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Abstract. In this article we present a method for calculating the chemical potential
of arbitrary chain molecules in a computer simulation. The method is based on a
generalization of Siepmann’s method for calculating the chemical potential of chain
molecules with a finite number of conformations. Next, we show that it is also possible to
extend the configurational-bias Monte Carlo scheme developed recenty by Siepmann and
Frenkel to continuously deformable molecules. The utility of our technique for computing
the chemical potential of chain molecules is demonstrated by computing the chemical
potential of a fully flexible chain consisting of 10-20 segments in a moderately dense
atomic fluid. Under these conditlions the conventional particle-insertion schemes fail
completely. In addition, we show that our novel configurational-bias Monte Carlo scheme
compares favourably with conventicnal Monte Carlo procedures for chain molecules.

1. Introduction

When two phases are in thermodynamic equilibrium, the pressure and temperature
should be the same in both phases. In addition, the chemical potential of any
component in the system should be equal in the two co-existing phases.

In a numerical study of phase co-existence, the first two conditions are easy to
satisfy because the temperature and pressure can be measured, or even imposed, in
a Monte Carlo or molecular dynamics simulation. In principle, the same is true for
the chemical potential [2]. But whereas temperature and pressure can be routinely
determined at any density and for any molecular substance, the available techniques
to compute (or impose) the chemical potential, have a rather limited range of ap-
plicability. To give a specific example, the most widely used technique to measure
the chemical potential is based on an expression due to Widom, that relates the
excess chemical potential to the change in potential energy of a test particle that is
added to the system at a random position. For the canonical (¥, V, T) ensemble this
expression reads [3]

==~ In (exp(-BAU)) yvr M

where 3 =1/kpT and AU denotes the interaction energy of the test particle with all
other particles that are present in the system. Although this expression is completely
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general, its practical applicability is limited to moderately dense fluids of atoms or
simple molecules. To see why this is so, it is instructive to consider a fluid consisting
of ‘hard core’ molecules. In that case, (exp{-BAU])y v can be interpreted as
the probability that a test particle, inserted at random in the system, will not overlap
with any of the particles present in that system. At high densities, such a successful
insertion is unlikely and therefore it is necessary to perform relatively long simulations
to obtain reliable statistics. If instead of atoms or simple molecules we consider chain
molecules, this problem becomes even worse. Under conditions where it is unlikely
to insert even one particle, it will be virtually impossible to insert an entire chain of
such particles at a random position in the system.

Recently, Siepmann has introduced a novel technique that greatly increases the
efficiency with which the chemical potential of chain molecules with a finite num-
ber of discrete conformations can be computed [4]. Siepmann’s method is based on
the Rosenbluth algorithm [5] to generate polymer conformations. In Siepmann’s ap-
proach, the chemical potential is related to the average of the Rosenbluth weight
factor—this will be discussed below in more detail. The importance of this technique
is that it leads to much better statistics because the Rosenbluth scheme expresses the
insertion probability as an average of many smai)! numbers rather than the average of
a large number of (s and a few 1's.

Subsequently, it was demonstrated that the computation of the chemical potential
of self-avoiding chain molecules on a lattice can be made even more efficient by
combining it with an algorithm that allows exact enumeration of the¢ conformational
entropy of ideal chains on a lattice [6]. However, neither scheme is of much help
if one is interested in the calculation of the chemical potential of molecules that do
not have a finite number of conformations, such as fully flexible chains or worm-like
chains.

In the present paper, we present an efficient scheme to compute the (excess)
chemical potential of a fiexible chain molecule. This technique can bte applied to
fully flexible chains and to semi-flexible molecules. We have used this method to
compute the excess chemical potential of fully flexible chain molecules consisting of
10-20 segments in an atomic fluid.

An essential step in our method for calculating the chemical potential is the grow-
ing of a chain at a random position in the system. We show that the same growth
process can be used as a basis for a configurational-bias Monte Carlo (CBMC) proce-
dure. The CBMC method has recently been introduced as a Monte Carlo technique to
sample systems consisting of chain molecules with a finite number of conformations
{I]. In the present article we generalize the (EMC method to continuum systems.
In this procedure, a trial configuration is generated by growing a chain at a random
position in the system or by re-growing parts of the chain. We shall show that this
Monte Carlo method yields the correct (Boltzmann) distribution of configurations.
The present method makes it possible to perform simulations of chain molecules in
the Gibbs ensemble [7-9]. We compare our scheme with conventional Monte Carlo
algorithms for chain molecules. It turns out that the present method is particularly
good at achieving large-scale conformational changes.

2. Chemical potential of flexible molecules

In this section we present our approach to computing the chemical potential of
fully flexible chain molecules in an atomic fluid. We start with a discussion of the
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theoretical foundation of the method. Next we present results of chemical potential
cajculations for infinite dilution of chain molecules consisting of 10-20 segments in a
moderately dense fiuid.

2.1. Theoretical aspects

Although it is our aim to develop a scheme to measure the excess chemical potential
of fully flexible molecules, it 8 most convenient to introduce the method by consid-
ering a molecule with a finite number of conformations and then take to the limit in
which the number of conformations goes to infinity. In this context, it is instructive
to consider first Siepmann’s method [4] to measure the chemical potential of a chain
molecule with a finite aumber of conformations. Next the method is generalized to
continuously deformable chains and to chains with strong intra-molecular interactions.

21.1. Siepmann's method. The probability ( P) for generating a polymer with a
conformation I' using the Rosenbluth algorithm [5] is given by

{
po= [ 25— () )

where [ is the number of segments of the trial conformation and Z; is the sum of
the Boltzmann factors of alt b directions of segment 7, where b is the number of
possible orientations for any polymer segment (e.g. b = 3 if the polymer backbone
corresponds to a non-reversing random walk on a diamond lattice):

b

Z, = Zexp(-—ﬁuj) .

i=1

up denotes the potential energy of segment 7 of the chain with conformation I" (note
that this energy excludes the contributions of segments 7+ 1 to {, so the total energy
of the chain is given by U = Zi.:l up, ), J enumerates all possible orientations from
which the {th segment of the chain can ‘choose’. Finally, u; denotes the potential
energy of the jth trial orientation of segment i, The Rosenbluth weight factor of a
chain conformation I is defined as

Z;
o (3)

.

fl
(&)

Wr B exp (-8ur,)

1

We now consider the average of the weight factor W, obtained by using the
Rosenbluth scheme to generate a large number of trial conformations of a chain
molecule in a system (‘bath’) consisting of N particles. If we generate a sufficiently
large number of such chain conformations we obtain the following average of the
wejght factor,

e Pr(a™)Wr(g™ )i, exp [ - BU(g™)]
Lgnexp [=BU(gM)]

where the first summation in the numerator runs over all configurations, q®, of the
system and the second summation runs over all wonformations I of the test polymer.

(W)

@
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The angular brackets denote averaging over all starting positions of the test molecule.
The set g™ denotes both the centre-of-mass positions and the internal coordinates
(if any) of the solvent molecules. U(g™) is the potential energy of a bath in a
configuration ¢’¥. Note that the test polymer does not form a part of the [V-particle
system. Therefore, the probability of finding the remaining particles in a configuration
g” does not depend on the conformation I' of the polymer.

For a given configuration of the system g”, we can define an average Rosenbluth
factor

Wi(g") = Z Pr{g™M)Wr(g™). (5)
T
Substituting (2) and (3) in (5) and dropping the argument g” yields
-, 1
W, -‘-‘-‘ZH—_IQXP(—ﬁUr)- ©®)
T

Upon substitution of this expression in (4) we obrain

_ Zq” { 2.rexp [— ﬁUr(QN)]}exP [_— ﬁU(QN)}
Wi = S e @

We recall that &'~ is simply the number of possible conformations of an ideal {non-
interacting, non-self-avoiding) polymer. Therefore, the denominator in (7) is simply
equal to the partition function of the N-particle system plus an ideal polymer. We
denote this quantity by Z, (solvent + ideal polymer). The numerator is equal to the
partition function of the N-particle system plus an interacting chain molecule, ic.

Z n{solvent+polymer)

(Wiy = Z n(solvent + ideal polymer) =

®)

This shows that the average Rosenbluth factor is directly related to the excess chemical
potential of the polymer, ie.

= B = —In(W)). ©)

21.2. Fully flexible chains. Up to this point we have basically followed the approach
of Siepmann [4] who computed the Rosenbluth weight by enumerating af/ possible
orientations for adding a new segment. Clearly, exploring all possible orientations
of a new segment is no problem if we deal with a molecule that has only a finite
number of conformations. However, such an approach would not work at all for a
continuously deformable, flexible molecule. Surprisingly, however, it turns out that it
is, in fact, possible to construct a rigorous scheme to sample the Rosenbluth weight of
any flexible molecule using only a random subset of all possible segment orientations,
even if the total number of orientations is infinite. We shall now procced to prove this
crucial result. Doing this we keep summing the configurations as if there were a
finite number of orientations, but we keep in mind that in the limit & — oo this is
not the case. In this limit the probabilities as we give them here become probability
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densities and the sum over all configurations, 3" T, is replaced by [ ... fdT,...dT,,
an integral over the {(d — 1)-dimensional space of all polymer conformations.

Let us consider a situation where, instead of generating all b orientations of trial
segment ¢, we only generate a (sub-) set {m}; (see also figure 1 for the notation).
Let us assume that the set {m}; contains k elements. We denote the probability of
generating a trial segment with the orientation I'; by FPr.. The probability to generate
a specific chain conformation I is given by

!
P.= H kPr. Ep(ﬁ_ur.) (10)
where

Zim}, = Zexp (- ﬁum,,) .

j=t

The Rosenbluth weight factor for the sets of trial orientations {m}, is given by

i
Zim
Wy = exp (-——,Burl)H—{-,-ci-. (11)

i=2

If we now average over all possible choices for the sets {m},, and all possible chain
conformations, we can compute the average Rosenbluth factor

i
W, =Y T] Pr.exp (~Bur) - (12)

T i=l

We must now specify the probabilities . . For the moment, let us consider the case
in which all trial conformations are generated with the same a priori probability. That
implies that every segment has an equal probabi'ity to end up in any of the b possible
directions and

(13)
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So we obtain the following expression for the average Rosenbluth factor in (12).

Ll M

!
W'l —_ z
I i=t

exp (_»Gul‘.) E 3!1_—1 exp (—GUp) (14)
r

which is indeed identical to (6). Hence, we have shown that the Rosenbluth weight
of an arbitrary flexible molecule can be sampled using only a subset of all permissible
segment orientations. Note that for & = 1, the method reduces to the conventional
Widom insertion method.

2.1.3. Chains with strong intra-molecular interactions. In order to compute the Rosen-
bluth weight of polymers with strong intra-molecular interactions, for example stiff
polymers (‘worm-like chains’), we can modify the probabilities Pr. in such a way that
the probability to generate a given segment orientation is dictated by the Boltzmann
factor associated with the intra-molecular energy uil'l‘, i.e.

_}Binl
P, = SRR s

where C = Z?m exp (—Bu}“') is a normalization constant in which the summation
runs over all b-segment directions. If b — co, the summation is replaced by an
integration. This, however, constitutes no special problems, as the resulting integral

is simply a normalization constant that need not be evaluated in practice. The
probability to generate a polymer in configuration I" is now given by

A= ﬁkexp(-ﬁu{l‘}) exp (~Buf?)

(16)
C 7

i=2
where
k
Zimy, = D _exp(-Bu).
i=1

The probability for selecting one orientation is now calculated by considering only
those interactions which have not been accounted for in »™. We denote these
interactions by u*. These interactions have to be included in the corresponding
Rosenbluth factor for the particular set of orientations {m};

{
Zim
Wy = exp(—Bur,) H {_A}—‘ _ — (17)
=2

The average Rosenbluth factor of a semi-flexible molecule can then be written as

l s -
W, =Zprwvrzz_é.}__l.nexp -6t + )] (18)
T r i=1
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This equation is similar to (6) but now the interactions are split up in an internal
and an external contribution and C'-! is simply the partition function of a polymer
with only internal interactions. If we combine (18) with (4) we obtain an expression
for the Rosenbiuth weight of a semi-flexible molecule thermally averaged over all
configurations of the N -particle system. Equation (8) relates this average to the
excess chemical potential of the semi-flexible molecule.

In the next sections we show that the above recipe to compute the excess chem-
ical potential of an arbitrary (semi-) flexible molecule can, in fact, be used under
conditions where the conventional particle-insertion schemes fail completely.

22 Model and computational details

In order to test the scheme to compute the chemical potential of continuously de-
formable molecules as described in section 2.1, we have performed a series of com-
puter simulations in which we compute the excess chemical potential at infinite dilu-
tion {which is related to the Henry coeflicient) of a fully flexible chain molecule in a
moderately dense atomic fluid. These systems have been the topic of several studies
[10-15].

22.1. The model. In our model both the solvent and the polymer segments interact
via a Lennard-Jones potential

gy 12 a\ b
s =ae|(£)"- ()] (19)
in which r is the distance between particles 7 and j. In addition to this Lennard-
Jones interaction, two adjacent polymer segments are connected with an infinitely stiff
spring (bead-rod model) with length . In this model the polymer is thus ‘dissolved’
in its own segments.

In our simuiations we have considered the following systems.

() A system with repulsive and attractive interactions. For this case the potential
was truncated at R, = 2.5¢

LJ
) r< R )

u(r’):{ r> R

The contribution to the energy of interactions with » > R_ was estimated analytically,
by assuming that g(r) = 1 for » > R_ [2].

(if) A system with only repulsive interactions. In this case the potential was
truncated (and shifted) at B, = 2!/65

&(r) - o( R} TR,

0 r> R,. @

um = {
In addition, we have considered for both systems the limit that the density of the
solvent is zero, ie. a polymer which has no interactions with the solvent but only with
its own segments.
Since we are interested in the chemical potential of the polymer at infinite dilu-
tion, the polymer has to be considered as a test particle and does not influence the
configurations of the solvent.
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2.2.2. Computational details. The Monte Carlo s'mulations were performed at solvent
densities p* = po® = 0.5 and p* = 0.6 (and some at p* = 0.0} at a temperature
T* = kgT /e = 1.2. We have performed the simulations in cycles, each cycle consist-
ing of a displacement step and a test polymer insertion step. In the displacement step
Npaq particles are selected at random and given (sequentially) a random displace-
ment such that the average acceptance ratio is approximately 50%. The test particle
insertion step consists of NV, attempts to insert a test polymer using the Rosenbluth
algorithm.

We have used the following algorithm to generate the conformations of the test

polymer.

Step 1. A map of the system is constructed, which consists of cells which are labelled
occupied (or free), when the addition of a test particle would result in an overlap (or
no overlap) [16]. We define two particles to be overlapping if the distance between
these two particles is smaller than R_;,, where R, , is chosen such that for r < R,
U{r) > Upyy We have used U, = 10¢c.

If a test particle were to be placed in an occupied cell, the energy of this particle
would be infinite and hence its contribution to the Rosenbluth factor would be zero.

With this map we can use a very large number of attempts at high density, since
an insertion which would be ‘rejected’ can be detected immediately.

min

Step 2. N, attempts to insert a single (test) polymer bead 7 at a random position
in the system. If this attempt is not rejected immediately by the map of step 1,
the energy of this particle is calculated and its contribution to the numerator of the
Rosenbluth factor is calculated.

Step 3. Growing of the test polymer. If the Rosenbluth factor of the test polymer ¢
with current length { is not equal to zevo, a set of k random orientations ({m};) are
chosen around the last segment of the chain such that

Iryy ~rn|l=0o. (22)

Of each of these [ orientations the energy and the contribution to the Rosenbluth
factor are calculated. One of these orientations (I';) is selected with probability

= i exP(_ﬁuP.) . (23)
Y=g exp[—Bu(m;)]
and the Rosenbluth factor
1 &
W, =Ww,_, EZEKP [~ﬁu(mj )] (24)
i=1

is updated.

Step 4. Steps 2-4 are repeated until the test polymers reaches the desired length.
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It is important to note that in this scheme we only continue to grow those polymers
that have a Rosenbluth factor W # 0. It is, however, essential that those test
polymers which have been prevented from growing, and thus have a W = 0, are
taken into account in the averaging procedure given by (5).

In order to study finite size effects, we have performed simulations for a varying
number of solvent particles. Furthermore, we¢ have studied the influence of the
periodic boundary conditions on the results. For small systems it can be expected
that for large chain lengths, the chains will start to feel their own segments via
the periodic boundary conditions. In practice, simulations should always be carried
out in systems that are sufficiently Jarge to suppress the spurious effects of periodic
boundary conditions. In order to test the influence of this effect we have performed
some simulations with periodic boundary conditions for both the solvent and the test
polymer and some simulations in which periodic boundary conditions are only used
for the solvent and for the interactions of solvent particles with the test polymer but
no periodic boundary conditions between polymer segments.

in the algorithm to compute the chemical potential, a choice has to be made for
the number of orientations in the set {m},. If we choose k& = 1, the method reduces
to the conventional Widom insertion method and will not give reliable statistics. If
k is chosen to be very large, too much time will be spent calculating the Rosenbluth
factor of one chain. In order to study the influence of & on the accuracy of the
results we have performed simulations for various values of k.

The details of all simulations that we have performed are shown in table 1. In
the next section we refer to the number of the run as given in this table.

Table 1. Details of the simulations. NR gives the number of the run, NV is the number
of solvent panicles, p* is the density of the solvent, Ny is the rumber of Monte Carlo
cycles, R. is the cul-off radius, PBC; indicates whether periodic boundary conditions for
the interactions between test polymer segmenis are used, & is the number of selected
orientations, Vi is the number of attempted insertions per Monte Carlo cycle, and cPu
is total amount of cpy time {on the Cray-XMP) in seconds.

N N P Nye/10®  Refe Oy & N,  cpU

1 500 06 3 25 yes 250 610
2 500 06 3 2.5 yes 2 250 625
3 500 06 3 25 yes 0w 250 700
4 500 06 3 23 yes 20 250 200
5§ 500 06 3 2.5 yes S0 250 1825
6 S0 06 3 25 yes 100 250 3525
7 108 06 10 2.5 yes 0 250 1750
g8 108 06 10 25 o 50 250 1800
9 500 06 3 25 yes S0 250 3100
10 0 00 1 25 no 50 1 50
11 108 06 30 112 o 50 500 3000
12 500 05 4 L2 no S0 500 3400
13 0 06 1 L12 no 50 1 50
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2.3. Results and discussion

We have calculated the excess chemical potential
Bu™(1) = Bu(l) — Bu(ideal polymer, !} (25)

of a chain with [ beads in a soivent of its own segments at infinite dilution. In
the previous section it was shown that the efficiency of our method depends on the
choice of the number of trial orientations (k). In table 2 the results for the chemical
potential are given for various vaiues of k.

Table 2. The excess chemical potential (#p®) as a function of the number of beads
{1) for various values of £. The number of the simulatjon refers to table 1. The small
subscript gives the accuracy of the resulis, so —2.435 means —2.43£0.05. *— indicales
that the number of successful insertions w.as insuflicient to obtain a reliable estimate for
the chemical polential.

{ k=1 k=12 k=10 k=120 k=50 k=100

NR 1 2 3 4 5 6

] ~2.45; -2.455 —2.43; —2.45; -2.44; ~2.43;
2 -8.3, -505 -5.0; -50, =505; —5.05
3 -8 -7 =-7.33 -7.32 —-7.32 —-T.4)
4 — — -9.5, -9.8, —9.9, —8.9;
5 — — ~11.8:  —12.07 -12.3; -12.2;
§ — — -13, -14, —14.8, ~14.54
7 - - —162 —17q -18, -17,

g — — . _18, —18, -19.7¢ ~18.97
R — — —21; ~22, _22,

0 — - — = -a23 ~24,

11 - - = — - =26y - - =27y
12 —— —_ - — —-284 . =28,

13 —_ — — — ~-302 —-281
14— — — — 32y =29, .

For { = 1 (one bead) the calculation reduces simply to the determination of the
chemical potential of the Lennard-Jones fluid. Our results are in excellent agreement
with previous simulations [16-18].

An important result, shown in table 2, is that within the accuracy of our calcu-
lations the results are indeed independent of the choice of k. This demonstrates
that reliable estimates for the chemical potential can be obtained for gny value of k,
provided the simulations are continued sufliciently long.

This table also demonstrates that with the conventional Widom test particle in-
sertion method, & = 1, reliable estimates of the chemical potential can be calculated
within a reasonable amount of computer time only for chains with less than four
beads. For [ > 3 this method fails completely. The method discussed in the present
paper, however, yiclds reliable estimates of the chemical potential for much larger
chain lengths within a reasonable amount of CPU time.
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Not surprisingly, the results suggest that for small chains (! < 5) it is not efficient
to use a large value of k. Note that in table 2 we have used the same number of
Monte Carlo cycles for each simulation. For a detailed comparison of the efficiency
of the various values of %, it would be more appropriate to compare the results for
the same amount of total CPU time. A rough indication of the accuracy at equal
amounts of CPU time can be obtained by multiplying the standard deviation by the
square root of the ratio of the total CPU time of the current simulation and the total
CPU time of the simulation with & = 100. This would, for example, reduce the
standard deviations for & = 1 by approximately a factor 2.5. For large chains one
has to use a large value for & in order to obtain any results at all. Comparison of
the results for & = 50 with the results for £ = 100 shows that the accuracy did not
improve significantly, while the total CPU time almost doubled. On the basis of this
admittedly rather crude comparison, we decided to use & = 50 in the rest of our
simulations.

In table 3 we give the probability that a chain is inserted ‘successfully’ in the
solvent, provided that the first segment has been inserted successfully. We call an
insertion successful if the Rosenbluth factor is different to zero—recall that W was
set to zero if one of the segments of the chain had an energy up > 10¢. This table
illustrates once more that for all but the smallest molecules, it is indeed impossible
to insert a chain at random. With the Rosenbluth algorithm, however, this proba-
bility can be increased significantly. For example for & = 50, during this simulation
approximately 270 successful insertions for a chain of 20 segments could be obtained.
Of course, it would require more CPU time to obtain a reliable estimate of the chem-
ical potential, but it does demonstrate the significant improvement compared to the
random insertion.

Table 3. The acceptance percentage as a function of the number of beads (!} of the
polymer for various values of k. The acceptance is expressed as the ratio (in %) of the
fraction of accepted configurations and the fraction of accepted monomers (I = 1) at
the given conditions. The fraction of successful insertion of monomers was 5.5%. The
number of the simulation refers to table 1

{ k=1 k=12 k=10 k=120 k=150 k=100

NR I 2 3 4 5 6

1 100% 100% 100% 100% 100% 100%
3 1.0% 3.3% 29% 49% T4% 92%
6 10—% 104 3.2% 12% 35% 47%
10 0 0 0.15% 1.8% 12% 20%
14 0 0 10— 0.28% 1.1% 8.0%
20 0 0 0 10-4 0.68% 2.0%

Ii is instructive to compare the random insertion scheme with the method pre-
sented in this work, from a computational point of view. If we assume that the
probability of a successful insertion of a monomer in the solvent has a probability p,,
and that the insertion of the other segments i not influenced by the part of the chain
which is already present, then the probability of a successful insertion of a chain with
length { is given by

Pmndom(!) = P:n . (26)
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In the scheme of growing a polymer as presented in this work, we try for each new
segment k trial orientations. If we assume again that the probability for a successful
insertion is not influenced by the segments that are already present and we assume
that each trial is an independent attempt {19)], the probability of a successful addition
of at least one segment out of the k trials is given by

P(seg) =1—(1—-p,)*. (27

Then the expression for the probability of a successful insertion of a chain with length
{ becomes

P() = pu[1 - (1= pa)¥] " (28)

If we recall that the probability of a successful insertion of a monomer at p* = 0.6
is approximately 5%, then according to (26) a successful insertion of a chain with
length 10, using the random insertion method, would have a probability of 10~13,
The method described in this work, however, would give a probability (equation (28),
with k = 50) of 2%. We can use (28) to estimate how & should vary with { in order to
keep P(!) approximately constant. To a first approximation, we find that the number
of trial directions should depend logarithmically on the length of the polymer, ie.
k~log(li-1).

In figure 2 and table 4 the values of the chemical potential of a polymer in a
system with 108 and 500 solvent molecuies are given. In figure 2 we compare the
results for a system with periodic boundary conditions (PBC) for the solvent and the
test polymer (run 7), with a system with PBC only for the solvent-solvent interactions
and polymer-solvent interactions (run 8). For small chain lengths (I < 10) no
significant differences between the two systems are observed. For larger systems
(I > 10), however, the chemical potential for the polymer with PBC (run 7) tends to
increase, while the chemical potential for the polymer without PBC (run 8) continues
to decrease.
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Figure 2. N dependence of the excess chemical potential {(Su*) as a function of the
number of beads of the chain I for system I. @ (run 7) NN = 108 and p8C for the
solvent and the test polymer, O (run 8) N = 108 and pBC only for the solvent, and O
(run 9) N = 500 and P8¢ for the solvent and the test polymer.
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Table 4. V¥ -dependence of the excess chemical potential {#u®). [ is the number of
beads and NN is the number of solvent molecules. The number of the simutation refers
io 1able 1. PBCp denotes whether periodic boundary conditions between the polymer
segments were used. The small subscript gives the accuracy of the results, so —2.435
means —2.43 £ 0.05.

! N =108 N=108 N =500
NR 7 8 g

PBCp  yes no yes

1 —-2.44, —2.44, -2.43y
2 -5.0q —-5.02g -5.01y
3 -T7.43 7.4y =-T7.5,
4 -9.7a -9 .82 -9.94
5 =-12.14 —-12.13 —-12.2;
6 —14.25 -14.55 —-14.5¢
7 ~16.T3 —172 -17,

8 —20, -19.1 ~-18.9;
9 -2 -21, —-22;

10 —-23;3 —~23 —24,

i1 =25, —-25; ~264
12 27y -26; —28,

13 -27, -28, -28;

14 —305 —295 —-29,

15 -31lg —31z -323
16 ~307 —345 -33;
17 ~12g —373 —353

18 —-129 —38, —-373

19 —_— —415 -39y
20 —_ —447 ~-39;

It is interesting to compare these values for the chemical potential with the results
for a system with 500 particles with PBC used for both the solvent and the polymer
(figure 2, run 9). Figure 2 shows that the results for the chemical potential of run 9
have no significant differences with run 8 (the system of 108 solvent particles without
PBC for the polymer). This suggests that the increase of the chemical potential, as
observed in run 7, is due to interactions of the polymer via the periodic boundary
conditions with its own segments. This also explains why the total amount of cPU
time for run 7 is much smaller than for run 8. Because of the overlap with its
own segments via the periodic boundary conditions many more chains have stopped
growing in an early stage in run 7.

In figure 3, results for the excess chemical potential as a function of the chain
length are presented for system 2 for p* = 0.5 and p* = 0.6 (run 11 and 12
respectively). This figure shows that the chemical potential increases linearly for
chains with { < 11, but surprisingly the slope of u** suddenly increases as the chain
length is increased. For an isolated polymer chain of the same length (run 13),
this effect is not observed (see figure 4). This indicates that the change in slope is a
solvent effect. This conclusion is supported by the observation that at a higher solvent
density (see figure 3) the change of slope occurs for a shorter chain length (I =~ 8).
Moreover, a similar effect can be observed in system 1 (see figure 2) and also for the
isolated chain such an effect is not observed (run 10, see figure 5).

As the excess chemical potential determines the solubility of the polymer in the
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Figure 3. The cxcess chemical potential, #p™, of the polvmer as 2 funciion of the
number of beads of the chain { for the system in which the interactions are only
repulsive (system 2, runs 11 and 12). The soivent density was @ p* = 0.5 and O
p* = 0.6.

Bt
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Fipure 4 The excess chemical potential, 3u¥, of an_isolated self-avoiding chain of
repulsive Lennard-Jones particles (system 13), as a lunction of the number of ‘atoms’
() in the chain.

liquid of monomers, our calculations indicate a rather sudden change in the depen-
dence of polymer solubility on chain length. The observed change of slope in u™
indicates that, beyond a certain length, it becomes more difficult to add additional
segments to a chain molecule. As the probability of insertion decreases rapidly with
increasing density, the most obvious interpretation is that beyond a certain length,
additional segments are inseried in a denser fluid. The sudden change in slope in u™
suggests that there is a change of the segment density of the polymer in solution. In
itself, such an effect is not surprising. What is surprising is that this effect appears to
take place quite abruptly even for relatively short chains. At present, a guantitative
explanation for this effect is lacking. It would, however, be interesting to see whether
recent theorics on dilute polymer solutions [20,21] would reproduce this effect of the
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Figure 5. The excess chemical polential, Fu®, of an isolated self-avoiding chain of
Lennard-Jones particles (system 10), as a function of the number of *atoms’ ({) in the
chain.

solvent on the excess chemical potential of polymer.

3. Configurational-bias Monte Carlo

In most curtent Monte Carlo algorithms for chain molecules, trial configurations are
generated by, for example, reptation or crankshaft moves [22,23]. With such local
schemes, trial configurations are usually quite similar to the previous configuration.
In contrast, a complete re-growing of the chain at a random position in the sys-
tem corresponds to a very large step in configurational space. Here, we present a
configurational-bias Monte Carlo method by which this can be achieved. First some
theoretical aspects of this method are discussed. In addition we demonstrate the
utility of the method through simulation of the collapse of a polymer in a poor
solvent.

3.1. Theoretical aspecis

In section 2.1 we outlined a procedure for growing a chain. Although this procedure
can be used to measure the excess chemical potential of any flexible chain, it cannot be
used to generate equilibrium configurations of the chains. As usual, the Rosenbluth
scheme introduces a bias in the sampling procedure that has to be corrected by
weighting of the generated configurations. This can be achieved by using an extension
of the configurational-bias Monte Carlo mecthod of [1]. In the remainder of this
section, such a procedure is described.

3.1.1. Configurational-bias Monte Carlo—general aspects. In constructing a Monte
Carlo procedure it is advisable 10 ensure that the sampling scheme satisfies the
detailed balance condition. This implies that the rate £ ,, at which configurations
e are transformed into configurations b equals the reverse rate, ie.

Kappy = Kplay - 29
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Let us now compute X, ,, for an arbitrary Monte Carlo move. We assume that
the number of chains in conformation e is given by N, (and N, for the density of
conformation b), the probability that a chain in conformation b is generated by P,
and the probability of acceptance acc(alb). The rate K, is then given by

I{(alb) = Na. Pb aCC(a!b) (30)
and equally for the reverse rate
I{(b]a) = NbPa aCC(blG.) . (31)

Substitution of (30) and (31) into (29) gives
P,acc(ald) N,
P,acc(bla) ~ N, -~

If we want to sample a Boltzmann distribution of the configurations, the acceptance

rules in (32) must be chosen such that
P, acc(alb) _ exp_(-,c_ft_’_Ub) 7 _ (33)
P, acc(bla)  exp(-8U,)

where U denotes the energy of a configuration. There are many choices that satisfy

this condition, an obvious choice being the Metropolis form

: P/eﬂ%—ﬁU))
acc(elP) = min {1, =4 2 . 34

(ot = min (1, 2 =0 G4
Recall that in conventional Monte Carlo algorithms any configuration is chosen with

equal probability. For this particular case (34) becomes the conventional Metropolis
acceptance rule

acc(a|b) = min (1,exp[—-8AU(a,b)]) (35)
where AL/ is the energy differences between configurations & and .

(32)

3.1.2. The Rosenbluth method. 1f we generate a new conformation by growing a chain
using the Rosenbluth algorithm, the probability of generating a chain in a particular
configuration b is given by (see also section 2.1.1)

i

P, = 1:[2 ffﬁ(_fﬂ ] . - (36)

where u, denotes the energy of scgment ¢ of a chain in configuration & and Z; =
Zf=1 exp(—3u;). The corresponding Rosenbluth factor is defined by

!
Womexp(-Bur ) [JZ. o )
i=2

This means that as Uy = 35_, Up,
P,/ exp(~BU,) = 1/k" W, (38)

and the same holds for configuration a. So the acceptance probability given by (34)
becomes

acc(alb) = min (1, W, /W, ). (39
This derivation shows that in a Monte Carlo procedure the Rosenbluth method can be

used to generate trial configurations of chain molecules with the correct (Boltzmann)
distribution provided that the acceptance rules are chosen such that (33) is satisfied.
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3.1.3. Fully flexible chain molecules. In the previous section we have shown that the
Rosenbluth method for growing chains can be used to generate trial configurations.
In this derivation it is implicitly assumed that the Rosenbluth factor of the old and
new configurations are known. This causes no problems in lattice models since all
possible configurations can be explored, and therefore the Rosenbluth factor can
be calculated exactly. In a continuum model, however, it is impossible to explore
all possible configurations. Below we show that a Monte Carlo procedure can be
constructed using only a subset of configurations. We first consider chains which
are fully flexible. In the next section we discuss chains with strong intra-molecular
interactions.

As in section 2.1.2, we consider a situation in which we only generate a subset
of all possible orientations. This subset contains & elements. The probability of
generating such a set is Py, . If we use the Rosenbluth method, the probability of
generating a chain in configuration b is given by

{ [
exp(—Buy )
i=2{m}, {m}
where Z,,, = Zleexi’('ﬁum,-) and where the prime on the first summation

means that this summation runs over all sets of & orientations which include ori-
entation b;. Detailed balance is guaranteed if we impose a stronger condition, one
that we denote by ‘super-detailed balance’. By definition, super-detailed balance is
satisfied if for amy specific choice of a set of trial orientations, {m}; and {m'},,
Kpy{m}{m'}); and K, {m};{m'}, are equal, where {m'}, denote the tial
directions for configuration a. The probability of generating a chain via a specific
set of trial directions {m}, and of choosing a set of trial directions, {m'},, from ali
possible sets that contain configuration «a is given by

exp(—Fu,, )

(41)
Zim},

i

Py = ]I Pimy. Praesey,

=2

where {rest'}; denotes the set of & — 1 orientations {m'}, excluding orientation a;.
Actually, P, in (41) denotes the probability to generate a new trial conformation b
from the set {m}, and a set of trial orientations {rest’}, around the old conformation
a. As we shall see below, such an extended definition of a trial move is necessary in
order to impose super-detailed balance. The Rosenbluth factor that corresponds to

configuration b and the set of orientations {m}, is
i

Z
W, = exp(—Bur, ) H —{E}—' (42)
=2

whereas the Rosenbluth factor of configuration « with orientations {m’}; will be

i
Ze
W, = exp(~gur, ) [T . (43)
2

If we substitute (41) for both configurations « and b in (34), we see that we have
to use (39) for the acceptance probability.

A convenient way to choose a set {m'}; that contains the orientation e; iS to0
place the same set of additional directions as has been used for generating a new
trial configuration around the original conformation a;.
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3.1.4. Chains with strong intra-molecular interactions. In some applications chains with
strong intra-molecular interactions are used (worm-like chains, chains with flexible
joints, or chain molecules with bending and torsion potentials). For these types of
chain molecules it is favourable to separate the intra-molecular interactions u™ from
the inter-molecular interactions u™. A similar procedure is used for the calculation
of the chemical potential of these molecules (see also section 2.1.3).

For these types of systems we generate a set of k trial orientations {m}; with
a probability Py, , prescribed by the Boltzmann factor associated with the intra-
molecular energy (see also (15))

Pimy, = c,kl—_[exp( —Bul ). (44)

where C = E;’-__Lexp[ BulMy is a normalization constant, If we impose super-
detailed balance as described 'in the previous scction, we have o consider the proba-
bility of generating a chain via one particular choice of trial orientations, {m};, and
of choosing one set, {m'},, out of all possible sets of trial oricntations that contain
orientation a;,

exp{—Bu®
Py = [1 Pim), Piresiy, ——>= (45)
g {m}l
where Z,.y, = Z;‘ﬂexp(uﬁuﬁfj) and where {rest'}; denotes the set of k — 1

orientations {m'}, excluding orientation a;. The corresponding Rosenbluth factor is

I
Z ”
W, = exp(~Bup, ) || -———{k’ L . (46)
1=k

Now as U, = Z: L upt + ugt we get
P, [ exp(—=BU,) = P{resx] P{rest'}/c‘l‘:t—1 W, (47)

where {rest}, denotes the set of & — 1 orientations {m}; excluding orientation b;.
We can repeat this for configuration a gencrated with a set of & trial orientations,
{m'};. The convenient choice for {+n'}, that was menticned in scction 3.1.3, means
that Py = Plresyry- Subtitution of (47) into (34) again gives (39) for the acceptance
probability.

In the pext section, we report numerical tests of the CBMC method for such
molecules,

3.2. Model and computational details

As an example of an application of the configurational-bias Monte Carlo method,
which has been described in section 3.1, we equilibrate a chain molecule, initially
prepared in an elongated conformation, in a poor solvent. However, the method is
not restricted to dilute solutions and can be applied to the study of dense polymer
systems as well. We compare this method with a more conventional MC scheme,
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namely the reptation algorithm [22, 23], Alternatively, we could have compared our
scheme with the pivot algorithm [24] which has been shown to be ergodic [25].
However, for dense solutions, the acceptance of trial moves of the pivot algorithm
is very low and the comparison would be unfair. If we had performed simulations
of an isolated chain, we should expect the pivot algorithm to be more efficient than
the reptation scheme. In that case a comparison of the CBMC scheme with the pivot
algorithm would have been more natural.

3.21. The model. Again we considered a system in which both the solvent and the
polymer segments interact via the Lennard-Jones potential given by (19), which was
truncated at R, = 2.50 and shifted. And again the polymer segments were atrached
by freely rotating, infinitely stiff springs of length . To simulate a polymer in a poor
solvent, we took the strength e of the interactions to be more attractive for polymer—
polymer interactions (e;, = 1.0) than for polymer-solvent (e, = 0.1) interactions.
The solvent—solvent interactions were the same as those describing the bead-bead
interaction in the polymer (e, = 1.0).

3.2.2. Computational details. The compurtations were performed at a solvent density
p" = 0.23 and at a temperature 7" = 1.0. The polymer was 100 segments long.
At first the polymer was prepared in a fully streched conftguration and the Lennard-
Jones Auid was equilibrated around it. Then we performed a large number of Monte
Carlo moves of the polymer. Here we compare the results of two different algorithms.

First we consider the Configurational-bias Monte Carlo (CBMC). To generate a
new polymer configuration and to compute its Rosenbiuth factor, we used the same
steps 2—4 as described in section2.2.2. To implement the acceptance criterion given
by (39), we also require the Rosenbluth factor of the old configuration in the possibly
new environment. This Rosenbluth factor can be computed in exactly the same way,
except that there are some restrictions on the choice of the set of k trial oricntations
for selecting the ith bond in step 3. Obwviously one of these orientations has to be
the actual orientation of the ith bond of the old chain. As already mentioned in
section 3.1.4 a convenient choice is 1o take the same set {m};, already used for
selecting the 7th bond of the new chain, and to replace the selected orientation by
the orientation of the ith bond of the old chain. Faving computed the old and the
new Rosenbluth factor we accepted the new configuration with a probability given by
(39). In this way we can rcgrow the whole chain at once, but it is also possible to cut
the chain at a random position and to regrow only part of the chain, or to regrow
it from the other end. This is very important for simulations of long chains, where
complete regrowing can have a low acceptance rate.

A number of simulation parameters can be varied to optimize the CBMC simula-
tion. For instance we can vary the function P(Al) that determines the probability
with which we attempted to regrow A/l segments of the chain. Moreover, we can
vary the number of trial directions, k. An optimal choice for k& exists because for
low % values the acceptance is low while for large k the amount of computer time
increases. The following simple argument provides us with a rough estimate of the
optimal choice of k for a given length of chain, Al 1hat has to be regrown. Using the
reptation algorithm as described below one needs of the order of {? accepted moves
to get a completely new configuration and using CBMC this number is, for a fixed Al
12/Al*. The amount of cPU time for one move is proportional to 1/acc{REP) for
the reptation and to kA{/ acc(CBMC) for the CBMC, where acc{REP) and acc(CBMC)
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arc respectively the fraction of accepted moves during the reptation and the CBMC
runs. So the CPU time needed to get a2 new configuration is, for reptation,

{? facc(REP) (48)
and for the CBMC,
1’k

This means that for the choice of k& we should expect CBMC to be more efficient than
reptation if

acc{ CBMC)

Al
k< acc{ REP)

(50}
We have tried several choices for & as a function of Af. In the latter scheme, a trial
move involves removing one segment from one end of the chain (chosen at random)
and adding it to the other end with a random orientation.

As mentioned above, we compare the CBMC method with the well known reptation
algorithm [22,23]. Using this algorithm means just cutting off one segment on one
side of the chain and trying to add it onto the other side with a random orientation.
The Boltzmann factors of the old and the new positions determine the acceptance
probability.

3.3. Results and discussion

In order to obtain a quantitative measure of the efliciency of the configurational-
bias Monte Carlo simulations described in the previous section, we studied the rate
of equilibration of two quite different properties of the chain, namely the radius of
gyration R, defined as

Rg = E (r,=—1;)? Sh
1< i<ig!
1000 ¥ T
“:1 500 :.‘ .y .
e
\>
-\.‘
L] Y e e, h
¥ .:: 1
L /4-1;‘
avo H -
%
..‘..
5 Pt i
0 - 'l'? .—-“\"
X,
*
\”w
[+] — = = —
qQ 10 bt 30
CPU-TINE/S

Figure 6. The radius of gyration, Rg, of the chain as a function of the cPU lime for
both the configurational-bias Monte Carlo (- ~ -) and the reptation algorithm (- ---- 3
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Figure 7. The energy, E, of the chain as a function of the cpu time for both the
configurational-bias Monte Carlo (- - -) and the reptation algorithm (- ..+ )

where r; is the position of the ith segment, and the internal energy, E, of the chain.
We also computed the ‘time evolution’ of the same quantities using the reptation
algorithm. In order to facilitate the comparison we plotted the actual CPU time used
by both schemes. Figure 6 shows the ‘equilibration’ of RZ and figure 7 shows the same
for E. Both the results obtained by the configurational-bias Monte Carlo and by the
reptation algorithm are presented. What we show is the initial part of the simulation
where the largest conformational changes take place. As can be seen from figure 6,
the CBMC is very efficient at achieving such large conformational changes: the radius
of gyration relaxes about ten times faster to its final value than during the reptation
run. In this part of the simulation the energy also equilibrates much faster using
CBMC. After the initial chain collapse, the internal encrgy keeps decreasing slowly,
while the radius of gyration fluctuates around its equilibrium value. The time that
it takes to achieve total equilibration of £ is longer than shown in figure 7. During
this final approach to equilibrium, the chain undergoes mainly small conformational
changes and, under these circumstances, the reptation algorithm is about as efficient
as the CBMC scheme. We note, however, that there are many situations where the
reptation algorithm, unlike the CBMC scheme, cannot be used at all (e.g. grafted
chains, branched polymers).

In our simulation we have the freedom to choose the probability P(A!) with
which we attempt to regrow a piece of chain of Al segments and the number of trial
orientations & at each step. The simple argument given in section 3.2.2 suggest how
to choose those parameiers. From (49) it foliows that Al should be large (10 make
large configurational changes) while the acceptance of the moves should not get too
low. A higher value of & would lead (o a larger acceptance but would, at the same
time, increase the computational costs. In any case, & should not be increased above
the limit given in (50) because for larger k values the present scheme cannot compete
with the simple reptation algorithm. We took P(A/() to be inversely proportional
to Al%/* which means that 50% of the trial moves were attempts o regrow a piece
of chain shorter than 13 segments. For & we took a minimum number of 4 and let
it increase logarithmically with Al, which is a guess derived from the handwaving
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arguments given in section 2.3. Our choices for k and Al are almost certainly not
optimal. However, it is difficult to make general statements about the optimal values
of k and Al, as these will depend on the system under consideration. A plot of the
limiting value of k, given by (50), averaged during the run, is shown in figure 8. This
value decreased because the acceptance of the moves of large Al decreased. The
average value of & is also shown in the plot. Here again we see that, especially when
large configurational changes take place, CBMC is advantageous, because k stays well
below its limiting value.

CRU-TIME/S

Figure 8, The limiling value of & as given by (50) {~ — -) and the average value of k
R  as a function of the cpu time.

These results indicate that CBMC is a useful method to achieve large configura-
tional changes. When only minor re-arrangements are needed, a smalli value of &
and Al becomes more advantageous. Of course, the conventional reptation limit
corresponds to the limit & = Al = 1.

4. Conclusions

In this paper we have presented a method for calculating the chemical potential of
arbitrary chain molecules. Whereas the conventional Widom test particle insertion
method gives reliable resuits for the chemical potential for chains up to 3 beads
inserted in a moderately dense atomic fluid (p~ = 0.5-0.6), our method yields
accurate results for chains consisting of 10-30 beads.

An alternative method for calculating the chemical potential for systems contain-
ing polymers has recently been proposed by Kumar et af [26], in which the chemical
potential is estimated by calculating the change in free energy caused by the addition
ol an extra segment to the polymer. The chemical potential is obtained by assuming
that this free energy is representative for all segmenis. The fact that we observe a
non-linear length dependence of the chemical potential of a chain molecule strongly
suggests that the assumption underlying the scheme of [26] may be too naive.

In the second part of this article we showed that the novel ‘configurational-
bias’ Monte Carlo sampling scheme of Siepmann and Frenkel [1] can be extended
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rigorously to continuously deformable molecules. In this CBMC scheme, we make use
of the same Rosenbluth sampling that was used for the chemical potential calculations.
A comparison is made with the reptation algorithm for the collapse of a polymer
chain in a poor solvent. The CBMC is shown to be advantageous especially when large
configurational changes are needed.

Furthermore, our results make it possible to combine the Gibbs ensemble tech-
nique [7-9] with the configurational-bias Monte Carlo procedure [27]. This would be
a significant extension of the range of applicability of the Gibbs ensemble technique,
since at present this ensemble cannot be used for calculating phase diagrams involving
chain molecules.

Finally, we note that the configurational-bias Monte Carlo has been presented
exclusively as a method 1w generate polymer conformations. In fact, the method is
more general than that. It can be used as a scheme to perform collective rearrange-
ments of any set of labelled coordinates. Such a scheme could, for instance, be used
to carry out Monte Carlo moves w0 swap n small particles within a volume AV with
one large particle that occupies the same (excluded) volume. Similarly, one could
envisage a Monte Carlo move in which part of a polymer plus the surrounding solvent
is regrown.
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