Supporting Information # Ruthenium Olefin Metathesis Catalysts Featuring a Labile Carbodicarbene Ligand ## Allegra L. Liberman-Martin and Robert H. Grubbs Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States #### **Table of Contents:** | 1. | General Considerations | S2 | |-----|--------------------------------------------------------------------------------|---------| | 2. | Synthesis of 2 and 3 | S2-S3 | | 3. | Attempted Syntheses and Observation of CDC-H ⁺ Formation | S4 | | 4. | Ring-Closing Metathesis of Diethyl Diallylmalonate | S4 | | 5. | Ring-Opening Metathesis Polymerization of endo,exo-Norbornenyl Diethyl Diester | S5 | | 6. | Reactions of 2 and 3 with 2-Isopropoxy-β-methylstyrene | S6 | | 7. | Reaction of 2 and 3 with Excess Tricyclohexylphosphine | S6 | | 8. | NMR Kinetics of Initiation Rates | S7–S8 | | 9. | CDC Dependence Experiments to Determine k_{-1}/k_2 | S8–S9 | | 10. | X-Ray Structure Determination | S10-S14 | | 11. | NMR Spectra | S15-S28 | | 12. | References | S29 | #### **General Considerations.** All experiments were conducted using standard Schlenk techniques or in a nitrogen atmosphere glovebox. All solvents were dried by passage through solvent purification columns, further degassed with argon, and stored over activated 3Å molecular sieves. Deuterated solvents were purchased from Cambridge Isotope Laboratory and were degassed and dried prior to use. Ethyl vinyl ether was degassed and stored over 3Å molecular sieves. $(H_2IMes)(py)_2(CI)_2Ru=CHPh,^1$ $(H_2IPr)(py)_2(CI)_2Ru=CHPh,^2$ carbodicarbene **1**,³ endo,exo-norbornenyl diethyl diester,⁴ and 2-isopropoxy-β-methylstyrene⁵ were prepared according to literature procedures. Standard NMR spectroscopic experiments were performed using a Varian Inova 400 MHz spectrometer, and kinetics experiments were conducted on a Varian 600 MHz spectrometer with an AutoX probe. ¹H were calibrated internally to the residual proteo solvent relative to tetramethylsilane. Spectra were analyzed using MestReNova Ver. 10.0 software. SEC data were collected using two Agilent PLgel MIXED-B 300×7.5 mm columns with 10 µm beads, connected to an Agilent 1260 Series pump, a Wyatt 18- angle DAWN HELEOS light scattering detector, and Optilab rEX differential refractive index detector. The SEC mobile phase was THF. Online determination of dn/dc assumed 100% mass elution under the peak of interest. High-resolution mass spectrometry (HRMS) data was obtained using an Autoflex MALDI-TOF instrument for solvent free samples with a benzylidene malononitrile matrix (complexes 2 and 3) or on a JEOL MSRoute mass spectrometer using FAB+ ionization (complexes 4 and 5). The purity of complexes 2 and 3 was established by NMR spectroscopy. ## Synthesis of (H₂IMes)(CDC)(Cl)₂Ru=CHPh (2). In a glovebox, a 20 mL scintillation vial was charged with (H₂IMes)(py)₂(Cl)₂Ru=CHPh (68.2 mg, 0.094 mmol), carbodicarbene **1** (31.4 mg, 0.103 mmol) and benzene (8 mL). Over 5 minutes, the solution changed in color from green to orange. After stirring at 25 °C for 3 hours, the solution was concentrated *in vacuo* to afford an orange solid and was triturated twice with pentane (5 mL). The orange powder was dissolved in 2 mL of THF, filtered through Celite, layered with diethyl ether (8 mL), and stored at –30 °C to afford orange crystals of (H₂IMes)(CDC)(Cl)₂Ru=CHPh (**2**, 76.1 mg, 93% yield). ¹H NMR (400 MHz, C₆D₆) δ 19.62 (s, 1H, Ru=C*H*Ph), 9.17 (br s, 1H, *o*-Ph), 6.91 (overlapping m, 4H, CDC and *m*-Mes), 6.81 (s, 1H, *m*-Mes), 6.65 (overlapping m, 4H, CDC and Ph), 6.43 (overlapping m, 4H, CDC and Ph), 6.18 (br s, 2H, CDC), 5.84 (s, 1H, *m*-Mes), 3.36 (m, 4H, H₂IMes NC*H*₂C*H*₂N), 3.25 (br, 12H, CDC), 3.10 (s, 3H, Mes), 2.86 (s, 3H, Mes), 2.71 (s, 3H, Mes), 2.23 (s, 3H, Mes), 2.05 (s, 3H, Mes), 1.89 (s, 3H, Mes); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, C_6D_6) δ 291.80 (Ru=CHPh), 224.58 (H₂IMes NCN), 163.40 (CDC NCN), 151.62 (Ph), 148.05 (Ph), 139.75 (Mes), 139.37 (Mes), 138.96 (Mes), 138.92 (Mes), 138.26 (Mes), 138.06 (Mes), 137.66 (Mes), 137.15 (Mes), 131.14 (Ph), 130.65 (*m*-Mes), 130.30 (*m*-Mes), 129.61 (*m*-Mes), 129.08 (*m*-Mes), 122.38 (Ph), 119.37 (CDC), 109.61 (CDC), 104.05 (CDC), 73.01 (CDC central carbon), 51.74 (H₂IMes NCH₂CH₂N), 51.46 (H₂IMes NCH₂CH₂N), 31.23 (CDC N-CH₃), 21.16 (Mes), 21.05 (Mes), 20.43 (Mes), 20.13 (Mes), 19.32 (Mes), 18.74 (Mes). HRMS (MALDI-TOF) *m/z* Calculated for $C_{47}H_{52}N_6$ RuCl [M-HCl]: 837.299; Found: 837.299. ### Synthesis of (H₂IPr)(CDC)(Cl)₂Ru=CHPh (3). In a glovebox, a 20 mL scintillation vial was charged with (H₂IPr)(py)₂(Cl)₂Ru=CHPh (58.6 mg, 0.0722 mmol), carbodicarbene 1 (25.2 mg, 0.0828 mmol) and benzene (8 mL). Over 5 minutes, the solution changed in color from green to orange. After stirring at 25 °C for 2 hours, the solution was concentrated in vacuo and triturated twice with pentane (5 mL). The orange powder was dissolved in benzene (4 mL) and additional carbodicarbene 1 (10.2 mg, 0.0316 mmol) was added. After 30 minutes, volatile components were removed in vacuo. The solid was dissolved in a mixture of diethyl ether (10 mL) and THF (3 mL), filtered through Celite, and stored at -30 °C to afford orange crystals of (H₂IPr)(CDC)(Cl)₂Ru=CHPh (3, 52.2 mg, 75% yield). H NMR (400 MHz, C_6D_6) δ 19.67 (s, 1H, Ru=CHPh), 7.39 (s, 4H, Ph and DIPP), 7.22 (br d, 1H, DIPP), 6.97 (t, J = 8Hz, 1H, Ph), 6.87 (m, 2H, CDC), 6.64 (m, 3H, CDC and Ph), 6.53 (br d, 1H, DIPP), 6.46 (t, J = 8Hz, 2H, DIPP), 6.38 (br m, 2H, CDC), 6.17 (m, 2H, CDC), 4.77 (br s, 1H, CH(CH₃)₂), 4.39 (br s, 1H, CH(CH₃)₂), 3.97 (s, 2H, H₂IPr NCH₂CH₂N), 3.85 (m, 2H, $CH(CH_3)_2$), 3.76 (m, 1H, $H_2IPr\ NCH_2CH_2N$), 3.52 (m, 1H, $H_2IPr\ NCH_2CH_2N$), 3.28 (m, 1H, $CH(CH_3)_2$), 3.17 (s, 6H, CDC N-C H_3), 2.75 (br s, 6H, CDC N-C H_3), 2.01 (s, 3H, CH(C H_3)₂), 1.71 (br s, 6H, $CH(CH_3)_2$), 1.36 (m, 3H, $CH(CH_3)_2$), 1.28 (m, 3H, $CH(CH_3)_2$), 1.19 (m, 3H, $CH(CH_3)_2$), 1.05 (m, 3H, $CH(CH_3)_2$), 0.98 (m, 3H, $CH(CH_3)_2$); $^{13}C\{^1H\}$ NMR (101 MHz, C_6D_6) δ 294.30 (Ru=CHPh), 227.09 (H₂IPr NCN), 162.36 (CDC NCN), 150.85 (Ph), 149.74 (DIPP), 147.54 (Ph), 139.89 (DIPP), 139.29 (DIPP), 136.43 (DIPP), 130.97 (CDC), 129.27 (Ph), 125.62 (DIPP), 124.87 (Ph), 124.22 (DIPP), 123.91 (DIPP), 121.89 (CDC), 119.34 (CDC), 108.90 (CDC), 104.23 (CDC), 73.37 (CDC central C), 54.70 (H₂IMes NCH₂CH₂N), 54.21 (H₂IMes NCH₂CH₂N), 30.65 (CDC N–CH₃), 30.24 (CDC N–CH₃), 28.64 (CH(CH₃)₂), 28.24 (CH(CH₃)₂), 27.61 (CH(CH₃)₂), 26.91 (CH(CH₃)₂), 26.58 (CH(CH₃)₂), 26.56 (CH(CH₃)₂), 26.40 (CH(CH₃)₂), $26.32 \text{ (CH}(CH_3)_2), 26.08 \text{ (CH}(CH_3)_2), 24.59 \text{ (CH}(CH_3)_2), 24.10 \text{ (CH}(CH_3)_2), 22.97 \text{ (CH}(CH_3)_2).$ HRMS (MALDI-TOF) m/z Calculated for C₅₃H₆₄N₆RuCl [M–HCl]: 921.392; Found: 921.394. ## Attempted Syntheses and Observation of CDC-H⁺ Formation. $$[Ru] + \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{O} \bigvee_{O} \bigvee_{N} \bigvee_{O} \bigvee_{N} \bigvee_{O} \bigvee_{N} \bigvee_{N} \bigvee_{O} \bigvee_{N} \bigvee_{$$ Representative procedure: A solution of $(PCy_3)_2(Cl)_2Ru=CHPh$ (6.6 mg, 0.0080 mmol) and CDC **1** (2.5 mg, 0.0080 mmol) was prepared in benzene- d_6 (0.8 mL). After 24 hours, CDC-H⁺ had precipitated as a pale yellow powder, and was washed with Et₂O (5 mL) and dried *in vacuo*. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.38 (m, 8H), 5.23 (s, 1H), 3.64 (s, 12H); ¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 153.89, 133.58, 124.53, 110.43, 51.47, 33.06. HRMS (FAB+) : m/z Calculated for $C_{19}H_{21}N_4$ [M⁺]: 305.1766; Found: 305.1762. ## Ring-Closing Metathesis of Diethyl Diallylmalonate. EtO₂C $$CO_2$$ Et CO_2 Et CO_2 E CO_2 E CO_2 E CO_2 E CO_2 E CO_2 E In a glovebox, a solution of catalyst 2 or 3 (0.00080 mmol) in 0.80 mL of benzene- d_6 was prepared in a J. Young NMR tube and frozen using a glovebox cold well. An internal standard, 1,3,5-tris(trifluoromethyl)benzene (1 μ L) and diethyl diallylmalonate (19.3 μ L, 0.0800 mmol) were added, and the NMR tube was stored at 0 °C before use. The tube was placed in an NMR spectrometer with the temperature pre-equilibrated to 40 °C. Disappearance of diethyl diallylmalonate and appearance of 4,4-dicarbethoxy-1-cyclopentene were monitored by comparing the ratio of integrals for the methylene protons of these compounds (δ = 2.86 (dt) and 3.16 (s), respectively). **Figure S1.** Log plots for the ring-closing metathesis of diethyl diallylmalonate with catalysts 2 and 3. ## Ring-Opening Metathesis Polymerization of endo,exo-Norbornenyl Diethyl Diester (DEE) $$0 = \underbrace{\begin{array}{c} 2 \text{ or } 3 \\ \text{CH}_2\text{Cl}_2 \end{array}} 0 = \underbrace{\begin{array}{c} 0 \\ \text{Et} \end{array}} 0$$ A solution of **DEE** (23.8 mg, 0.100 mmol) in dichloromethane (1.75 mL) was prepared in a glovebox. While stirring, a solution of catalyst **2** or **3** (0.00080 mmol) in dichloromethane (0.25 mL) was added. Aliquots (\sim 50 μ L) were taken at different time points throughout the reaction and immediately quenched in separate vials containing ethyl vinyl ether (0.1 mL) in THF (0.9 mL). The quenched aliquots were analyzed by SEC and ¹H NMR spectroscopy. Figure S2. Size exclusion chromatograms for ROMP of DEE by catalyst 2. Figure S3. Size exclusion chromatograms for ROMP of DEE by catalyst 3. ## Reaction of 2 with 2-Isopropoxy-β-methylstyrene. In a glovebox, a solution of complex **2** (2.6 mg, 0.0030 mmol), 2-isopropoxy- β -methylstyrene (1.6 μ L, 0.0090 mmol), and 1,3,5-tris(trifluoromethyl)benzene (1 μ L) as an internal standard was prepared in 0.60 mL of benzene- d_6 and transferred to a J. Young NMR tube. The NMR tube was heated to 40 °C in a temperature-controlled oil bath. After 7 hours, complete conversion of **2** to **4** was observed by 1 H NMR spectroscopy. The identity of **4** was verified by HRMS (FAB+): m/z Calculated for $C_{31}H_{38}ON_2RuCl_2$ [M+H]–H₂: 626.1405; Found: 626.1397. #### Reaction of 3 with 2-Isopropoxy-β-methylstyrene. Dipp $$N$$ Dipp N Di In a glovebox, a solution of complex **3** (2.9 mg, 0.0030 mmol), 2-isopropoxy- β -methylstyrene (1.6 μ L, 0.0090 mmol), and 1,3,5-tris(trifluoromethyl)benzene (1 μ L) as an internal standard was prepared in 0.60 mL of benzene- d_6 and transferred to a J. Young NMR tube. The NMR tube was heated to 40 °C in a temperature-controlled oil bath. After 7 hours, complete conversion of **3** to **5** was observed by 1 H NMR spectroscopy. The identity of **5** was verified by HRMS (FAB+): m/z Calculated for $C_{37}H_{50}ON_2RuCl_2$ [M+H]–H₂: 710.2344; Found: 710.2362. #### Reaction of 2 and 3 with Excess Tricyclohexylphosphine. Complex **2** or **3** (0.0013 mmol) and tricyclohexylphosphine (0.0065 mmol) were dissolved in benzene- d_6 in a J. Young tube. Exchange of CDC **1** for PCy₃ was monitored by 1 H and 31 P NMR spectroscopy at 25 $^{\circ}$ C. After 12 hours, 50% conversion of **2** or **3** was observed, along with concomitant formation of the analogous (NHC)(PCy₃)(Cl)₂Ru=CHPh complex and free CDC **1**. #### NMR Kinetics of Initiation Rates. Complex 2 or 3 (0.0020 mmol) and 0.5 μ L of 1,3,5-tris(trifluoromethyl)benzene as an internal standard were dissolved in benzene- d_6 (0.60 mL) in a screw-capped NMR tube. The temperature of the NMR tube was allowed to equilibrate in the NMR probe at 40 °C. Ethyl vinyl ether (26 μ L, 0.27 mmol) was injected into the NMR tube, and disappearance of the ¹H NMR signal for the ruthenium benzylidene was monitored as a function of time for three half lives. Reactions performed in triplicate provided rate constants ($k_{\rm obs} = k_1$) of (4.04 \pm 0.04) \times 10⁻⁴ s⁻¹ for complex 2 and (9.48 \pm 0.07) \times 10⁻³ s⁻¹ for 3. **Table S1.** Temperature dependence of k_{obs} for the reaction of **2** (0.0020 mmol) with ethyl vinyl ether (0.27 mmol) in benzene- d_6 (0.60 mL). | Temp. (°C) | $1/T (K^{-1})$ | $k_{\rm obs}({ m s}^{-1})$ | ln(k/T) | |------------|----------------|----------------------------|---------| | 40 | 0.00319 | 4.04×10^{-4} | -13.56 | | 50 | 0.00309 | 1.73×10^{-3} | -12.14 | | 58 | 0.00302 | 5.48×10^{-3} | -11.01 | | 64 | 0.00297 | 1.59×10^{-2} | -9.96 | | 70 | 0.00291 | 2.54×10^{-2} | -9.51 | The plot of ln(k/T) as a function of T^{-1} (Figure S3) was linearly fit to the expression $$\ln \frac{k}{T} = -\frac{\Delta H^{\neq}}{R} \cdot \frac{1}{T} + \ln \frac{k_B}{h} + \frac{\Delta S^{\neq}}{R}$$ The enthalpy and entropy of activation were extracted from the slope and intercept, respectively. Standard deviations for ΔH^{\ddagger} and ΔS^{\ddagger} were evaluated using the LINEST routine in Excel. Figure S4. Eyring plot for the reaction of 2 with ethyl vinyl ether. **Table S2.** Temperature dependence of k_{obs} for the reaction of **3** (0.0020 mmol) with ethyl vinyl ether (0.27 mmol) in benzene- d_6 (0.60 mL). | Temp. (°C) | $1/T (K^{-1})$ | $k_{\rm obs}~({\rm s}^{-1})$ | ln(k/T) | |------------|----------------|------------------------------|---------| | 25 | 0.00335 | 1.05×10^{-3} | -12.56 | | 35 | 0.00325 | 5.17×10^{-3} | -11.00 | | 40 | 0.00319 | 9.48×10^{-3} | -10.41 | | 55 | 0.00305 | 5.42×10^{-2} | -8.71 | | 48 | 0.00311 | 2.89×10^{-2} | -9.32 | Figure S5. Eyring plot for the reaction of 3 with ethyl vinyl ether. #### CDC Dependence Experiments to Determine k_{-1}/k_2 . Complex **2** or **3** (0.0020 mmol), CDC (**1**, 0.0040 to 0.011 mmol), and 1 μ L of 1,3,5-tris(trifluoromethyl)benzene as an internal standard were dissolved in benzene- d_6 (0.60 mL) in a screw-capped NMR tube. Each sample was thermally equilibrated in the NMR probe, and olefin (ethyl vinyl ether, 0.021 to 0.26 mmol) was injected into the NMR tube. Disappearance of the ¹H NMR signal for the ruthenium benzylidene was monitored as a function of time for three half lives. **Table S3.** [CDC]/[olefin] experiments for **2** at 60 °C. | [CDC] | [olefin] | [CDC]/[olefin] | $k_{ m obs}$ | $1/k_{\rm obs}$ | |--------|----------|----------------|-----------------------|-----------------| | (mmol) | (mmol) | | (s^{-1}) | (s) | | 0.011 | 0.22 | 0.050 | 7.86×10^{-3} | 127 | | 0.011 | 0.094 | 0.12 | 7.37×10^{-3} | 136 | | 0.011 | 0.057 | 0.19 | 6.65×10^{-3} | 150 | | 0.011 | 0.031 | 0.35 | 5.91×10^{-3} | 169 | | 0.011 | 0.021 | 0.53 | 5.39×10^{-3} | 186 | **Figure S6.** $1/k_{obs}$ versus [CDC]/[olefin] for complex **2**. **Table S4.** [CDC]/[olefin] experiments for **3** at 40 °C. | [CDC] | [olefin] | [CDC]/[olefin] | $k_{ m obs}$ | $1/k_{\rm obs}$ | |--------|----------|----------------|-----------------------|-----------------| | (mmol) | (mmol) | | (s^{-1}) | (s) | | 0.0040 | 0.26 | 0.015 | 9.49×10^{-3} | 105 | | 0.011 | 0.09 | 0.12 | 6.58×10^{-3} | 152 | | 0.011 | 0.031 | 0.35 | 3.77×10^{-3} | 265 | | 0.015 | 0.035 | 0.43 | 3.02×10^{-3} | 331 | | 0.011 | 0.021 | 0.52 | 2.79×10^{-3} | 358 | **Figure S7.** $1/k_{obs}$ versus [CDC]/[olefin] for complex **3**. ### X-Ray Structure Determination. Complex 2. Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Mo K_a radiation ($\lambda = 0.71073$ Å) from an I μ S micro-source for the structure of compound 2. The structure was solved by direct methods using SHELXS⁹ and refined against F^2 on all data by full-matrix least squares with SHELXL-2016¹⁰ using established refinement techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). Complex 2 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit. Complex 3. Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu K_a radiation ($\lambda = 1.54178$ Å) from an $I\mu$ S micro-source for the structure of compound 3. The structure was solved by direct methods using SHELXS⁹ and refined against F^2 on all data by full-matrix least squares with SHELXL-2016¹⁰ using established refinement techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3-distances and displacement parameters as well as enhanced rigid bond restraints for anisotropic displacement parameters. Complex 3 crystallizes in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit along with 2.588 molecules of diethyl ether. The crystal was pseudomerohedrally twinned. The structure was refined using the twin matrix [-1 0 0 0 -1 0 0 0 1] and the twin ratio converged at a value of 0.400(2). **Table S5**. Crystal data and structure refinement for complex 2. Empirical formula C47 H52 Cl2 N6 Ru Formula weight 872.91 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2₁/n Unit cell dimensions a = 14.1398(7) Å $\alpha = 90^{\circ}$. b = 23.1163(12) Å $\beta = 115.3760(19)^{\circ}.$ c = 14.2265(8) Å $\gamma = 90^{\circ}$. Volume 4201.4(4) Å³ Z 4 Density (calculated) 1.380 Mg/m³ Absorption coefficient 0.541 mm⁻¹ F(000) 1816 Crystal size $0.300 \times 0.150 \times 0.050 \text{ mm}^3$ Theta range for data collection 2.370 to 33.142°. Index ranges -21 <= h <= 21, -35 <= k <= 35, -21 <= l <= 21 Reflections collected 74416 Independent reflections 16014 [R(int) = 0.1090] Completeness to theta = 25.242° 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7471 and 0.6445 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 16014 / 0 / 515 Goodness-of-fit on F^2 1.009 Final R indices [I>2sigma(I)] R1 = 0.0534, wR2 = 0.0858 R indices (all data) R1 = 0.1149, wR2 = 0.0979 Largest diff. peak and hole 1.264 and -0.774 e.Å⁻³ **Figure S8.** X-ray crystal structure of complex **2**. Displacement ellipsoids are drawn at 50% probability, and hydrogen atoms have been omitted for clarity. **Table S6.** Crystal data and structure refinement for complex **3**. Empirical formula C63.35 H89.88 Cl2 N6 O2.59 Ru Formula weight 1148.85 Temperature 100(2) K Wavelength 1.54178 Å Crystal system Monoclinic Space group P2₁/c Unit cell dimensions a = 12.7525(4) Å $\alpha = 90^{\circ}$. b = 32.6167(12) Å $\beta = 90.0724(18)^{\circ}.$ c = 14.4122(5) Å $\gamma = 90^{\circ}$. Volume 5994.7(4) Å³ Z 4 Density (calculated) 1.273 Mg/m³ Absorption coefficient 3.307 mm⁻¹ F(000) 2443 Crystal size $0.300 \times 0.100 \times 0.050 \text{ mm}^3$ Theta range for data collection 2.709 to 74.488°. Index ranges -15 <= h <= 15, -40 <= k <= 40, -18 <= 17 Reflections collected 86257 Independent reflections 12234 [R(int) = 0.0709] Completeness to theta = 67.679° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.3827 and 0.2333 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 12234 / 675 / 753 Goodness-of-fit on F^2 1.294 Final R indices [I>2sigma(I)] R1 = 0.0826, wR2 = 0.1954 R indices (all data) R1 = 0.0865, wR2 = 0.1974 Largest diff. peak and hole 0.774 and -1.539 e.Å⁻³ **Figure S9.** X-ray crystal structure of complex **3**. Displacement ellipsoids are drawn at 50% probability, and hydrogen atoms and diethyl ether molecules have been omitted for clarity. **Figure S10.** 1 H NMR spectrum of **2** (in C_6D_6). **Figure S11.** $^{13}C\{^{1}H\}$ NMR spectrum of **2** (in C_6D_6). Signals for trace diethyl ether are observed at 15.63 and 65.94 ppm. **Figure S12.** COSY NMR spectrum of **2** (in C_6D_6). **Figure S14.** ${}^{1}\text{H-}{}^{13}\text{C}$ HSQC NMR spectrum of **2** (in C_6D_6). **Figure S15.** $^{1}\text{H-}^{13}\text{C}$ HMBC NMR spectrum of **2** (in C_{6}D_{6}). Figure S16. ¹H NMR spectrum of 3 (in C₆D₆). **Figure S17.** $^{13}C\{^{1}H\}$ NMR spectrum of **3** (in C_6D_6). Signals for trace tetrahydrofuran are observed at 25.45 and 67.45 ppm. **Figure S18.** COSY NMR spectrum of **3** (in C_6D_6). Figure S19. NOESY NMR spectrum of 3 (in C_6D_6). **Figure S20.** $^{1}\text{H-}^{13}\text{C}$ HSQC NMR spectrum of **3** (in C_{6}D_{6}). Figure S21. $^{1}\text{H}-^{13}\text{C}$ HMBC NMR spectrum of 3 (in C_{6}D_{6}). **Figure S22.** ¹H NMR spectrum of CDC–H⁺ (in CD₂Cl₂). **Figure S23.** $^{13}C\{^{1}H\}$ NMR spectrum of CDC–H⁺ (in CD₂Cl₂). #### References - 1. Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. *Angew. Chem., Int. Ed.* **2002**, *41*, 4035–4037. - 2. Leitao, E. M.; Piers, W. E.; Parvez, M. Can. J. Chem. 2013, 91, 935–942. - 3. Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2008, 47, 3206–3209. - 4. Windmon, N.; Dragojlovic, V. Green Chem. Lett. Rev. 2008, 1, 155–163. - 5. Pederson, R. L.; Woertink, J. K.; Haar, C. M.; Gildelberger, D. E.; Schrodi, Y. U. S. Patent 6,620,955 B1, September 16, 2003. - Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168–8179. - 7. Blum, A. P.; Ritter, T.; Grubbs, R. H. Organometallics, 2007, 26, 2122–2124. - 8. Sauvage, X.; Demonceau, A.; Delaude, L. Adv. Synth. Catal. 2009, 351, 2031–2038. - 9. Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473. - 10. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8. - 11. Müller, P. Crystallography Reviews 2009, 15, 57-83.