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ABSTRACT: Amorphous molybdenum sulfide films, prepared by electro-
deposition, are a class of highly active catalysts for hydrogen evolution. The
growth mechanism of the films and the true active species were unclear.
Herein, we report a study of the growth and activation of these films using
Electrochemical Quartz Crystal Microbalance (EQCM) and X-ray photo-
electron spectroscopy (XPS). Three processes, including oxidative
deposition, reductive corrosion, and reductive deposition, are occurring
during the growth of a molybdenum sulfide film. Deposition method,
precursor concentration, and potential window are among the factors
influencing the film growth. Regardless of deposition methods, all films
exhibit similar catalytic activity on a per mass base. Potentiostatic oxidation
(anodic electrolysis) is the method for fastest film growth; it produces a MoS3 film precatalyst which can be electrochemically
activated. The activity of the MoS3 precatalyst scales with catalyst loading; at a loading of 0.2 mg/cm2, the current density is 20
mA/cm2 at an overpotential of 170 mV. Films differently deposited have different initial compositions, but the active catalysts in
all films are the same MoS2+x species, whose XPS characteristics are distinct from those of crystalline MoS2. The activation
process of a MoS3 film precatalyst involves a reductive removal of slightly less than one equivalent of sulfide to form MoS2+x.

KEYWORDS: hydrogen evolution, molybdenum sulfide, electrocatalysis, electrochemical quartz crystal microbalance,
X-ray photoelectron spectroscopy, thin films

■ INTRODUCTION

Renewable energy sources such as solar and wind are
intermittent, so they require storage methods to offset the
mismatch between energy production and consumption.
Among various energy storage methods, storage in the form
of chemical fuels is attractive thanks to their high energy
density and potentially low cost.1,2 Consequently, the water
splitting reaction has drawn much attention, as it allows the
storage of electric and photoelectric energy in hydrogen, a clean
energy carrier.3,4 The hydrogen evolution reaction (HER),
where hydrogen is produced by reduction of protons, is an
essential half reaction of water splitting. This reaction requires a
catalyst to proceed in a rate that is useful for energy storage.
Platinum is a very active catalyst; it is however too expensive
and rare to fulfill a significant portion of the demand in energy
storage. A great deal of research is carried out to develop
nonprecious catalysts for HER.5−10

Molybdenum sulfides have emerged as a promising class of
nonprecious catalysts for HER under acidic conditions.11,12

Bulk MoS2 only has modest activity and draws little attention
since it was first studied in the 1970s.13,14 In two pioneering
studies, the edge sites of MoS2 were shown as the active sites
for HER;15,16 MoS2 nanoparticles rich in edge sites were highly
active for HER.16 These studies have inspired a large body of
follow-up work that aims at improving the activity of MoS2

nanoparticles by nanostructuring and by hybridization with
gold, graphene, mesoporous carbon, or carbon fiber.17−26

Our group has discovered that amorphous molybdenum
sulfides (Mo−S) are active HER catalysts.27−29 The activity of
amorphous Mo−S compares favorably with some of the most
active MoS2 nanoparticles. The most important improvement,
however, is that these amorphous Mo−S catalysts are produced
in a solution process under mild conditions, whereas MoS2
nanoparticles are mostly produced by high-temperature
sulfidation reactions or hydrothermal reactions. Since many
photocathodes are unstable or inconvenient substrates for high-
temperature or hydrothermal reactions, the solution-process-
able amorphous molybdenum sulfide species are more suitable
catalysts to be combined with a photocathode for photo-
electrochemical hydrogen production. Indeed, an amorphous
Mo−S film was deposited onto a TiO2-protected n+-p-Si
photocathode.30 The resulting photoactive material has an
onset potential of 0.33 V vs NHE for hydrogen evolution in
acidic solutions.
The high activity of amorphous Mo−S catalysts and their

applicability for photoelectrochemical hydrogen production
provide incentives for a deep understanding of the formation
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and properties of these catalysts. Previously, we developed the
procedure to deposit amorphous MoS3 films by consecutive
potential cycling. While this procedure is simple, efficient, and
amenable to photodeposition, the growth mechanism of the
film was unclear. Herein, we present an Electrochemical Quartz
Crystal Microbalance (EQCM) study of the deposition of
MoS3 films. The study reveals a potential-dependent growth of
the films and establishes a growth-activity relationship. On the
basis of this study, an improved procedure for catalyst
deposition is developed. We also describe the study of the
activation process that converts the as-deposited MoS3
precatalyst to the active MoS2+x catalyst using EQCM and X-
ray photoelectron spectroscopy (XPS). The activation is
associated with a loss of near one molecule of S and a
significant change in the S 2p XPS spectra.

■ RESULTS AND DISCUSSION
1. Growth of an Amorphous MoS3 Film. 1.1. Cyclic

Voltammogram. Previously, we found that a MoS3 film could
be electrodeposited from an aqueous solution of
(NH4)2[MoS4].

29 In a typical procedure, the potential of a
conductive electrode is cycled repetitively from 0.7 to −0.4 V vs
RHE (0.1 to −1.0 V vs Ag/AgCl at pH = 6.6; unless otherwise
specified, all potentials are referred to RHE) in a solution
containing (NH4)2[MoS4] as the source of MoS3 and NaClO4
as the supporting electrolyte. Figure 1 shows the cyclic

voltammograms of this process. Initially, the currents are
small and featureless. After several scans, a number of features
become evident. An oxidation peak is observed at 0.3 V, and a
reduction peak is observed at −0.10 V. In addition, a significant
oxidative current is observed at the positive limit of the
potential window, i.e., around 0.5 to 0.7 V; a negative current
grows with time at the negative limit of the potential window,
around −0.3 to −0.4 V. The cyclic voltammograms are similar
with different substrates such as indium tin oxide (ITO),
fluorine-doped tin oxide (FTO), and glassy carbon. The
evolution of cyclic voltammograms is concomitant with film
growth, so it can be used as a first indication for a successful
deposition of catalyst. The deposition of MoS3 film therefore
appears to be substrate-independent.
1.2. Mass Change during Deposition of a MoS3 Film.

While the cyclic voltammograms indicate redox reactions

associated with film deposition, the nature of these reactions is
unclear. The amount of deposited catalyst is often too small to
be accurately determined by ex situ elemental analysis
measurements (e.g., by ICP-AES), so a correlation between
the current of deposition and mass of the film is hard to
establish. Since EQCM is a powerful tool to study electro-
deposition and to measure a small change of mass, we decided
to investigate the growth of MoS3 film by EQCM.
The deposition under previously reported conditions was

first examined. The potential window was from 0.7 to −0.4 V vs
RHE. After some exploratory trials, we set the starting point of
measurement at 0.3 V, where no change of mass takes place
(see below). From this point, the electrode was first polarized
positively and then cyclically scanned from 0.7 V to −0.4 V.
Figure 2 shows the change of mass during the deposition

process. A repetitive pattern of mass increase followed by
immediate mass decrease is observed. This indicates a sequence
of consecutive deposition and corrosion. The total mass
increases exponentially during the first scanning cycles and
then linearly after about 10 scanning cycles (Figure 3). About
25 μg/cm2 of MoS3 film was deposited after 50 cycles in this
case.

Figure 1. Selected cyclic voltammograms during the deposition of a
molybdenum sulfide film using the potential cycling method.
Conditions: glassy carbon substrate, NaClO4 electrolyte (0.1 M),
scan rate 50 mV/s, 2 mM (NH4)2[MoS4].

Figure 2. The change of mass during the deposition of a molybdenum
sulfide film using the potential cycling method. Conditions: Au
substrate, NaClO4 electrolyte (0.1 M), scan rate 50 mV/s, 2 mM
(NH4)2[MoS4].

Figure 3. Scan-number dependence of the mass of a molybdenum
sulfide film.
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By setting a high gain on the frequency-to-voltage converter
of EQCM, we were able to measure the mass changes during a
single scanning cycle. Figure 4 shows the mass change during

the sixth deposition cycle. When scanned positively from 0.3 V,
the deposition (mass increase) starts shortly after (arrow 1) and
continues until the potential reaches 0.4 V in the following
negative scan (arrow 2). From 0.4 to 0.2 V, the mass is
constant. A corrosion process then causes the mass to decrease
at 0.2 to −0.25 V (arrow 3). At the latter potential, a new
deposition process starts. This deposition continues until the
potential is reversed to −0.2 V in the following positive scan.
After that, the mass stays constant until the end of this scanning
cycle (0.3 V). The deposition is most rapid between 0.5 and 0.7
V, and the corrosion is most rapid between 0.1 and −0.2 V. The
mass increase by oxidative deposition (at 0.4 to 0.7 V) is about
10 times that of the mass increase by reductive deposition (at
−0.3 to −0.4 V). The corrosion process removes about 70% of
the mass increase from oxidative deposition. The absence of
corrosion at −0.2 to 0.3 V in the final part of the scanning cycle
indicates that the partial corrosion of the species formed from
oxidative deposition has finished in the preceding scan, and the
species formed from reductive deposition is not subject to
corrosion.
As the film grows thicker, the reductive deposition process

(at −0.3 to −0.4 V) is no longer visible, probably because it
coincides with the reductive corrosion at the same potentials,
resulting in no obvious mass change. Figure S4 of the
Supporting Information shows the mass change during the
16th scanning cycle, which reveals a single oxidative deposition
(0.4 to 0.7 V) and a broad reductive corrosion (0.2 to −0.4 V).
1.3. Explanation of Cyclic Voltammogram. The potential-

dependent mass change during deposition of a MoS3 film
provides clues to explain the cyclic voltammograms in Figure 1.
The oxidation event at 0.3 to 0.7 V is associated with the
oxidative deposition, while the reduction event from 0.1 to
−0.2 V is associated with the reductive corrosion. The
reduction at −0.2 V to −0.4 reflects both the reductive
corrosion and deposition processes. The broad and pro-
nounced oxidation peak, centered at 0.3 V, is not associated
with deposition or corrosion. It is therefore unrelated to film

growth. We suspect that this feature is due to a significant
capacitive current of the porous film.28

1.4. Chemical Reactions Related to Film Growth and
Corrosion. The above EQCM study establishes that a MoS3
film is grown by oxidation of [MoS4]

2− ions at 0.3 to 0.7 V and
is corroded by reduction at 0.15 to −0.4 V. This supports our
earlier proposal that a MoS3 film is formed through the
following reaction:31

→ + +−[MoS ] MoS
1
8

S 2e4
2

3 8 (1)

This reaction produces not only MoS3 but also elemental S.
The corrosion of MoS3 consumes about 70% of the newly

deposited film. A reduction of MoS3 to form MoS2 will not
amount to the same weight loss. The corrosion is more
probably due to the reverse reaction of eq 1:

+ + → −MoS
1
8

S 2e [MoS ]3 8 4
2

(2)

Reduction of MoS3 by other reactions is also possible. In any
case, eqs 1 and 2 are not fully reversible, suggesting that the
relative rates of deposition and corrosion might be controlled
by varying electrodeposition conditions. This is indeed
achieved (see section 1.5).
The reductive deposition, observed at −0.2 to −0.4 V in the

initial scans, is attributed to the following reaction:32

+ + → + +− − −[MoS ] 2H O 2e MoS 2HS 2HO4
2

2 2
(3)

This reaction produces “amorphous MoS2” (see sections 2.2
and 2.3 for a discussion of the term “amorphous MoS2”) which
is mixed with MoS3 in the film. Additionally, the hydrosulfide
and hydroxide ligands may coordinate to molybdenum. These
anionic groups might undergo further transformation to various
oxo and sulfido species.

1.5. Optimization of Film Deposition. EQCM was next
applied to monitor film growth under several other deposition
conditions, in order to find better procedures. Previously, we
found that thicker films were produced when the concen-
trations of [MoS4]

2− in the deposition bath were higher.29 This
concentration-dependent film growth was quantified by
EQCM. Figure 5 shows the changes of the mass of the films

Figure 4. The evolution of current (red line) and film mass (black
line) during the sixth potential cycle. Arrows and numbers indicate the
direction of potential scanning; the starting point is at about 0.3 V.
Conditions: Au substrate, NaClO4 electrolyte (0.1 M), scan rate 50
mV/s, 2 mM (NH4)2[MoS4].

Figure 5. Concentration dependence for the electrodeposition of
MoS3 by consecutive cyclic voltammetry. [MoS4]

2− are as follows: 1.7
mM (black), 3.9 mM (magenta), 7.9 mM (cyan), 16.1 mM (green),
23.6 mM (gray), 31.3 mM (purple). Au substrate; NaClO4 electrolyte
(0.1 M); scan rate 50 mV/s.
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deposited from five solutions with a same concentration of
electrolyte (0.1 M NaClO4) but a different concentration of
[MoS4]

2− (from 1.6 mM to 31 mM). The higher the
concentration, the faster the film grows. Thus, it took 60 min
to deposit a film of 30 μg/cm2 from a 1.6 mM solution of
[MoS4]

2−, but less than 4 min to deposit the same film from a
31 mM solution of [MoS4]

2−. The ratio of corrosion/
deposition in each scanning cycle also decreases when the
concentration of [MoS4]

2− increases. At higher [MoS4]
2−

concentrations (>10 mM), the magnitude of corrosion is less
than 10% of that of deposition.
The potential window of deposition was then varied. Figure

6 shows the growth of film in four different potential windows.

The negative limit of the potential window has a significant
effect on film growth. When this limit was changed from −0.1
V to −0.3 V, the corrosion was more severe, and the film grew
much slower. To deposit a film of 13 μg/cm2, scanning from
0.7 to −0.3 V was 6 times slower than scanning from 0.7 to
−0.1 V. Interestingly, the growth of the film increased when
changing the negative potential limit from −0.3 to −0.4 V. This
is probably due to the deposition of a substantial amount of
“amorphous MoS2” by eq 3.
According to eqs 1 and 3, amorphous MoS3 and MoS2 films

can be deposited at a constant potential, without potential
cycling. We deposited a film by anodic electrolysis at 0.7 V
(MoS3-AE) and a film by cathodic electrolysis at −0.4 V
(MoS2-CE). EQCM was used to monitor the growth of these
two films (Figure 7). Only deposition but not corrosion was
observed. Anodic electrolysis at 0.7 V is more efficient than
potential cycling between 0.7 V and −0.4 V, producing a film of
same mass in 1/4 of the time. Film growth by cathodic
electrolysis at −0.4 V, however, is the slowest.
The results in this section show that it is possible to control

the speed of film growth by varying the deposition conditions
such as precursor concentration, potential window, and even
deposition technique. If the method of potential cycling is
employed, then a higher precursor concentration and a lower
negative limit of the potential window favor film growth over
corrosion. If other electrodeposition techniques are considered,
then anodic deposition at a sufficiently positive potential for eq
1 appears most efficient.

1.6. Activity Comparison. As the growth rate of various
molybdenum films has been determined by EQCM, it is
possible to deposit films with the same mass by different
methods. This allows the comparison of catalytic activity on a
per weight basis. For this purpose, three films were deposited
on glassy carbon, all with a loading of 15 μg·cm−2. The film
MoS3-CV was prepared by 40 consecutive scans between 0.7 V
and −0.4 V. The film MoS3-AE was prepared by electrolysis at
0.7 V for 4.8 min. The film MoS2-CE was prepared by
electrolysis at −0.4 V for 48 min. Figure 8 shows the 10th
(stable) polarization curves of these catalysts in a 1.0 M
solution of H2SO4.

While the film prepared by anodic electrolysis is slightly
more active, to a first approximation, the activity of the three
films is similar. We reported earlier an analogous comparison
that indicated that the MoS2-CE film was significantly less
active than MoS3-CV and MoS3-AE films.29 That study did not
consider a possible difference in catalyst loading. The current
EQCM study shows that the growth of MoS2-CE film is much
slower than the other two films; thus, the previously reported
inferior activity of the MoS2-CE film is mostly due to its lower
catalyst loading.

Figure 6. The time-dependent growth of MoS3 films deposited by
cyclic voltammetry at different potential windows: 0.7 to −0.1 V
(black), 0.7 to −0.2 V (magenta), 0.7 to −0.3 V (cyan), and 0.7 to
−0.4 V vs RHE (green). Conditions: Au substrate, NaClO4 electrolyte
(0.1 M), scan rate 50 mV/s, 2 mM (NH4)2[MoS4].

Figure 7. Comparison of the growth rate of molybdenum sulfide films
using different deposition methods: anodic electrolysis at 0.7 V
(magenta), potential cycling from 0.7 to −0.4 V (black), and cathodic
electrolysis at −0.4 V (red). Au substrate, NaClO4 electrolyte (0.1 M),
[MoS4]

2− = 2 mM, scan rate 50 mV/s for the deposition by potential
cycling.

Figure 8. Polarization curves in 1.0 M H2SO4 for amorphous
molybdenum sulfide films deposited using different methods; glassy
carbon electrode; loading, 15 μg·cm−2; scan rate, 5 mV·s−1. CV
(black), AE (magenta), CE (red).
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Considering the activity and growth rate, anodic deposition
at a constant potential seems to be the most efficient method in
producing a molybdenum sulfide film. This method was chosen
for the measurements in sections 1.7 and 1.8.
1.7. Correlation between Charge and Mass. It is

impractical to determine the mass of a molybdenum sulfide
film using EQCM every time. If a correlation can be established
between the amount of charge passed during electrodeposition
and the mass of the deposited film, the latter can be simply
deduced from the former, which is readily obtained from the
electrochemical data. EQCM was used to build this correlation
for a MoS3-AE film deposited by anodic electrolysis at 0.7 V.
The mass of the film exhibits a nearly linear dependence on the
amount of charge (Figure 9, black line). The mass is slightly

higher than expected for MoS3, assuming a quantitative
Faradaic yield for eq 1 (Figure 9, red line). The discrepancy
is attributed to the side product, elemental S, some of which is
trapped in the MoS3 film (see above).
1.8. Benchmarking. The preceding work enables us to

control the precise mass of a MoS3 film in a given geometric
area. In our earlier work, only the activity of thin films with a
loading below 30 μg·cm−2 was measured. We then deposited
films with a much higher loading. The conventional glassy
carbon electrode contains an insulating plastic layer around the
carbon core; when a MoS3 film grows thicker, some deposition
on the insulator was seen, which would complicate analysis.
Thus, we used flat Au electrodes as the substrates; on such a flat
electrode, a loading of up to 300 μg·cm−2 can be achieved in a
concentrated solution of [MoS4]

2− (30 mM). Even higher
catalyst loading will necessitate a porous electrode such as
nickel foam and carbon fiber.22,23

Figure 10 shows the steady-state polarization curves of four
MoS3 films with incremental loadings from 26 to 198 μg·cm−2.
These polarization curves show the benchmark activity of MoS3
films, as both the apparent geometric area and the catalyst
loading are known. The catalytic activity scales with catalyst
loading. With a catalyst loading of ca. 200 μg·cm−2, an
overpotential of ca. 170 mV is required to achieve a current
density of 20 mA/cm2. This specific activity is high compared
to other state of the art nonprecious HER catalysts in acidic
solutions.9

2. Activation of MoS3 Precatalyst. 2.1. Composition of
Various Molybdenum Sulfide Films. According to sections 1.4

and 1.5, molybdenum sulfide films of different compositions
might be produced depending on the methods of electro-
deposition. A potentiostatic electrolysis at 0.7 V produces a film
of MoS3 plus some elemental S (MoS3-AE); a potentiostatic
electrolysis at −0.4 V produces a film of “amorphous MoS2”
plus some hydroxide and hydrosulfide (MoS2-CE). Potential
cycling produces films with less regular compositions, since the
deposition and corrosion of molybdenum sulfides are potential
dependent. A repetitive potential cycling from 0.7 to −0.4 V
produces a mixture of MoS3 and MoS2, likely more MoS3 than
MoS2, but without elemental S, which is consumed during
corrosion. Potential cycling from −0.4 to 0.7 V, on the other
hand, may produce the same mixture but with a higher
proportion of MoS2. The variance in composition is largest on
the outer layers of the films which are deposited in the last
scanning cycle. Because X-ray photoelectron spectroscopy
(XPS) only measures atoms and ions in these outer layers,
the previously reported remarkable difference in the XPS
spectra of two films, both deposited by potential cycling but
one from 0.7 to −0.4 V and the other from −0.4 to 0.7 V, can
now be understood.
Our earlier fitting of the S 2p XPS spectra revealed dissimilar

sulfide species in molybdenum sulfide films.29 No fitting was
done either on Mo 3d spectra or on S 2s spectra. To make the
interpretation of XPS data more comparable to the findings of
the EQCM study, we fit the Mo and S XPS data using a more
rigorous procedure (higher resolution of data due to longer
measurement time; fix of spin−orbit splitting energy and full
width at half-maximum; calibration of binding energy by an
internal standard for each measurement).
The XPS data of commercial MoS2 microcrystals were used

as a reference (Figure 11). The Mo 3d spectrum is dominated
by a doublet with a Mo 3d5/2 binding energy of 229.5 eV. This
doublet is attributed to the MoIV ion in MoS2. A small doublet
with a Mo 3d5/2 binding energy of 232.7 eV is also visible. Such
a binding energy is indicative of a MoVI ion, as in MoO3.

33,34

The amount of MoVI ion is about 4% of the total Mo ions,
which suggests that crystalline MoS2 is quite resistant to aerobic
oxidation. Next to the Mo 3d doublets, a singlet corresponding
to the S 2s peak is seen. The binding energy of the latter is
226.7 eV. The S 2p spectrum shows a single doublet with a S
2p3/2 energy of 162.4 eV, attributable to the sulfide (S

2−) ligand
in MoS2. The Mo/S ratio is 1:1.9. The XPS data of MoS2 were
used to set the energy difference between the Mo 3d3/2 and the
Mo 3d5/2 states (3.14 eV), and between the S 2p1/2 and the S
2p3/2 states (1.18 eV) for further data fitting. This is reasonable

Figure 9. Correlation of the mass of the film and the charge passed
during the electrodeposition of a MoS3-AE film. Experimental data
(black), expected theoretical mass (red) if two electrons are used for
the formation of pure MoS3.

Figure 10. Stable (10th) polarization curves in 1.0 M H2SO4 for MoS3
films at different loadings; Au substrate; scan rate, 5 mV·s−1.
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because the spin−orbit splitting of core levels is constant for a
specific orbital of the element. The full width at half-maximum
(fwhm) was fixed among all amorphous materials; this fwhm is
bigger than its counterpart in crystalline MoS2, probably due to
the amorphous nature of the materials. An exception was made
to the fwhm of the elemental S(0) component; that fwhm
needs to be small for a satisfactory fitting.
Figure 12 shows the XPS data of a MoS3-AE film. In the Mo

3d spectrum, a main doublet with a 3d5/2 binding energy of
229.8 eV is found. This doublet is attributed to the MoIV ion in
MoS3.

35 Next to the Mo 3d region is the S 2s region. Three
singlets are found, two for the sulfide/disulfide ions and the
other for elemental sulfur. The area of the latter singlet is about
15% of the area of the other singlets. Likewise, three doublets
were used to fit the S 2p spectrum. The relative areas of these

doublets were fixed according to the ratios observed in the S 2s
region. The S 2p3/2 components have binding energies of 163.6,
162.9, and 162.0 eV, corresponding to elemental S(0), bridging
S2

2−, and terminal S2−, respectively.35−37 As terminal S2− has a
similar binding energy to terminal S2

2−, the relative intensities
of the peaks at 162.9 and 162.0 eV might not be used to
accurately deduce the S2

2−/S2− ratio in the sample.35The shapes
and binding energies of Mo and S XPS peaks of this film are
similar to those of amorphous MoS3 particles and films.35,38

The Mo/S ratio is 1:3.6. Therefore, the XPS data point to a
MoS3 film contaminated with some residual elemental sulfur, as
suggested by eq 1.
Figure 13 shows the XPS data of a MoS2-CE film. The Mo

3d spectrum is best fit with three doublets. The doublet with a
Mo 3d5/2 of 232.7 eV is due to the MoVI ion in MoO3. Thus,

Figure 11. XPS spectra of MoS2 microcrystals. (A) Mo 3d region, experimental data (····), fitting envelope (gold), MoS2 (green), MoO3 (magenta),
S2− 2s (blue). (B) S 2p region, experimental data (····), fitting envelope (gold), MoS2 (blue). fwhm: Mo (3d), 1 eV; S (2p), 0.8 eV; S (2s), 2.1 eV.

Figure 12. XPS spectra for MoS3-AE. (A) Mo 3d region, experimental data (····), fitting envelope (gold), MoS3 (green), S
0 2s (purple), S2

2− 2s
(red), S2−, 2s (blue). (B) S 2p region, experimental data (····), fitting envelope (gold), S0 (purple), S22− (red), S2− (blue). fwhm: Mo (3d), 1.4 eV;
S2− and S2

2− (2p), 1.4 eV; S2− and S2
2− (2s), 3 eV; S0 (2p), 0.7 eV; S0 (2s), 1.8 eV.

Figure 13. XPS spectra for MoS2-CE. (A) Mo 3d region, experimental data (····), fitting envelope (gold), MoASn (green), MoBOaSb (cyan), MoO3
(magenta), S2

2− 2s (red), S2− 2s (blue). (B) S 2p region, experimental data (····), fitting envelope (gold), S2
2− (red), S2− (blue).
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the film contains an appreciable amount of MoO3 (about 19%
of total Mo; see Figure S5 for O 1s XPS spectrum). This MoO3
might come from air oxidation of the film during deposition, or
during the sample transfer process for XPS measurement. It
was reported that MoS2 on Au(111) was not prone to air
oxidation.39 However, in the MoS2-CE film, OH− is produced
during reductive deposition (eq 3), which might facilitate the
formation of MoO3. The other two doublets have a 3d5/2
binding energy of 229.3 and 230.5 eV. The doublet with the
lower binding energy is attributed to MoIV as in MoS2 or MoS3.
The doublet with the higher energy, however, might be
attributed to a Mo ion in molybdenum oxysulfides according to
a previous XPS study.40 The S 2p spectrum indicates two types
of sulfide ions, with a 2p3/2 binding energy of 162.0 and 163.4
eV. The S 2s spectrum was also fitted with two doublets, with
the same relative intensities for the two sulfide ions observed in
the S 2p spectrum. No signal due to elemental S was necessary
for the fitting of the S spectra. The Mo/S ratio is 1:2.1. The
XPS data of the MoS2-CE film are distinct from those of the
MoS3-AE film and MoS2 microcrystals (see Table 1 for a

comparison). They indicate a complex composition and
structure of the MoS2-CE film: there are several types of Mo
ions and at least two different sulfide ions. While the ratio of
Mo to S suggests a composition close to MoS2, this film has a
different spectroscopic property than crystalline MoS2.
Since the EQCM study indicates that the molybdenum

sulfide films prepared by potential cycling are mixtures of

MoS3-AE and MoS2-CE, their XPS data are not discussed in
detail. It is sufficient to mention that the XPS data indeed
confirm the conclusion from the EQCM study. The surface of a
film prepared by potential cycling between 0.7 and −0.4 V
resembles that of a MoS3-AE film except that no elemental S is
present owing to corrosion by eq 2 (Figure S6, SI); the surface
of a film prepared by potential cycling between −0.4 and 0.7 V
resembles that of a MoS2-CE film (Figure S6, SI).

2.2. Activation of MoS3 Film and Nature of the Active
Catalyst. An activation process was earlier identified for certain
molybdenum sulfide films.29 This activation process is marked
by a reduction of freshly prepared films at potentials just
positive of those of HER. The reduction is most significant for
the MoS3-AE film but is negligible for the MoS2-CE film. We
had proposed that this reduction transformed a MoS3 film into
the active form that has a composition close to MoS2 but has a
structure very different from crystalline MoS2. This active film is
similar to the MoS2-CE film which does not require activation.
We had described these active films as “amorphous MoS2 films”
because their Mo/S ratio is close to 2 and because their XPS
spectra resemble that of MoS2 microcrystals at a first glance.

29

Given a large body of contemporary work on the catalytic
activity of crystalline MoS2 nanoparticles, the term “amorphous
MoS2” is not informative and even confusing as it does not
emphasize enough the difference between the two species. To
better understand the activation process, we used EQCM to
measure the change of the weight of a MoS3-AE film during the
activation process. To better describe the nature of the active
catalyst, we fit its XPS data using the same procedure as in
section 2.1.
A MoS3-AE film with a loading of 18.4 μg·cm−2 was first

deposited on the working electrode of EQCM. When the
electrolyte solution was changed to 1.0 M H2SO4, the vibrating
frequency of the quartz crystal increased, corresponding to a
weight loss of about 7% (1.3 μg·cm−2). We suspected that this
was due to the removal of residual elemental S by acid. XPS
measurement confirmed this hypothesis. The singlet corre-
sponding to the 2 s orbital of elemental S disappeared, and the
Mo/S ratio was 1:3.2 instead of 1:3.6 in a freshly prepared film
(Figure 14). In the S 2p spectrum, the signal due to S0 also
disappeared. Moreover, the Mo 3d spectrum had a significant
change. Three doublets of Mo ions as in MoO3, MoS2/MoS3,
and molybdenum oxysulfide were detected. The oxysulfide
species might be formed by adsorption of oxygenic ions at the
surface. Overall, the Mo 3d spectrum of this acid-washed MoS3

Table 1. Representative XPS Dataa

material

Mo1

3d5/2
(eV)

Mo2

3d5/2
(eV)

S2
2−

2p3/2
(eV)

S2− 2p3/2
(eV)b

S0 2p3/2
(eV)

Mo/S
ratio

crystalline
MoS2

229.5 162.4
(100%)

1:1.9

MoS3-AE 229.8 162.9
(59%)

162.0
(26%)

163.6
(15%)

1:3.6

MoS2-CE 229.3 230.5 163.4
(27%)

162.0
(73%)

1:2.1

MoS3-AE
after acid
wash

229.7 230.9 163.2
(60%)

162.0
(40%)

1:3.2

MoS3-AE
after
activation

229.5 230.7 163.1
(27%)

162.0
(73%)

1:2.0

afwhm is fixed for Mo, S2−, and S2
2− in all amorphous films. bThis

doublet may contain contributions from terminal S2
2− as well.

Figure 14. XPS spectra for MoS3-AE after immersion in a solution of 1 M H2SO4. (A) Mo 3d region, experimental data (····), fitting envelope (gold),
MoASn (green), MoBOaSb (cyan), MoO3 (magenta), S2

2− 2s (red), S2− 2s (blue). (B) S 2p region, experimental data (····), fitting envelope (gold),
S2

2− (red), S2− (blue).
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film is similar to its counterpart in MoS2-CE, which indicates
that the Mo 3d XPS spectrum is not suited for differentiating
molybdenum sulfides in various forms. The S 2p xps spectrum,
however, seems to fit this role.
The acid-washed MoS3 film was then subjected to a linear

potential sweep. A significant mass decrease was observed from
0.005 to −0.20 V (Figure 15). Below −0.20 V, HER became

evident, but the mass stayed nearly constant. The region where
the mass decreased parallels the region of activation. The total
mass loss, of about 2.5 μg·cm−2, amounted to 15% of the MoS3
film before activation. Converting MoS3 into MoS2 will result in
a 17% loss of the original weight. Therefore, the mass decrease
during the activation is consistent with a removal of slightly less
than 1 equivalent of S from MoS3.
Figure 16 shows the XPS data of the activated species from

the MoS3-AE film. The spectra are similar to those of MoS2-CE
film. In the Mo 3d spectrum, in addition to the peak
corresponding to MoO3, two doublets due to MoIV ions were
observed. Likewise, two doublets due to sulfide ions were
observed in the S 2p spectrum. The Mo/S ratio was 1:2. The
relative intensity of the peaks due to S2

2− and S2− in the
activated film is identical to that in the MoS2-CE film; it is
27:73.
Table 1 lists the Mo 3d and S 2p binding energies and the

Mo/S ratios of representative films; Table S1, Supporting
Information, lists their S 2s binding energies. The data indicate
that after activation, MoS3-AE becomes equivalent to MoS2-CE

in spectroscopic property and in catalytic activity (see above,
section 1.6). The active catalyst in all amorphous molybdenum
sulfide films, regardless of how they are produced initially, is the
same. We label this species as MoS2+x; it has a Mo/S ratio close
to 2 and a characteristic S 2p XPS spectrum as in Figure 13B
and Figure 16B. The relative intensity of the S XPS peaks due
to the S2

2−/S2− ratio is close to 3:7.
2.3. Reconciliation with Related Studies. The preceding

EQCM and XPS studies allow us to rectify our previous
proposal concerning the nature of the active species in
amorphous molybdenum sulfide films. We had described the
active species as “amorphous MoS2” based on a visual
inspection of XPS data. The more precise fitting described
herein shows that the S 2p XPS spectrum of the active catalyst
is distinct from crystalline MoS2 as it contains two sulfide
doublets rather than one. The notion “MoS2+x” then seems
more appropriate. We and others developed a wet chemical
method to produce amorphous MoS3 particles, which is an
active precatalyst for HER.20,27 We initially suggested that the
active species, reduced from MoS3 particles, was chemically
different from “amorphous MoS2” as its S 2p XPS spectrum
consisted of two sulfide doublets. Reexamination of the two
XPS spectra now indicates that they are nearly identical. Thus,
the active catalyst from amorphous MoS3 particles is the same
“MoS2+x” species. A large number of recent reports show that
amorphous molybdenum sulfides, despite the variance in their
methods of preparation, exhibit similarly high HER activity as
electrocatalysts or photoelectrocatalysts. While rigorous fitting
of XPS spectra is not done on all materials, the XPS spectra
appear similar. We hypothesize that the MoS2+x species is the
same active catalyst for all of these materials.

■ CONCLUSION

The EQCM study reveals the growth of amorphous
molybdenum sulfide films under various electrochemical
deposition conditions. If potential cycling is employed as the
deposition method, the film is grown by periodic oxidative
deposition, reductive corrosion, and reductive deposition
according to eqs 1−3. The growth rate depends on the
concentration of film precursor [MoS4]

2−; a higher concen-
tration results in a faster growth. The growth rate also depends
on the potential window of deposition, in a nonlinear manner,
due to the interplay of corrosion and reductive deposition. A
film can also be deposited by potentiostatic oxidation or
reduction, according to eq 1 or eq 3. The rate of film growth
follows the order of potentiostatic oxidation (anodic

Figure 15. The mass change during the activation of a MoS3 film in
the first linear sweep scan. Au substrate, H2SO4 electrolyte (1 M), scan
rate 5 mV/s.

Figure 16. XPS spectra for MoS3-AE after activation. (A) Mo 3d region, experimental data (····), fitting envelope (gold), MoASn (green), MoBOaSb
(cyan), MoO3 (magenta), S2

2− 2s (red), S2− 2s (blue). (B) S 2p region, experimental data (····), fitting envelope (gold), S2
2− (red), S2− (blue).
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electrolysis), potential cycling, and potentiostatic reduction
(cathodic electrolysis). All films, regardless of how they were
electrodeposited, exhibit similar HER activity on a per mass
basis. Anodic electrolysis can be considered the fastest method
to produce a catalytically active film. In the range of 20 to 200
μg/cm2, the HER activity scales with catalyst loading. At a
loading of 200 μg/cm2, the current density is 20 mA/cm2 at an
overpotential of ca. 170 mV; this activity can be considered the
benchmark for amorphous molybdenum sulfide films. As
proposed before, the higher activity of the amorphous
MoS2+x catalyst, compared with many other MoS2 nano-
particles, is likely due to a higher amount of unsaturated Mo
and S sites in this material.11,29

The XPS study reveals the composition of various
molybdenum sulfide films. The film produced by anodic
electrolysis (MoS3-AE) is amorphous MoS3 plus some residual
S. The film produced by cathodic electrolysis (MoS2-CE) has a
Mo:S ratio close to 1:2 but a different chemical environment
than crystalline MoS2. The films produced by potential cycling
are mixtures of MoS3-AE and MoS2-CE films.
Most amorphous molybdenum sulfide films undergo a

reductive activation process prior to hydrogen evolution. The
activation is most pronounced for the MoS3-AE film. The
EQCM and XPS studies show that the residual S in the MoS3-
AE film is first removed when the film is immersed in an acidic
solution. The reductive activation, however, is associated with a
significant weight loss and the transformation of MoS3 to the
active species MoS2+x. The MoS2+x species have nearly identical
XPS spectra as the MoS2-CE film and have a Mo/S ratio close
to 1:2. The relative intensity of the S XPS peaks due to S2

2−/
S2− ratio is close to 3:7. The MoS2-CE film, thus, is made of
mostly MoS2+x, and no significant preactivation is required, in
accordance with a previous study. It follows that the MoS2+x
species is the same active species in all amorphous
molybdenum sulfide catalysts.
The MoS2+x species should be distinguished from crystalline

MoS2 owing to their different structure and XPS properties.
While edge sites are the reactions sites for HER catalyzed by
MoS2 nanoparticles, analogous defect sites are probably where
HER occurs in amorphous molybdenum sulfide catalysts. More
precise structural information such as local coordination
geometries and bond distances necessitates structural character-
ization tools like X-ray absorption spectroscopy.41 The
identification of the same active species (MoS2+x) in all
amorphous catalysts, meanwhile, greatly facilitates such
structural studies.
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