules. 'E see why this is so, it is instructive to consider a fluid consisting 
of 'hard core' molecules. In that case, (exp [ -pAU])N,V ,T  can be interpreted as 
the probability that a test particle, inserted at random in the system, will not Overlap 
with any of the particles present in that system. At high densities, such a successful 
insertion is unlikely and therefore it is necessary to perform relatively long simulations 
to obtain reliable statistics. If instead of atoms or simple molecules we consider chain 
molecules, this problem becomes even worse. Under conditions where it is unlikely 
to insert even one particle, it will be virtually impossible to insert an entire chain of 
such particles at a random position in the system. 

Recently, Siepmann has introduced a novel technique that greatly increases the 
efiicienq with which the chemical potential of chain molecules wirh a finite num- 
ber of discrete conformations can be computed [4]. Siepmann's method is based on 
the Rosenbluth algorithm [5] to generate polymer conformations. In Siepmann's ap- 
proach, the chemical potential is related to the average of the Rosenbluth weight 
factor-this will be discussed below in more detail. The importance of this technique 
is that it leads to much better statistics because the Rosenbluth scheme expresses the 
insertion probability as an average of many smail numbers rather than the average of 
a large number of 0's and a few 1's. 

Subsequently, it was demonstrated that the computation of the chemical potential 
of self-avoiding chain molecules on a lattice can be made even more efficient by 
combining it with an algorithm that allows exact enumeration of the conformational 
entropy of ideal chain?, on a lattice [6]. However, neither scheme is of much help 
if one is interested in the calculation of the chemical potential of molecules that do 
not have a finite number of conformations, such as fully flexible chains or worm-like 
chains. 

In the present paper, we present an eliicient scheme to compute the (excess) 
chemical potential of a flexible chain molecule. This technique can be applied to 
fully flexible chains and to semi-flexiblc molecules. We have used this method to 
compute the excess chemical potential of fully flexible chain molecules consisting of 
10-20 segments in an atomic fluid. 

An essential step in our method for calculating the chemical potential is the grow- 
ing of a chain at a random position in the system. We show that the same growth 
process can be used as a basis for a configurational-bias Monte Carlo (CBMC) proce- 
dure. The CBMC method has recently been introduced as a Monte Carlo technique to 
sample systems consisting of chain molecules with a finite number of conformations 
[I]. In the present article we generalize the cEMC method to continuum systems. 
In this procedure, a trial configuration is generated by growing a chain at a random 
position in the system or by re-growing parts of the chain. We shall show that this 
Monte Carlo method yields the correct (Boltzmann) distribution of configurations. 
The present method makes it possible to perform simulations of chain molecules in 
the Gibbs ensemble [7-91. We compare our scheme with conventional Monte Carlo 
algorithms for chain molecules. It turns out that the present method is particularly 
good at achieving large-scale conformational changes. 

2. Chemical potential of flexible molecules 

In this section we present our approach to computing the chemical potential of 
fully flexible chain molecules in an atomic fluid. We start with a discussion of the 
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theoretical foundation of the method. Next we present results of chemical potential 
calculations for infinite dilution of chain molecules consisting of 10-20 segments in a 
moderately dense fluid. 

2.1. Theorerical aspects 

Although it is our aim to develop a scheme to measure the excess chemical potential 
of fully flexible molecules, it is most convenient to introduce the method by consid- 
ering a molecule with a finite number of conformations and then take to the limit in 
which the number of conformations goes to infinity. In this context, it is instructive 
to consider first Siepmann’s method [4] to measure the chemical potential of a chain 
molecule with a finite number of conformations. Next the method is generalized to 
continuously deformable chains and to chains with strong intra-molecular interactions. 

21.1. Siepmann’s melhod. The probability ( P )  for generating a polymer with a 
conformation r using the Rosenbluth algorithm [SI is given by 

where 1 is the number of segments of the trial conformation and Z, is the sum of 
the Boltzmann factors of all b directions of segment i, where b is the number of 
possible orientations for any polymer segment (e.g. b = 3 if the polymer backbone 
corresponds to a non-reversing random walk on a diamond lattice): 

1=1 

ur ,  denotes the potential energy of segment i of the chain with conformation r (note 
that this energy excludes the contributions of segments z + 1 to 1,  so the total energy 
of the chain is given by U, = ur,), j enumerates all possible orientations from 
which the ith segment of the chain can ‘choose’. Finally, uj  denotes the potential 
energy of the j t h  trial orientation of segment i. The Rosenbluth weight factor of a 
chain conformation r is defined as 

I 

z. 
b 

I 

w,. exp ( -our,)  2.  

i=2  
(3) 

We now consider the average of the weight factor W’, obtained by using the 
Rosenbluth scheme to generate a large number of trial conformatiom of a chain 
molecule in a system (‘bath’) consisting of N particles. If we generate a sufficiently 
large number of such chain conformations we obtain the following average of the 
weight factor. 

where the first summation in the numerator runs over all configurations, q N ,  of the 
system and the second summation runs over all .imformations r of the test polymer. 
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The angular brackets denote averaging over all starting positions of the test molecule. 
The set qN denotes both the centre-of-mass positions and the internal coordinates 
(if any) of the solvent molecules. U ( q N )  is the potential energy of a bath in a 
configuration q N .  Note that the test polymer does not form a part of the N-particle 
system. Therefore, the probability of finding the remaining particles in a configuration 
qN does not depend on the conformation P of the polymer. 

For a given configuration of the system q N ,  we can define an average Rosenbluth 
factor 

Substituting (2) and (3) in (5) and dropping the argument q N  yields 

Upon substitution of this expression in (4) we ohtain 

We recall that bf- l  is simply the number of possible conformations of an ideal (non- 
interacting, non-self-avoiding) polymer. Therefore, the denominator in (7) is simply 
equal to the partition function of the N-particle system plus an ideal polymer. We 
denote this quantity by Z,(solvent + ideal polymer). The numerator is equal to the 
partition function of the N-particle system plus an interacfing chain molecule, ie. 

2, (solvent + polymer) 
(wJ)  = Z,(solvent + ideal polymer) ' 

This show that the average Rosenbluth factor is directly related to the excess chemical 
potential of the polymer, i.e. 

2.1.2. Fully pevible choins. Up to this point we have basically followed the approach 
of Siepmann [4] who computed the Rosenbluth weight by enumerating all possible 
orientations for adding a new segment. Clearly, exploring all possible orientations 
of a new segment is no problem if we deal with a molecule that has only a finite 
number of conformations. However, such an approach would not work at all for a 
continuously deformable, flexible molecule. Surprisingly, however, it turns out that it 
is, in fact, possible to construct a rigorous scheme to sample the Rosenbluth weight of 
any flexible molecule using only a random subset of all possible segment orientations, 
even $ the total number of orienfafions is infinire. We shall now proceed to prove this 
crucial result. Doing this we keep summing the configurations as if there were a 
finite number of orientations, but we keep in mind that in the limit b i 03 this is 
nor the case. In this limit the probabilities as we give them here become probabiliry 
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densities and the sum over all configurations, C r, is replaced by J . . , J  d r ,  . . . d r f ,  
an integral Over the l ( d  - 1)dimensional space of all polymer conformations. 

Let us consider a situation where, instead of generating all b orientations of trial 
segment i, we only generate a (sub-) set {m}i (see also figure 1 for the notation). 
Let us assume that the set {m}, contains k elements. We denote the probability of 
generating a trial segment with the orientation ri by Pr,. The probability to generate 
a specific chain conformation r is given by 

pr = n kpr' 
f 

(10) 
~ X P  (-Pur.) 

'{m). i=2 

where 
k 

q m j ,  = C e x P  ( -  4%,) ' 
,=1 

The Rosenbluth weight factor for the sets of trial orientations {m), is given by 

I 

(11) '{m]. Wr = exp (-Our,) n 7. 
1=2 

If we now average over all possible choices for the sets {mi]2, and all possible chain 
conformations, we can compute the average Rosenbluth factor 

f 

% = C n pr, exp (-pur,) . (12) 
r , = I  

We must now specify the probabilities Pr,. For the moment, let us consider the case 
in which all trial conformations are generated with the Same apriori probability. That 
implies that every segment has an equal probabi'ky to end up in any of the b possible 
directions and 

(13) 
1 Pr, = b .  

Figure 1. Schematic picture of the growing of the chain. 

~ ~~ ~~~~~~~~~~~~~~. ~~ ~ 
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So we obtain the following expression for the average Rosenbluth factor in (12). 

which is indeed identical to (6). Hence, we have shown that the Rosenbluth weight 
of an arbitrary flexible molecule can be sampled using only a subset of all permissible 
segment orientations. Note that for k = 1, the method reduces to the conventional 
Widom insertion method. 

21.3. Chains with strong intra-molecular interactions. In order to compute the Rosen- 
bluth weight of polymers with strong intra-molecular interactions, for example stiff 
polymers ('worm-like chains'), we can modify the probabilities fr, in such a way that 
the probability to generate a given segment orientation is dictated by the BOltzmaM 
factor associated with the intra-molecular energy up:, i.e. 

where C = exp (-flu;.') is a normalization constant in which the summation 
runs over all baegment directions. If b - CO, the summation is replaced by an 
integration. This, however, constitutes no special problems, as the resulting integral 
is simply a normalization constant that need not be evaluated in practice. The 
probability to generate a polymer in configuration r is now given by 

where 

k 

z ( ~ ) ~  = exp . 
j = l  

The probability for selecting one orientation is now calculated by considering only 
those interactions which have not been accounted for in uin'. We denote these 
interactions by P'. These interactions have to be included in the corresponding 
Rosenbluth factor for the particular set of orientations {vi)i 

The average Rosenbluth factor of a semi-flexible molecule can then be written as 
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This equation is similar to (6) but now the interactions are split up in an internal 
and an external contribution and C’-l is simply the partition function of a polymer 
with only internal interactions. If we combine (18) with (4) we obtain an expression 
for the Rosenbluth weight of a semi-flexible molecule thermally averaged over all 
configurations of the N-particle system. Equation (8) relates this average to the 
excess chemical potential of the semi-flexible molecule. 

In the next sections we show that the above recipe to compute the excess chem- 
ical potential of an arbitrary (semi-) flexible molecule can, in fact, be used under 
conditions where the conventional particle-insertion schemes fail completely. 

22. Model and computational detaik 

In order to test the scheme to compute the chemical potential of continuously de- 
formable molecules as described in section 21, we have performed a series of com- 
puter simulations in which we compute the excess chemical potential at infinite dilu- 
tion (which is related to the Henry coeficient) of a fully flexible chain molecule in a 
moderately dense atomic fluid. These systems have been the topic of several studies 
[10-15]. 

22.1. The model. In our model both the solvent and the polymer segments interact 
via a Lennard-Jones potential 

byj(?-) = 46 [ (y - (3-1 
in which T is the distance between particles i and j. In addition to this knnard-  
Jones interaction, two adjacent polymer segments are connected with an infinitely stiff 
spring (bead-rod model) with length U .  In this model the polymer is thus ‘dissolved’ 
in its own segments. 

In our simulations we have considered the following systems. 

(i) A system with repulsive and attractive interactions. For rhis case the potential 
was truncated at R, = 2.50 

The contribution to the energy of interactions with 1. > R, was estimated analytically, 
by assuming that g(r) = 1 for r > R, [2]. 

(ii) A system with only repulsive interactions. In this case the potential was 
truncated (and shifted) at R, = 21/6u 

In addition, we have considered for both systems the limit that the density of the 
solvent is zero, ie. a polymer which has no interactions mith the solvent but only with 
its own segments. 

Since we are interested in the chemical potential of the polymer at infinite dilu- 
tion, the polymer has to be considered as a test particle and does not influence the 
configurations of the solvent. 
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22.2 Computationof derails. The Monte Carlo s’mulations were performed at solvent 
densities p’ = pu3  = 0.5 and p’ = 0.6 (and some at p’ = 0.0) at a temperature 
T’ = k ,T /c  = 1.2. We have performed the simulations in cycles, each cycle consist- 
ing of a displacement step and a test polymer insertion step. In the displacement step 
Npn particles are selected at random and given (sequentially) a random displace- 
ment such that the average acceptance ratio is approximately 50%. The test particle 
insertion step consists of N,, attempts to insert a test polymer using the Rosenbluth 
algorithm. 

We have used the following algorithm to generate the conformations of the test 
polymer. 

Step 1. A map of the system is constructed, which consists of cells which are labelled 
occupied (or free), when the addition of a test particle would result in an overlap (or 
no overlap) [16]. We define two particles to be overlapping if the distance between 
these two particles is smaller than R,,,, where R,, is chosen such that for P < R,,, 
U ( r )  > Umx. We have used U,,, = 106. 

If a test particle were to be placed in an occupied cell, the energy of this particle 
would be infinite and hence its contribution to the Rosenbluth factor would be zero. 

With this map we can use a very large number of attempts at high density, since 
an insertion which would be ‘rejected’ can be detected immediately. 

Step 2. N,, attempts to insert a single (test) polymer bead i at a random position 
in the system. If this attempt is not rejected immediately by the map of step 1, 
the energy of this particle is calculated and its contribution to the numerator of the 
Rosenbluth factor is calculated. 

Step 3. Growing of the test polymer. If the Rosenbluth factor of the test polymer i 
with current length 1 is not equal to zero, a set of k random orientations ({m};) are 
chosen around the last segment of the chain such that 

Of each of these k Orientations the energy and the contribution to the Rosenbluth 
factor are calculated. One of these orientations (r,) is selected with probability 

and the Rosenbluth factor 

is updated. 

Srep 4. Steps 2-4 are repeated until the test polymers reaches the desired length. 
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It is important to note that in this scheme we only continue to grow those polymers 
that have a Rosenbluth factor W $ 0. It is, however, essential that those test 
polymers which have been prevented from growing, and thus have a W = 0, are 
taken into a m u n t  in the averaging procedure given by (5). 

In order to study finite size effects, we have performed simulations for a varying 
number of solvent particles. Rrthermore, we have studied the influence of the 
periodic boundary conditions on the results. For small systems it can be expected 
that for large chain lengths, the chains will start to feel their own segments via 
the periodic boundary conditions. In practice, simulations should always be carried 
out in systems that are sufficiently large to suppress the spurious effects of periodic 
boundary conditions. In order to test the influence of this effect we have performed 
some simulations with periodic boundary conditions for both the solvent and the test 
polymer and some simulations in which periodic boundary conditions are only used 
for the solvent and for the interactions of solvent particles with the test polymer but 
no periodic boundary conditions between polymer segments. 

In the algorithm to compute the chemical potential, a choice has to be made for 
the number of orientations in the set { n ~ } ~ .  If we choose 12 = 1, the method reduces 
to the conventional Widom insertion method and will not give reliable statistics. If 
k is chosen to be very large, too much time will be spent calculating the Rosenbluth 
factor of one chain. In order to study the influence of k on the accuracy of the 
results we have performed simulations for various values of IC. 

The details of all simulations that we have performed are shown in table 1. In 
the next section we refer to the number of the tun as given in this table. 

Table I. Details of the simulations. NR gives the number of the run, N is the number 
of solvenl panicles, p' is Ihe density of the mlvent, Nbl= is the number of Monte Carlo 
qcles. R, is the mt-off radius, pBcp indicates whether periodic boundary mnditions for 
the interactions kiween test plymer segments are used. I; is the number of selected 
orientations, Nix is the number of attempted insenions per Monte Carlo cycle. and CPU 
is total amouni of CPU time (on the Cay-XMP) in emnds. 

1 500 0.6 3 
2 MO 0.6 3 
3 500 0.6 3 
4 500 0.6 3 
5 500 0.6 3 

6 MO 0.6 3 
7 108 0.6 10 
8 108 0.6 10 
9 500 0.6 3 

10 0 0.0 I 
11 108 0.6 30 
12 500 05 4 

13 0 0.0 I 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
1.12 

1.12 
1.12 

yes 
yes 
Yes 

yes 
yes 
yes 
Yes no 

no no 

Y" 
"0 

no 

I 
2 

10 
20 

50 
100 

50 
50 
50 
50 
50 
50 
50 

250 
250 
250 
250 
250 
250 
250 
250 
250 

1 
500 
500 

1 

610 
625 

700 
900 
1825 
3525 
1750 
1800 
3100 

50 
3000 
3400 

50 
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23. Results and discussion 

We have calculated the excess chemical potential 

pp"( 1 )  = p g (  1 )  - pg(ideal polymer, I )  

of a chain with 1 beads in a solvent of its own segments at infinite dilution. In 
the previous section it was shown that the efficiency of our method depends on the 
choice of the number of trial orientations (k). In table 2 the results for the chemical 
potential are given for various values of k. 

Table 2 The acess  chemical potential (@pa) as a function of the number of beads 
( I )  for various values of I t .  The number of the simulation refers to table 1. Thc small 
subrript gives the amuracy of he resulw, so -2.43$ means -2.43*0.05. '-' indicates 
lhal lhe number of successful insenions W.IS insufficient IO obtain a reliable etlimalc lor 
the chemical polenlial. 

1 k = 1  k = 2  k = 1 0  k = 2 0  k=50 k=100 
. - .. . , ~ ~~ 

NR 1 2 3 4 5 6 
~. . _ ~  .. , 

1 -2.455 -2.458 -2.43, -2.456 -2.41, -?.43$ 
2 -5.3s -5.08 -5.02 -5.01 -5.05; -5.05% 
3 -82 - 1 1  -i.33 --i.32 -7.3> -7 .4 ,  

-9.5, - O &  -9.g2 -9,9,  4 -  - 

-11.8; -12.0, -12.33 -12.23 5 -  - 
-131 -141 - 1 4 . 8 ,  -14.55 6 -  - 

7 -  - -162  - 1 7 1  -18, 

8 -  ~ -IS2 -18, -19.79 -18.9, 
9 -  - - -213 -222 -22, 
10 - - ~- - . ..-23] -241 

- -261 ~ -2'i2 11  - 
-281 -28, 12 - 

13 - - - - -302 -281 

14 - - - - .-3z2~-~~ -29> 

- 

- - 
- -~ ~- 

For I = 1 (one bead) the calculation reduces simply to the determination of the 
chemical potential of the Lennard-Jones fluid. Our results are in excellent agreement 
with previous simulations [1&18]. 

An important result, shown in table 2, is tha t  within the accuracy of our calcu- 
lations the results are indeed independent of the choice of k. This dcmonstrates 
that reliable estimates for the chemical potcntial can be obtained for any value of k, 
provided the simulations are continued sufficiently long. 

This table also demonstrates that with the mnventional Widom test particle in- 
sertion method. k = 1, reliable estimates of the chemical potential can bc calculated 
within a reasonable amount of mmputer time only for chains with less than four 
beads. For 1 > 3 this method fails completely. The method discussed in the present 
paper, however, yields reliable estimates of the chemical potential for much larger 
chain lengths within a reasonable amount of CPU time. 
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Not surprisingly, the r e d &  suggest that for small chains ( I  < 5 )  it is not eKicient 
to use a large value of IC. Note that in table 2 we have used the Same number of 
Monte Carlo cycles for each simulation. For a detailed comparison of the efficiency 
of the various values of k, it would be more appropriate to compare the results for 
the Same amount of total CPU time. A rough indication of the accuracy at equal 
amounts of CPU time can be obtained by multiplying the standard deviation by the 
square root of the ratio of the total CPU time of the current simulation and the total 
CPU time of the simulation with k = 100. This would, for example, reduce the 
standard deviations for k = 1 by approximately a factor 2.5. For large chains one 
has to use a large value for k in order to obtain any results at all. Comparison of 
the results for k = 50 with the results for k = 100 shows that the accuracy did not 
improve significantly, while the total CPU time almost doubled. On the basis of this 
admittedly rather crude comparison, we decided to use k = 50 in the rest of our 
simulations. 

In table 3 we give the probability that a chain k inserted 'successfully' in the 
solvenc provided that the first segment has been inserted successfully. We call an 
insertion successful if the Rosenbluth factor is different to zerc+recall that U' was 
set to zero if one of the segments of the chain had an energy U,., > 1 0 ~ .  This table 
illustrates once more that for all but the smallest molecules, it is indeed impossible 
to insert a chain at random. With the Rosenbluth algorithm, however, this proba- 
bility can be increased significantly. For example for k = 50, during this simulation 
approximately 270 successful insertions for a chain of 20 segments could be obtained. 
Of course, it would require more CPU time to obtain a reliable estimate of the chem- 
ical potential, but it does demonstrate the significant improvement compared to the 
random insertion. 

Table 3. ?he acceptance percentage as a function of the number of beads ( I )  of the 
polymer for various balues of k. Ihe acceptance IS expressed as the ratio (in %) of the 
fraclion of accepted oonfigurations and lhe fraction of accepted monomers ( I  = 1) at 
the given condilions. 'The fraction of successful insertion of monomers was 5.5%. 'The 
number of the simulation refers 10 table I 

1 k = 1  k = Z  k = 1 O  k=20 k = 5 0  k=100 

NR 1 2 3 4 5 6 
~~ 

1 100% 100% 100% 100% 100% 100% 

3 1.0% 3.3% 29% 49% i 4 %  92% 
ti  10-5  IO-' 3.2% 12% 35% 47% 

10 0 0 0.15% 1.8% 12% 20% 

14 0 0 10-5 0.28% 4.1% 8.0% 

20 0 0 0 10-4 O . G 6 %  2.0% 

It is instructive to compare the random insertion scheme with the method pre- 
sented in this work, from a computational point of view. If we assume that the 
probability of a successful insertion of a monomer in the solvent has a probability p ,  
and that the insertion of the other segments k not influenced by the part of the chain 
which is already present, then the probability of a successful insertion of a chain with 
length 1 is given by 
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In the scheme of growing a polymer as presented in this work, we try for each new 
segment k trial orientations. If  we assume again that the probability for a successful 
insertion is not influenced by the segments that are already present and we assume 
that each trial is an independent attempt 1191, the probability of a successful addition 
of at least one segment out of the k trials is given by 

(27) k P(seg) = 1 - (1 - p, , , )  . 

Then the expression for the probability of a successful insertion of a chain with length 
1 becomes 

If we recall that the probability of a successful insertion of a monomer at p' = 0.6 
is approximately 5%, then according to (26) a successful insertion of a chain with 
length IO, using the random insertion method, would have a probability of 
The method described in this work, however, would give a probability (equation (28), 
with k z= 50) of 2%. We can use (28) to estimate how k should vary with 1 in order to 
keep P( 1 )  approximately constant. lb a first approximation, we find that the number 
of trial directions should depend logarithmically on the length of the polymer, ie. 

In figure 2 and table 4 the values of the chemical potential of a polymer in a 
system with 108 and 500 solvent molecules are given. In figure 2 we compare the 
results for a system with periodic boundary conditions (PBC) for the solvent and the 
test polymer (run 7) ,  with a system with PBC only for the solvent-solvent interactions 
and polymer-solvent interactions (run 8). For small chain lengths ( 1  < 10) no 
significant differences between the two systems are observed. For larger systems 
( 1  > I O ) ,  however, the chemical potential for the polymer with PBC (run 7) tends to 
increase, while the chemical potential for the polymer without PBC (run 8) continues 
to decrease. 

k - l o g ( 1 -  1). 

.D 

Figure L Ndependence of the excess chemical polential ( B p ' )  as a function of the 
number of beads of the chain I for system 1. 0 (tun 7) N = 108 and PEC for the 
solvent and the tesl polymer, 0 (run 8) N = 108 and PBC only for the solvent, and 0 
(NI? 9) N = 500 and PBC for the s o l w n t  and the test polymer. 
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Table 4 Ndependence of h e  excess chemical polenlial ( p p " ) .  I is Lhe number of 
beads and N is $he number of soken1 molecules. ' h e  number of the simulation refen 
lo table 1. PBG denotes whether periodic bounday conditions between [he polymer 
Eegmenlr were used. me m a l l  rubrcript giver lhe accuracy of h e  mulls, so -2.435 
means -2.43 i 0.05.  

I N = 1 0 8  N = 1 0 8  N = 5 0 0  

NR 7 8 9 

1 -2 .444 -2.442 -2.435 
2 -5.0,  -5.025 -5.019 
3 -7.42 -7.41 -7.51 
4 -9.73 -9A2 -9.g2 
5 -12.1, -12 .13  -12.23 
6 -14.25 -14.56 -14.5s 
7 -16.71s -172 -171 
8 -202 -19.15 -18.97 
9 -211 -21, -22, 
10 -233 -23, -241 
11 -251 -251 -261 
12 -27s -261 -281 
13 ' -275 -28] -281 
14 -305 -2g2 -2g1 
15 -316 -312 -323 
16 -307 -34> -333 
17 -128 -373 -353 
18 -129 -38, -373 
19 - -415 -3gn 
20 - -44: -3ga 

It is interesting to compare these values for the chemical potential with the results 
for a system with 500 particles with PBC used for both the solvent and the polymer 
(figure 2, run 9). Figure 2 shows that the results for the chemical potential of run 9 
have no significant differences with run 8 (the system of 108 solvent particles without 
PBC for the polymer). This suggests that the increase of the chemical potential, as 
observed in run 7, is due to interactions of the polymer via the periodic boundaly 
conditions with its Own segments. This also explains why the total amount of CPU 
time for run 7 is much smaller than for run 8. Because of the overlap with its 
own segments via the periodic boundary conditions many more chains have stopped 
growing in an early stage in run 7.  

In figure 3, results for the excess chemical potential as a function of the chain 
length are presented for system 2 for p* = 0.5 and p* = 0.6 (run 11 and 12 
respectively). This figure shows that the chemical potential increases linearly for 
chains with 1 < 11, but surprisingly the slope of pex suddenly increases as the chain 
length is increased. For an isolated polymer chain of the same length (run 13), 
this effect is not observed (see figure 4). This indicates that the change in slope is a 
solvent effect. This conclusion is supported by the observation that at a higher solvent 
density (see figure 3) the change of slope occurs for a shorter chain length ( 1  = 8). 
Moreover, a similar effect can be Observed in system 1 (see figure 2) and also for the 
isolated chain such an effect is not observed (run 10, see figure 5). 

As the excess chemical potential determines the solubility of the polymer in the 
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I 

Figure 3. The a c e s  chemical palential, Bp". of the palymer as a funclion of lhe 
number of beads ot' the chain 1 for thc system in which the inleraclions are only 
reDulsive (wsvstem 2 nms I 1  and 121. ?lie snlvcnl density WdS p' = 0 .5  and 0 

.I 

p* = 0.6. 

,LO 

Ftgure 4 The acess chemical poienlial. $pa, of an isolaled self-avoiding chain of 
repulsive Lennard-Jones partider (system 13). as a function of lhe number of 'aloms' 
( 1 )  in the chain. 

liquid of monomers, our calculations indicate a rathcr sudden change in the depen- 
dence of polymer solubility on chain length. The observed change of slope in pw 
indicates that, beyond a certain length, it becomes more di l~cul t  to add additional 
segments to a chain molecule. As the probability of inscrtion decreases rapidly with 
increasing densiry, thc most obvious interpretation is that beyond a certain length, 
additional segments are inserted in a denser fluid. The sudden change in slope in pm 
suggests that there is a change of the segment density of the polyner in solution. In 
itself, such an effect is not surprising. What is surprising is that this effect appears to 
take place quite abruptly even for relatively short chains. At present, a quantitative 
explanation for this effect is lacking. It would, however, be interesting to see whether 
recent theories on dilute polymer solutions [20,21] would reproduce this effect of the 
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solvent on the excess chemical potential of polymer. 

3. Configurational-hias Monte Carlo 

In m a t  current Monte Carlo algorithms for chain molecules, trial configurations are 
generated by, for example, reptation or crankshaft moves [22,23]. With such local 
schemes, trial configurations are usually quite similar to the previous configuration. 
In contrast, a complete re-growing of the chain a t  a random position in the sys- 
tem corresponds to a very large step in configurational space. Here, we present a 
configurational-bias Monte Carlo method by which this can be achieved. First some 
theoretical aspects of this method are discussed. In addition we demonstrate the 
utility of the method through simulation of the collapse of a polymer in a poor 
solvent. 

3.1. Theoretical aspecrs 

In section 2.1 we outlined a procedure for growing a chain. Although this procedure 
can be used to measure the excess chemical potential of any flexible chain, it cannol be 
used to generate equilibrium configurations of the chains. As usual, the Rosenbluth 
scheme introduces a bias in the sampling procedure that has to be corrected by 
weighting of the generated configurations. This can be achieved by using an extension 
of the configurational-bias Monte Carlo method of [I]. In the remainder of this 
section, such a procedure is described. 

3.1.1. Configurational-bias Monie Carle-general aspecis. In constructing a Monte 
Carlo procedure it is advisable to ensure that the sampling scheme satisfies the 
detailed balance condition. This implies that the rate fi(nlb) at which configurations 
a are transformed into configurations b equals the reverse rate, i.e. 
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Let us now compute I<(,,,) for an arbitrary Monte Carlo move. We assume that 
the number of chains in conformation a is given by N, (and N, for the density of 
conformation b), the probability that a chain in conformation b is generated by P,, 
and the probability of acceptance acc(a1b). The rate 

and equally for the reverse rate 

Substitution of (30) and (31) into (29) gives 

is then given by 

A’~olb) = N,P,acc(alb) (30) 

A‘(,,., = N,P, ace(b1a). (31) 

If we want to sample a Boltzmann distribution of the configurations, the acceptance 
rules in (32) must be chosen such that 

(33) 
pa acc(Qlb) - exP(-pub) 
P,acc(bla) - exp(-DU,,) 

where U denotes the energy of a configuration. There are many choices that satisfy 
this condition, an obvious choice being the Metropolis form 

Recall that in conventional Monte Carlo algorithms any configuration is chosen with 
equal probability. For this particular case (34) becomes the conventional Metropolis 
acceptance rule 

where AU is the energy differences between configurations b and a. 

3.1.2. The Rosenblurh ntethod. If we generate a new conformation by growing a chain 
using the Rosenbluth algorithm, the probability of generating a chain in a particular 
configuration b is given by (see also section 2.1.1) 

acc(a1b) = min( l ,exp[-pAU(a ,b) ] )  (35) 

where U,, denotes the energy of segment i of a chain in configuration b and 2; = 
E:=, exp(-puj ) .  The corresponding Rosenbluth factor is defined by 

1 This means that as U, = xi=, U&, 

and the same holds for configuration a. So the acceptance probability given by (34) 
becomes 

This derivation shows that in a Monte Carlo procedure the Rosenbluth method can be 
used to generate trial configurations of chain molecules with the correct (Boltzmann) 
distribution provided that the acceptance rules are chosen such that (33) is satisfied. 

(38) ‘-1w Pb/exp(-Pub) = b 

acc(a1b) = m i n ( l , M b / l V a )  . (39) 
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3.1.3. Fully flerible chain molecules. In the previous section we have shown that the 
Rosenbluth method for growing chains can be used to generate trial configurations. 
In this derivation it is implicitly assumed that the Rosenbluth factor of the old and 
new configurations are known. This causes no problems in lattice models since all 
possible configurations can be explored, and therefore the Rosenbluth factor can 
be calculated exactly. In a continuum model, however, it is impossible to explore 
all possible configurations. Below we show that a Monte Carlo procedure can be 
constructed using only a subset of configurations. We first consider chains which 
are fully flexible. In the next section we discuss chains with strong intra-molecular 
interactions. 

As in section 2.1.2, we consider a situation in which we only generate a subset 
of all possible orientations. This subset contains k elements. The probability of 
generating such a set is P{,,,),. If we use the Rosenbluth method, the probability of 
generating a chain in configuration b is given by 

k where = C,=lexp(-flu,,) and where the prime on the first summation 
means that this summation runs over all sets of k orientations which include on- 
entation b,. Detailed balance is guaranteed if we impose a stronger condition, one 
that we denote by 'super-detailed balance'. By definition, super-detailed balance is 
satisfied if for any specific choice of a set of trial orientations, {m}i  and ("Ii, 
K ~ a l b ~ { m } z ( m ' ) ;  and A7(b,a){m)t{nz'}i are equal, where {m']; denote the trial 
directions for configuration a. The probability of generating a chain via a specific 
set of trial directions {m) i  and of choosing a set of trial directions, {771'}~,  from all 
possible sets that contain configuration a is given by 

where {rest'Ii denotes the set of k - 1 orientations { n ~ ' ) ~  excluding orientation a;. 
Actually, Pa in (41) denotes the probability to generate a new trial conformation b 
from the set { m ) ,  and a set of trial orientations (rest'}, around the old conformation 
a. As we shall see below, such an extended definition of a trial move is necessary in 
order to impose super-detailed balance. The Rosenbluth factor that corresponds to 
configuration b and the set of orientations { m ) ;  is 

whereas the Rosenbluth factor of configuration a with orientations { v % ' ) ~  will be 

If we substitute (41) for both configurations a and b in (34), we see that we have 
to use (39) for the acceptance probability. 

A convenient way to choose a set (m' ) ;  that contains the orientation ai is to 
place the Same set of additional directions as has been used for generating a new 
trial configuration around the original conformation ai .  
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3.1.4. Chains wirh strong infra-molecular interactions. In some applications chains with 
strong intra-molecular interactions are used (worm-like chains, chains with flexible 
joints, or chain molecules with bending and torsion potentials). For these types of 
chain molecules it is favourable to separate the intra-molecular interactions uin' from 
the inter-molecular interactions U&. A similar procedure is used for the calculation 
of the chemical potential of these molecules (see also section 21.3). 

For these types of systems we generate a set of k trial orientations (m) i  with 
a probability P(m),, prescribed by the Boltzmann factor associated with the intra- 
molecular energy (see also (15)) 

. k  

b where C = C , = t e x p ( - h F ' )  is a normalization constant. If we impose super- 
detailed balance as described in the previous section, we have to consider the proba- 
bility of generating a chain Yia one particular choice of trial orientations, {m}; ,  and 
of choosing one set, {m')i ,  out of all possible sets of trial orientations that contain 
orientation a; ,  

where Zlm), = Er=, e x p ( - D u z J )  and where {rest'); denotes the set of A7 - 1 
orientations [m');  excluding orientation ai. The corresponding Rosenbluth factor is 

(46) 

NOW as U, = ~ f , ,  uF; t U;: we get 

Pb/exp(-Pub) = p(,c$() p { r ~ ( , } / c k ' - '  bt'b (47) 

where {rest), denotes the set of k - 1 orientations [ m ) ;  excluding orientation b;. 
We can repeat this for configuration a generated with a set of k trial orientations, 
{m');. The convenient choice for {m'} ,  that was mentioned in section 3.1.3, means 
that Pint) = P(,l,j. Subtitution of (47) into (34) again gives (39) for the acceptance 
probability. 

In the next section, we report numerical tests of the CBMC method for such 
molecules. 

3.2. Model and contpurational derails 

As an example of an application of the configurational-bias Monte Carlo method, 
which has been described in section 3.1, we equilibrate a chain molccule, initially 
prepared in an elongated conformation, in a poor solvent. However, the method is 
not restricted to dilute solutions and can be applied to the study of dense polymer 
systems as well. We compare this method with a more conventional MC scheme, 
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namely the reptation algorithm 122,231. Alternatively, we could have compared our 
scheme with the pivot algorithm [24] which has been shown to be ergodic [25]. 
However, for dense solutions, the acceptance of trial moves of the pivot algorithm 
is very low and the comparison would be unfair. If we had performed simulations 
of an isolated chain, we should expect the pivot algorithm to be more elficient than 
the reptation scheme. In that case a comparison of the CBMC scheme with the pivot 
algorithm would have been more natural. 

22.1. The model. Again we considered a system in which both the solvent and the 
plymer segments interact ria the Lennard-Jones potential given by (19), which was 
truncated at R, = 2.50 and shifted. And again the polymer segments were attached 
by freely rotating, infinitely stiff springs of length CT. TO simulate a polymer in a poor 
solvent, we took the strength e of the interactions to be more attractive for plymer- 
polymer interactions (cpp = 1 .O) than for polymer-solvent (ep, = 0.1) interactions. 
The solvent-solvent interactions were the same as those describing the bead-bead 
interaction in the polymer (ess = 1 .O). 

3.22. Computational details. The computations wcre performed at a solvent density 
p' = 0.23 and at a temperature T' = 1.0. The polymer was 100 segments tong. 
At first the polymer was prepared in a fully streched configuration and the Lennard- 
Jones fluid was equilibrated around it. Then we performed a large number of Monte 
Carlo moves of the polymer. Here we compare the results of two different algorithms. 

First we consider the Configurational-bias Monte Carlo (CBMC). TO generate a 
new polymer configuration and to compute its Rosenhluth factor, we used the same 
steps 2 4  as described in section2.2.2. implement the acceptance criterion given 
by (39), we also require the Rosenbluth factor of the old configuration in the possibly 
new environment. This Rosenbluth factor can be computed in exactly the same way, 
except that there are some restrictions on the choice of the set of k trial Orientations 
for selecting the ith bond in step 3. Obviously one of these orientations has to be 
the actual orientation of the ith bond of the old chain. As already mentioned in 
section 3.1.4 a convenient choice is to take the same set { i n ) ; ,  already used for 
selecting the ith bond of the new chain, and to replace the selected orientation by 
the orientation of the ith bond of the old chain. Having computed the old and the 
new Rosenbluth factor we accepted the new configuration with a probability given by 
(39). In this way we can rcgrow the whole chain at once, but i t  is also possible to cut 
the chain at a random position and to regrow only part of the chain, or to regrow 
it from the other end. This is very important for simulations of long chains, where 
complete regrowing can have a low acceptance rate. 

A number of simulation parameterj can be varied to optimize the CBMC simula- 
tion. For instance we can vary the function P( Al)  that determines the probability 
with which we attempted to regrow AI segments of the chain. Moreover, we can 
vary the number of trial directions, k. An optimal choice for k exists because for 
low IC values the acceptance is low while for large k the amount of computer time 
increases. The following simple argument provides us with a rough estimate of the 
optimal choice of k for a given length of chain, Al, that  has to be regrown. Using the 
reptation algorithm as described below one needs of the order of I' accepted moves 
to get a completely new configuration and using CBMC this number is, for a f ied A/, 
l 2 /A la .  The amount of CPU time for one move is proportional to I/acc(REP) for 
the reptation and to kA//aCC(CBMC) for the CBMC, where a c c ( r w )  and SCC(CBMC) 
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are respectively the fraction of accepted moves during the reptation and the CBMC 
runs. So the CPU time needed to gei a new configuration is, for reptation, 

P /acc(wp)  (48) 

and for the CEMC, 

1'k 
Alace((3BMC) ' (49) 

This means that for the choice of k we should expect CBMC to be more etficient than 
reptation if 

We have tried several choices for k as a function of Al. In the latter scheme, a trial 
move involves removing one segment from one end of the chain (chosen at random) 
and adding it to the other end with a random orientation. 

As mentioned above, we compare the CBMC method with the well known reptation 
algorithm [22,23]. Using this algorithm means just cutting off one segment on one 
side of the chain and trying to add it onto the other side with a random orientation. 
The Boltzmann factors of the old and the new positions determine the acceptance 
probability. 

3.3. Results and discussion 

In order to obtain a quanritative measure of the elliciency of the configurational- 
bias Monte Carlo simulations described in the previous section, we studied the rate 
of equilibration of WO quite different properties of the chain, namely the radius Of 
gyration R,, defined as 

~~ ~~ ~ .... .. . . .. 

R, = ,/= (51) 
l < i < j < I  

Figure 6. n e  radius of gyration, Rc, of the chain as 4 function of the CPU time for 
both Ihe mnfiguralional-bias Monte Carlo (- - -) and lhe reptalion algorithm (. ..-..). 
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Figure 7. The energy, E, of Ihe dmin as a function of the CPU time lor bolh the 
configuralional.bias Monte Carlo (- - -) and the replalion algorilhnl ( . . . . .). 

where v i  is the position of the ith segment, and the internal energy, E,  of the chain. 
W e  also wmnuted the 'time evolution' of the same auantities usine the reotation 

by both schemes. Figure 6 shows the 'equilibration' of and figure 7 shows the same 
for E. Both the results obtained by the configurational-bias Monte Carlo and by the 
reptation algorithm are presented. What we show is the initial part of the simulation 
where the largest conformational changes take place. As can be Seen from figure 6, 
the CBMC is very efficient at achieving such large conformational changes: the radius 
of gyration relaxes about ten times faster to its final value than during the reptation 
run. In this part of the simulation the energy also equilibrates much faster using 
CBMC. After the initial chain collapse, the internal energy keeps decreasing slowly, 
while the radius of gyration fluctuates around its equilibrium value. The time that 
it takes to achieve total equilibration of E is longer than shown in figure 7. During 
this final approach to equilibrium, the chain undergoes mainly small conformational 
changes and, under these circumstances, the reptation algorithm is about as efficient 
as the CBMC scheme. We note, however, that there are many situations where the 
reptation algorithm, unlike the CBMC scheme, cannot be used at all (e.g. grafted 
chains, branched polymers). 

In our simulation we have the freedom to choose the probability P ( A l )  with 
which we attempt to regrow a piece of chain of Al segments and the number of trial 
orientations k at each step. The simple argument given in section 3.2.2 suggest how 
to choose those parameters. From (49) it follows that AL should be large (to make 
large configurational changes) while the acceptance of the m o v a  should not get too 
low. A higher value of It would lead to a larger acceptance but would, at the same 
time, increase the computational costs. In any case, k should not be increased above 
the limit given in (50) because for larger k dues the present scheme cannot compete 
with the simple reptation algorithm. We took P(AL) to be inversely proportional 
to A12/3 which means that 50% of the trial moves were attempts to regrow a piece 
of chain shorter than 13 segments. For k we took a minimum number of 4 and let 
it increase logarithmically with A[, which is a guess derived from the handwaving 



3074 D Frenkel e# a/ 

arguments given in section 23. Our choices for k and Al are almost certainly not 
optimal. However, it is dficult to make general statements about the optimal values 
of k and Al, as these will depend on the system under consideration. A plot of the 
limiting value of k ,  given by (SO), averaged during the run, is shown in figure 8. This 
value decreased because the acceptance of the moves of large Al decreased. The 
average value of k is also shown in the plot. Here again we see that, especially when 
large configurational changes take place, CBMC is advantageous, because k stays well 
below its limiting value. 

I " " "  I 

cRI-lIUL/S 

Figure 8. The limitlng value of I; as given by (SO) (- - -) and the average value of k 
(. . . . . .) as a function of rhe CPU time. 

These results indicate that  CBMC is a useful method to achieve large configura- 
tional changes. When only minor re-arrangements are needed, a small value of k 
and 51 becomes more adVantdgeOUS. Of course, the conventional reptation limit 
corresponds to the limit k = A1 = 1.  

4. Conclusions 

In this paper we have presented a method for calculating the chemical potential of 
arbitraly chain molecules. Whereas the conventional Widom test particle insertion 
method gives reliable results for the chemical potential for chains up to 3 beads 
inserted in a moderately dense atomic fluid (p' = 0.5-0.6). our method yields 
accurate results for chains consisting of 10-30 beads. 

An alternative method for calculating thc chemical potential for systems contain- 
ing polymers has recently been proposed by Kumar cf a/ [26], in which the chemical 
potential is estimated by calculating the change in free energy caused by the addition 
of an extra segment to the polymer. The chemical potential is obtained by assuming 
that this free energy is representative for all segmenrs. The fact that we observe a 
non-linear length dependence of the chemical potential of a chain molecule strongly 
suggests that the assumption underlying the scheme of [26] may be too naive. 

In the second part of this article we showed that the novel 'configurational- 
bias' Monte Carlo sampling scheme of Siepmann and Frenkel [ I ]  can be extendcd 
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rigorously to continuously deformable molecules. In this CBMC scheme, we make use 
of the Same Rosenbluth sampling that was used for the chemical potential calculations. 
A comparison is made with the reptation algorithm Cor the collapse of a polymer 
chain in a poor solvent. The CBMC is shown to be advantageous especially when large 
configurational changes are needed. 

Furthermore, our results make it possible to combine the Gibbs ensemble tech- 
nique 17-91 with the configurational-bias Monte Carlo procedure [27) This would be 
a significant extension of the range of applicability of the Gibbs ensemble technique, 
since at present this ensemble cannot be used for otlculating phase diagrams involving 
chain molecules. 

Finally, we note that the configurational-bias Monte Carlo has been presented 
exclusively as a method to generate polynrer conformations. In fact, the method is 
more general than that. It can be used as a scheme to perform collective rearrange- 
ments of any set of labelled coordinates. Such a scheme could, for instance, be used 
to cany out Monte Carlo moves to swap n small particles within a volume A V  with 
one large particle that occupies the same (excluded) volume. Similarly, one could 
envisage a Monte Carlo move in which part of a polymer pkrs h e  sunorinding solvent 
is regrown. 
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