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SI 1 Calculation example 
 
The following example illustrates how the topology matrix is being calculated with the directed 
graph (no loops, the wastewater is assumed to always flow downstream of a WWTP and does not 
return). 
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FIGURE SI 1. Theoretical example of a small river network with 5 WWTPs. Arrows indicate flow 
direction. 
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Parameters for a theoretical calculation example: 
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with: C CH  national consumption [kg a-1]; 
 PCH  total population [inhabitants];  
 p  fraction of parent compound excreted and discharged to sewer [-];   
 m  fraction of known metabolites (as toxicity equivalents for parent compound) [-];  
 WWTPP  population in the catchment of each WWTP [inhabitants];  

 e  fraction substance S eliminated in WWTP [-] (one value if all elimination rates are 
   equal, a vector if different elimination rates for different WWTP apply) 

 

 

The load that results downstream of the catchments taken into account that WWTP3 was 
upgraded and exhibits a larger removal rate calculates as follows: 
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Particularly, the calculation is carried out for the river section downstream of WWTP j=4: 
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SI 2 Sampling and chemical analysis 
 
This study. Sampling was carried out under dry weather conditions in August and September 2007. 
The number of inhabitants in the selected, independent river catchments ranged from 14’000 to 
187’000. Samples from rivers are grab samples, because none of the river sections we selected was 
equipped with a gauging station including a well maintained composite sampler. WWTP samples 
were 24h-composite samples collected routinely by the WWTP personnel without time shift between 
influent and effluent. Local authorities regularly check the sampling procedure (volume-
proportional, only one WWTP time-proportional every 15 minutes; samples from effluent primary 
clarifier, effluent secondary clarifier and, where applicable, effluent sand filter were collected 
simultaneously). 

A side aspect of this sampling campaign was to collect further information on elimination rates of 
micropollutants for different types of conventionally operated WWTPs and the per capita load in 
WWTP effluents. To this end, samples from 14 WWTPs were analyzed. The number of inhabitants 
connected to these WWTPs ranged from 6’000 to 19’000. These results are presented in the table of 
SI 5. For most compounds the observed elimination agree with values from literature. However, the 
data base is too weak to meaningfully correlate the observed elimination with common parameters 
such as sludge age, hydraulic retention time, NH4-N effluent concentrations or other generally 
available parameters.  

Samples were filtered on the same day (glass fibre filter, pore size 1 μm) and stored refrigerated or 
partly frozen until analysis. After spiking of isotope labelled internal standards 100 mL of influent 
and effluent as well as 250 - 500 mL of surface water, respectively, was enriched using solid phase 
extraction with different materials and extraction conditions dependent on the different compound 
properties (1,2). Subsequently, analyses were performed by HPLC-MS-MS in the selected reaction 
mode using one transition as quantifier and another as qualifier. Internal standards were used for 
quantification and limit of quantification was determined by signal-to noise ratio >10. Recoveries 
were determined for all matrices and were usually in the range of 80 - 120 %. 

 
A detailed list of all chemical analyses can be found on http://pubs.acs.org in the file 

“si_paper_ort_et_al_data_monitoring_campaign.xls”. 
 
 
Additional data. Additional data for carbamazepine and diclofenac was provided by the local 

authorities of the Cantons Zurich and St. Gallen (3,4). These sampling campaigns took place in 
November 2004, April 2005 respectively. The number of inhabitants in all investigated river 
catchments ranged from 5’000 to 410’000. The measured concentrations (MEC) are reported as 
single values with exact date and location. Loads were determined using the discharge in the rivers 
at the time of sampling available from gauging stations operated by the Cantons. The catchments in 
these Cantonal investigations have a total population between 5’000 and 410’000 (sampling 
locations in Figure 1 of the main paper). 
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SI 3 List of substances 
 
P Acetylsulfamethoxazole P Indomethacin 
P Amidotrizoate P Iodipamid 
P Atenolol P Iohexol 
Pe Atrazine P Iomeprol 
Pe Atrazine-Desethyl P Iopamidol 
Pe Atrazine-Desisopropyl P Iopanoic acid 
Pe Atrazine-Hydroxy P Iopromide 
P Azithromycin P Ioxaglic acid 
C Benzotriazole P Ioxitalamic acid 
P Bezafibrate M Irgarol 
I Bisphenol-A M Irgarol-Descyclopropyl 
P Carbamazepine M/PE Isoproturon 
PE/M Carbendazim P Ketoprofen 
P Clarithromycin Pe /R Mecoprop 
P Clofibric acid C Methylbenzotriazole 
P Diazepam P Naproxen 
IN Diazinon I Nonylphenol 
P Diclofenac P Pentoxifyllin 
M Diuron P Phenacetin 
M Dimethylphenylsulfamide P Primidone 
M Dimethyltolylsulfamide P Roxithromycin 
P Erythromycin+Dehydrato-

Erythromycin 
P Sotalol 

P Estradiol PE Sulcotrione 
P Estron V Sulfadiazine 
P Ethinylestradiol V Sulfadimethoxine 
P Etofibrate V Sulfamethazine 
P Fenofibrate P Sulfamethoxazole 
P Fenofibric acid P Sulfapyridine 
P Fenoprofen M Terbutryne 
P Gemfibrozil Pe Terbutylazine 
P Ibuprofen P Trimethoprim 
 

 C Anti-corrosive agents 
 I Industry 
 IN Insecticide 
 M Material protection 
 P Pharmaceutically active compound and hormones 
 R Material protection (roofs) 
 PE Pesticide 
 V Veterinary antibiotics 
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SI 4 Dilution factors and Q95% 

Measured Q95%-values were taken from Aschwanden et al. (5). When Q95% was unknown for a river 
section downstream from a WWTP, values were interpolated by using the method of Staub et al. (6). 
This procedure led to values for Q95% for river sections downstream from 543 WWTPs out of the 
660 that discharge to rivers. The evaluation of dilution at Q95% reveals that river sections directly 
downstream of 150 WWTP provide a local dilution factor of 10 or less. This assumes that all water 
upstream from a WWTP does not contain any micropollutants. In fact the treated wastewater and, 
therewith, recalcitrant substances accumulate in the aqueous phase along the rivers and a dilution 
factor of “cumulated wastewater” may be a more appropriate indicator for dilution. This results in 
over 230 river sections directly downstream from WWTPs with dilution factors smaller than 10. 
Thus, a default value of 10 for dilution is often by far too optimistic (7,8) and site-specific 
investigations on the discharge in rivers are crucial. 
 
 

cumulated wastewaterlocal wastewater

no Q95% availableDischarge to lake

Dilution factor at Q95% > 1000 ≥       > 100 ≥       > 10 ≥       > 2 ≥   

A B

 

Figure SI 4.1 A: Dilution factors at base flow Q95%, as traditionally determined (local) and B: when 
wastewater is accumulated along rivers and lakes (cumulated). Discharge from WWTP in 
Switzerland during dry weather normally around 400L c-1 d-1 (c=capita). 
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Figure SI 4.2 Comparison of Q95%.for uncertainty estimation, x-axis: values as used in this study, y-
axis: independent measurements from local authorities for comparison.  
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SI 5 Monte Carlo simulation: sampling values to account for uncertainty  

To calculate pollutant loads including uncertainty factors downstream of WWTPs (see also the didactical example in SI 1), equation SI 5.1 is used 
for the Monte Carlo simulations. As stated in the main paper the individual uncertainty factors are independent for each WWTP within one model 
run, and also from model run to model run (see Table SI 5 on next page). The loads obtained in each Monte Carlo run are divided by a Q95% to 
obtain pollutant concentrations at base flow. While the uncertainty factors related to the load calculations are independent, the one for Q95% is not: 
a lower value upstream also implies a lower value downstream to ensure consistency within catchments. This is achieved by sampling only one 
uncertainty value for Q95% in one run from a uniform distribution U(-1,1). This value is then scaled according to the uncertainty range derived for 
different rivers categories according to their flows (see main paper for explanation, Figure SI 4.2 and Figure SI 5). Furthermore, this procedure can 
be followed by understanding Table SI 5. In the next model run the procedure is repeated by sampling first sampling again from U(-1,1) and then 
scaling this value. 
 
 

WWTP1
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WWTP5

 

FIGURE SI 5. Theoretical example of a small river network with 5 WWTPs. Arrows indicate flow direction and the line width stands for the river 
category (small: Q95% < 60L s-1, medium-sized: 60L s-1 < Q95% < 600 L s-1 and large Q95% > 600L s-1). 
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Table SI 5. Sampled uncertainty values for two runs of the Monte Carlo simulation to estimate prediction uncertainty (see also main paper for 
further explanations).  

 
Example for a first Monte Carlo run 
Location Uncertainty factors for load calculation Uncertainty factor for dilution at base flow Q95%

Unity scaled to range derived from Fig. SI 2.2  
 U(-0.5,0.5) 

load infl.u  U(-0.2,0.2) 
elim.u  U(-0.2,0.2) 

chem.anal.u  U(-1.0,1.0) small river 
U(-0.7,0.7) 

medium river  
U(-0.5,0.5) 

large river  
U(-0.3,0.3) 95%Qu  

WWTP1 0.32 1.32 -0.06 0.94 -0.19 0.81 -0.80 NA* -0.40 NA 0.60 
WWTP2 -0.15 0.85 0.03 1.03 -0.13 0.87 -0.80 -0.56 NA NA 0.44 
WWTP3 -0.47 0.53 -0.17 0.83 -0.16 0.84 -0.80 NA -0.40 NA 0.60 
WWTP4 0.08 1.08 0.16 1.16 0.17 1.17 -0.80 NA NA -0.24 0.76 
WWTP5 0.21 1.21 0.05 1.05 -0.18 0.82 -0.80 NA NA -0.24 0.76 
 
 
Example for a second Monte Carlo run 
Location Uncertainty factors for load calculation Uncertainty factor for dilution at base flow Q95%

Unity scaled to range derived from Fig. SI 2.2  
 U(-0.5,0.5) 

load infl.u  U(-0.2,0.2) 
elim.u  U(-0.2,0.2) 

chem.anal.u  U(-1.0,1.0) small river 
U(-0.7,0.7) 

medium river  
U(-0.5,0.5) 

large river  
U(-0.3,0.3) 95%Qu  

WWTP1 -0.47 0.53 0.17 1.17 -0.09 0.91 0.31 NA 0.16 NA 1.16 
WWTP2 -0.39 0.61 -0.08 0.92 -0.19 0.81 0.31 0.22 NA NA 1.22 
WWTP3 0.42 1.42 0.14 1.14 0.08 1.08 0.31 NA 0.16 NA 1.16 
WWTP4 0.13 1.13 -0.14 0.86 -0.04 0.96 0.31 NA NA 0.09 1.09 
WWTP5 0.38 1.38 -0.07 0.93 -0.02 0.98 0.31 NA NA 0.09 1.09 
 
 
 
*NA: Not applicable. 
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SI 6 Substances (model input data) 

Substance Sales data  
[kg a-1] 

Fraction parent  
compound [%] 
 
mean (min to max) 

Elimination in  
WWTP [%] 
 
mean (min to max) 

Mean calculated 
load in WWTP 
effluent 
[g c-1 d-1] 

atenolol 3’071 a 73 (69 to 96) d 45 i 452 
50 (11 to 240)*2 52 (-48 to 84)* 287 (58-1447)* 

benzotriazole 16’000 b 100 e 30 (0 to 60) j 4113 
- *3 - *3 3211 (1585-9427)* 

clarithromycin 1’700 c 16 (4 to 30) f 0 (-45 to 20) k 100 
35 (4 to 316)*2 - *3 100 (59-2584)* 

diazinon n.a. n.a. n.a. 13 l 
- - 13 (5-49)* 

naproxen n.a. n.a. n.a. 68 l 
- 62 (38 to 92)* 68 (25-162)* 

primidone n.a. n.a. n.a. 38 l 
- 68 (-56 to 79)* 38 (6-179)* 

sotalol 877 a 106 (85 to 125) d 35 i 222 
71 (33 to 110)*2 8 (-25 to 35)* 207 (65-503)* 

sulfamethoxazole  
(including Acetyl- 
SMX) 

2’300 a 60 g 53 (-1 to 76) k 243 

45 (22 to 72)*2 65 (41 to 89)* 111 (38-270)* 

sulfapyridine 840 c 15 g 2 (-107 to 074) k 46 

- 32 (-19 to 71) * 61 (9-134)* 

trimethoprim 520 c 50 h 2 (-40 to 20) k 95 
- *3 - *3 8 (4-73)* 

 

a  IMS Health Ltd.  
 (average of the years 2000 and 2004  
 for Switzerland)  

b  Henkel (9)  

c  Goebel et al. (10) 
d  Lienert et al. (11) 
e  McArdell et al. (12) 
f  Bryskier et al. (13) 
g  Vree and Hekster (14) 
h Schwartz and Rieder (15) 
i  Wick et al. (16) 
j  Voutsa et al. (17) 

k  Göbel et al. (18) 
l  Median estimated from 5 independent 
 WWTP effluents which were not used for 
 the regression to check model validity (see 
 SI 6, white circles) 
* Median observed in this study (min-max), 
 the median was taken due to the small 
 number of observed values 
*2 Median observed in this study (min-max), 
 calculated from sales data and WWTP 
 influent loads 
*3 Problem with analytics for matrix in the 
 influent of the WWTP 
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SI 7 Prediction vs. measurements for ten additional substances 
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SI 8 Evaluation of results for all twelve substances 

Statistics 

Substance 

R2
WWTP,effluent

 a R2
river

a MPAFWWTP,effluent
b MPAF river 

b Remark 

atenolol 0.88 0.83 2.3 1.6 assumed excretion ratio from literature or 
sales data seem to be too high 

benzotriazole 0.82 0.68 1.2 1.5 - 

clarithromycin 0.78 0.59 1.0 0.9 high variation in rivers 

diazinon 0.85 0.74 0.9 0.9 - 

naproxen 0.73 - (n=2) 1.0 0.8 - 

primidone 0.47 0.69 1.8 2.5 assumed excretion ratio from literature or 
sales data seem to be too high and 
elimination in WWTP too low 

sotalol 0.95 0.65 1.2 1.4 high variation in rivers 

sulfamethoxazole (SMX) 
(including Acetyl-SMX) 

0.94 0.84 2.3 3.4 assumed excretion ratio seems to be too high 
and elimination in WWTP too low  

sulfapyridine 0.93 0.71 1.1 0.9 - 

trimethoprim 0.77 0.87 6.5 3.1 assumed excretion ratio seems to be too high 

for comparison      

carbamazepine - 0.66 (0.78) c - 1.1 (1.0) c - 

diclofenac - 0.98 (0.94) c - 0.9 (1.1) c - 

 

a MPAF = Mean predictive accuracy factor=mean(prediciton/observation), b R2 = R2 from linear regression forced through 0, c the values in brackets are the ones derived for 
carbamazepine and diclofenac from the main paper (Figure 1) where more data points were available. 
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