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Abstract

Electrochemical ammonia synthesis forms a key part of sustainable chemicals syn-

thesis. Single-atom catalysts have emerged as a promising class of electrocatalysts that

could be capable of electrochemically reducing nitrogen into ammonia. The analysis of

electrochemical reduction of nitrogen is complicated by multiple mechanistic pathways

and the competing hydrogen evolution reaction. The identified pathways using thermo-

dynamic analysis based on DFT calculations is strongly dependent on the choice of the

exchange correlation functional. In this work, we provide a computational methodolog-

ical framework using the single-atom systems as an example material class for ammonia

synthesis that is robust towards parameter selection. Applying this to Pt1/g-C3N4,

Ru1/g-C3N4, and Fe1/g-C3N4, we generate ensembles of limiting potentials, using the

ensemble of functionals collected via Bayesian Error Estimation Functionals (BEEF),

to robustly predict catalytic activity. We then extend this to study the scaling between

NRR reaction intermediates and use it to identify that NNH* as the best descriptor

for these relations. In addition, a procedure to investigate selectivity is outlined, and

a more robust way to analyze the selectivity-activity trade-off is presented. For this

single-atom material class, we find choosing catalysts that lie on the strong binding
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leg of the activity volcano are worth further exploration. Given the ease of integration

of the proposed method with minimal additional computational cost, we believe this

should become a routine part of analysis workflow for multi-electron electrochemical

reactions.

1 Introduction

In the path towards sustainable chemical synthesis, ammonia (NH3) production is an im-

portant challenge due to its significant CO2 emissions of over 300 million metric tonnes.1

This is a consequence of the widespread use of the Haber-Bosch process for synthesis, which

demands harsh conditions in order to thermally drive the kinetics of the reaction.2 Electro-

chemical synthesis emerges as a promising alternative.3 In this case, N2 is reduced to NH3 in

an electrochemical cell where the thermal driving force from the extreme conditions of the

Haber-Bosch process is substituted for an applied electric potential which can be generated

through a sustainable sources such as solar or wind.4

However, the electrochemical nitrogen reduction reaction (NRR) has numerous chal-

lenges.5,6 Firstly, poor activities have been predicted for NRR due to scaling relationships.7,8

These scaling relations impose limits on the maximum achievable limiting potential by re-

ducing the degrees of freedom in optimizing the free energy landscape. This is further

complicated as the reaction is multi-step in nature, and multiple possible mechanisms have

been put forward.5 Being able to confidently report the mechanism on a given surface is

crucial in not only predicting NRR activity, but also in the development of design principles

to guide future studies. At this point, consensus over the dominant mechanisms remains

unclear.5 The underlying mechanism can have significant influence on predicted limiting

potentials and scaling relations which can then dramatically alter conclusions drawn about

a given catalyst. Another important consideration is competition with the hydrogen evo-

lution reaction (HER) yielding poor faradaic efficiencies.9 In order to maximize yield, it is

important to carefully select a catalyst material that can promote NH3 production while
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minimizing the competing H2 production.

Single-atom catalysts are an exciting new class of materials due to their high metal uti-

lization and tunable catalytic properties.10–13 In this context of ammonia synthesis, it was

previously reported that careful design of the active site via substitution in model bulk sys-

tems could improve thermochemical NRR performance.14 Translating this to electrochemical

NRR, single Ru atoms deposited on N-doped carbon exhibited a very high yield of 120.9

µgNH3
mg−1cath

−1,15 and FeSA-N-C was reported to have among the highest faradaic efficiency

to date of 56.55%.16 Continuing on this trajectory of carbon and nitrogen based supports,

graphitic carbon nitride (g-C3N4) has drawn attention due to its unique geometric structure

leading to naturally forming cavities, and some recent efforts have focused on scalable synthe-

sis of this material.17–19 Moreover, many single-atom species have already been synthesized

on this support including Fe, Ru, and Pt.20–22 This has inspired previous computational

investigations into the performance of single-atoms on the surface, but so far they have come

to differing conclusions in terms of relative NRR catalytic performance.23–25 Thus, a robust

analysis framework with uncertainty estimates is crucial to handle this challenging reaction.

The significant influence of the choice of exchange-correlation functional on the DFT

predictions for NRR is recognized, however a methodology for addressing this quantitatively

is lacking.26 One approach to quantify the uncertainty arising from the choice of exchange-

correlation functional (XC) is through the use of the BEEF-vdW functional.27 One of the

first studies incorporating this approach investigated the catalytic activity towards ammo-

nia synthesis of a collection of bulk surfaces for a dissociative mechanism.28 Since then, this

uncertainty quantification method has been successfully implemented to a variety of applica-

tions including chlorine evolution29 and electrode-electrolyte interfacial behaviour for both

oxygen reduction30 and CO reduction.31 Thus, this approach has demonstrated a promising

method to robustly draw conclusions about a given catalyst candidate.

In this work, we propose a methodological framework for investigating the NRR catalytic

ability of single-atom systems with the inclusion of uncertainty estimation and propagation.
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We apply this framework using an example class of materials - Pt1/g-C3N4 (Pt1), Ru1/g-C3N4

(Ru1), and Fe1/g-C3N4 (Fe1) to robustly quantify the activity and selectivity accounting for

the uncertainty associated with density functional theory (DFT) calculations. Through this,

we are able to generate an ensemble of limiting potentials for each of the three systems to

provide more realistic predictions in terms of activity. We then study the inherent scaling

relationships of the systems towards NRR, and find that from incorporating uncertainty,

the NNH* intermediate is the best descriptor of these relations. Finally, we investigate the

issue of selectivity, and show that due to the scaling of NNH* with H*, a selectivity-activity

trade-off emerges. Based upon this analysis, the design criteria emerges that for this material

class is that catalysts which lie on the strong binding leg of the volcano are worth further

exploration. In summary, this work aims to simultaneously provide a deeper understanding

of these systems while laying out the foundations for future single-atom system investigations

for ammonia synthesis.

2 Methodology

2.1 Computational Parameters

Spin-polarized DFT calculations were conducted using the GPAW package32 through the

Atomic Simulation Environment package.33 Ion-electron interactions were treated using the

Projector Augmented Wave approach.34 For all calculations a grid spacing of 0.16 Å and a 4

× 4 × 1 Monkhorst-Pack k-mesh were used.35 Geometric relaxations of each of the structures

were done until a force criterion of <0.05 ev/Å was met. Since the basal plane of g-C3N4

is hydrophobic,36 solvation effects were assumed to be negligible. To avoid interactions

among images in the z-direction, a vacuum spacing of 20 Å was introduced. To improve

self-consistent field convergence, Fermi smearing was applied to electron occupation with a

width of 0.05 eV. All relaxations and analysis, unless otherwise specified, were conducted

using the BEEF-vdW XC.
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2.2 Reaction Mechanism for NRR

The overall reaction for NRR can be summarized as:

N2 + 6(H+ + e−)→ 2NH3 (1)

But, this can occur via many different possible mechanisms which are usually classified

as either dissociative or associative. Since pure g-C3N4 is electrochemically inert,37,38 and

the dissociative mechanism requires two active sites, only the associative mechanisms are

considered in this work. The associative mechanisms can be further subdivided into the

distal, alternating, and enzymatic pathways. For all reactions below, ∗ indicates adsorption.

The distal mechanism proceeds as described in the following expressions:

N2 + 6(H+ + e−) + ∗ → NNH∗ + 5(H+ + e−) (2a)

NNH∗ + 5(H+ + e−)→ NNH∗2 + 4(H+ + e−) (2b)

NNH∗2 + 4(H+ + e−)→ N∗ + 3(H+ + e−) + NH3 (2c)

N∗ + 3(H+ + e−)→ NH∗ + 2(H+ + e−) (2d)

NH∗ + 2(H+ + e−)→ NH∗2 + (H+ + e−) (2e)

NH∗2 + (H+ + e−)→ NH3 + ∗ (2f)

In this mechanism, protons and electrons are donated until the outer N is fully saturated

and released as NH3 before the anchoring N begins to be protonated. On the other hand,

the alternating mechanism rotates between giving protons and electrons to the outer N and

the anchoring N. This is summarized as follows:
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N2 + 6(H+ + e−) + ∗ → NNH∗ + 5(H+ + e−) (3a)

NNH∗ + 5(H+ + e−)→ NHNH∗ + 4(H+ + e−) (3b)

NHNH∗ + 4(H+ + e−)→ NHNH∗2 + 3(H+ + e−) (3c)

NHNH∗2 + 3(H+ + e−)→ NH2NH∗2 + 2(H+ + e−) (3d)

NH2NH∗2 + 2(H+ + e−)→ NH∗2 + (H+ + e−) + NH3 (3e)

NH∗2 + (H+ + e−)→ NH3 + ∗ (3f)

For both of the mechanisms described above, the bond between the nitrogens are perpendic-

ular to the basal plane. The enzymatic mechanism however is analogous to the alternating

mechanism except with the N-N bond parallel to the lattice plane. The competing HER

reaction is a 2e– process which can be described as:39

2(H+ + e−) + ∗ → H∗ + (H+ + e−) (4a)

H∗ + (H+ + e−)→ H2 + ∗ (4b)

For all adsorption energy and reaction energy calculations the reference was set to gas-

phase N2 and H2. The reference electrode was set to the computational hydrogen electrode

where 1
2
GH2

⇀↽ GH+ +Ge− is at equilibrium, and a pH of 0. Adsorption energies for a given

NRR intermediate were calculated as follows:

∆ENxH∗y = ENxH∗y −
x

2
EN2 −

y

2
EH2 − E∗ (5)

To calculate the gibbs adsorption energy at each step of the reaction the following expression

was used:
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∆GNxH∗y+zNH3 = GNxH∗y + zGNH3 −
x

2
GN2 −

y

2
GH2 −G∗ (6)

For each of these energies their vibrational contributions (zero-point energy and entropy)

uses the harmonic approximation at a temperature of 300 K. The catalyst single atom is

held fixed for computational convenience, as allowing it to vibrate is observed to have a

negligible effect on the zero-point energy and entropy values.

2.3 Uncertainty Quantification

To quantify the uncertainty, ensembles of energies are obtained using the BEEF-vdW XC

functional which takes the following form:27

EBEEF-vdW
XC =

∑

m

amE
GGA-x
m + αcE

LDA-c + (1− αc)EPBE-c + Enl-c (7)

Van der Waals contributions to the energy are accounted for in Enl-c, a vdW-DF2 nonlo-

cal correlation.40 The GGA exchange energy is projected onto Legendre polynomials giving

the parameters am. Trade-off between the Perdew-Burke-Ernzerhof (PBE) correlation41 and

Perdew-Wang LDA correlation42 yields an additional parameter αc. Optimal parameters

were obtained in the original formulation of this functional by fitting to a variety of con-

densed matter and chemical systems including molecular chemisorption on solid surfaces,

noncovalent interactions, and molecular reaction energies. Using a Bayesian approach, these

datasets also allowed for the generation of a posterior probability distribution for the param-

eters as P (a|θ;D) ∼ e−C(a)/τ . Here, a is the set of parameters, θ is the model, D is the data,

C(a) is the cost function, and τ is a cost temperature. After using the optimized parameters

for SCF, the parameter space is sampled from this posterior distribution to give an ensemble

of energies. In this work we use an ensemble of 2000 XC functionals. Integration of this

functional into existing DFT workflows is relatively straightforward with little sacrificed in

terms of computational cost.
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From this ensemble, confidence values associated with important mechanistic and cat-

alytic properties are calculated. The first confidence value obtained is associated with the

confidence that the distal mechanism will proceed on a given surface:

cNNH2 =
1

Nens

Nens∑

n=1

Θ(∆Gn
NHNH∗ −∆Gn

NNH∗2
) (8)

where Nens is the number of XC functionals in the BEEF-vdW ensemble, Θ(x) is the Heavi-

side step function, ∆Gn
NHNH∗(NNH∗2)

is the reaction energy for NHNH∗ (NNH2
∗) using the n-th

XC functional. Both the distal and alternating mechanisms begin by forming NNH∗. After

this step the mechanisms diverge, and there is an uncertainty associated with path selection.

The confidence value described in eq.8 addresses this by quantifying the confidence as to

whether the distal mechanism would be favourable over the alternating mechanism.

Another source of uncertainty in these systems is from the predicted limiting potentials

for these systems. For this reaction which contains uphill steps, the limiting potential is

UL = −1
e
max{∆G1, . . . ,∆G6} with ∆Gi being the free energy change for the i-th step.

Propagating the energy ensembles in turn yields an ensemble of UL values. The reaction step

which determines this limiting potential is generally referred to as the potential determining

step (PDS). Confidence in predicting that the PDS is step i is computed using:

cPDS=i =
1

Nens

Nens∑

n=1

δmn
pred,i

(9)

where mi
pred is a classifier that identifies the most thermodynamically likely PDS for the n-th

XC functional and δk,k′ is the Kronecker delta function.

The final area of uncertainty when considering these systems for NRR is that of selectivity

against HER. There is uncertainty over whether the NRR limiting potential is more negative

then the HER limiting potential. If the limiting potential of NRR is less negative than HER,

then NRR could be activated without also activating HER. The confidence that the limiting

potential of NRR will not activate HER as well is described as follows:
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cUL
HER =

1

Nens

Nens∑

n=1

Θ(Un
L,NRR − Un

L,HER) (10)

where Un
L,NRR/HER is the limiting potential for NRR/HER corresponding to the free energy

landscape generated by the n-th XC functional. Taking this a step further, the selectivity will

also be influenced by whether H∗ or NNH∗ is more thermodynamically favourable to form on

the surface. Thus, a confidence in whether NRR can be activated without activating HER

while NNH∗ is also the more favorable adsorbate can be calculated as:

cNRR =
1

Nens

Nens∑

n=1

[Θ(∆Gn
NNH∗ −∆Gn

H∗)][Θ(Un
L,NRR − Un

L,HER)] (11)

Put differently, cNRR describes the confidence that the system will be able to promote NRR

where there is no competition with HER. It is important to distinguish this quantity from

the more traditional view of selectivity which is the percentage of the reactants proceeding

via NRR instead of HER.

3 Results and discussion

3.1 Benchmarking Uncertainty Estimates

We first obtain the single atom systems by relaxing single atoms of Pt, Fe, and Ru onto the

clean g-C3N4 surface. It is observed that for Fe adsorption, the cavity was the thermody-

namically optimal adsorption position. Based on this, we similarly relax both Pt and Ru

within the cavity to obtain their optimal configurations.

To solidify the approach of uncertainty quantification with BEEF-vdW, it is important to

benchmark the ensemble spread against the spread from selected popular XC functionals. As

representative adsorbates, we relax both H* and NNH* onto each of the three systems using

BEEF-vdW, PBE, RPBE,43 and optPBE-vdW44 XCs. In figures 1a,b the relaxed geometries

on Fe1 from the optimal BEEF-vdW parameters are shown. It is observed that the presence
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of the adsorbates on the surfaces brought the single atom (SA) out of plane. This indicates

the adsorbate modifies the interaction with the substrate, and highlights the dynamism of

these systems as they undergo a given reaction. From each of these different combinations,

adsorption energies of the representative adsorbates are calculated and compared (Fig. 1 c,d).

The astute reader may notice that for Pt1 does not have an adsorption energy reported for

NNH* using the RPBE XC. This is because for this XC, NNH* was observed to desorb from

the surface during relaxation. However, this was the only system observed to demonstrate

this behavior.

Figure 1: Relaxed geometrical configuration of a) H* and b) NNH* on Fe1 using the optimal
BEEF-vdW XC (Color code: blue= N, grey = C, Fe = orange, white = H). Adsorption
energies of c) H* and d) NNH* implementing PBE, RPBE, optPBE-vdW, and BEEF-vdW
exchange correlation functionals. The errorbars are ±2σiH∗/NNH∗ where σiH∗/NNH∗ is the stan-

dard deviation of the BEEF-vdW ensembles on the i-th system for HER/NRR

As an estimate of the uncertainty,the standard deviations of the BEEF-vdW ensembles,

σiH∗/NNH∗ , is calculated on the i-th system. We justify treating these distributions as normal

by calculating their skewness and kurtosis, and verified that all systems have values close to

0 and 3 respectively (Figs. S1,S2). Treating the distributions in this way, the uncertainty
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presents itself in the figures as the error bars of ±2σiH∗/NNH∗ . Almost all XC functionals of the

ensemble predict adsorption energies fall within the range of the errorbars. This indicates

that the ensemble is able to accurately reflect the sensitivity of the adsorption energies on

the selected XC functional, and provides a systematic method to quantifying the uncertainty

for these SA systems.

3.2 Reaction Mechanism Uncertainty

When considering the associative reaction mechanisms (distal, alternating, and enzymatic),

all three nucleate from adsorbed N2 on a clean catalyst surface which is subsequently pro-

tonated. However, the distinguishing feature of the enzymatic mechanism is that the N2

adsorbs horizontally onto the surface, whereas the distal and alternating mechanisms feature

vertical adsorption. Thus, we adsorbed N2 in both a vertical and horizontal configuration

onto each of the SA systems. All vertical configurations are found to be thermodynamically

favorable with adsorption energies of -0.63 eV on Fe1, -0.89 eV on Ru1, and -1.33 eV on

Pt1. Therefore, this configuration is plausible on all three systems. On the other hand, the

horizontal orientation of N2* resulted in weaker binding in all cases of -0.20 eV, -0.37 eV,

and -0.06 eV on Fe1, Ru1, and Pt1 respectively. However, protonation of these horizontal ge-

ometries leads to relaxation into vertical configurations on all systems. Therefore, we do not

consider the enzymatic pathway, and only investigate the distal and alternating mechanisms.

Both mechanisms begin with NNH* formation before diverging into the distal and alter-

nating paths which recombine at the final step with two units of ammonia released along

the way (Fig. 2a). Comparing these two paths the intermediates are quite varied and con-

tain rich surface chemistries. Along the distal pathway, with ammonia being emitted at the

halfway point, its adsorbates tend to contain less atoms than in the alternating pathway

which does not release any ammonia until the last couple steps. It is important to under-

stand which of the mechanisms is most likely to occur. Divergence in the reaction scheme

results in a fork in the free energy landscape, as illustrated in figure 2b using Ru1 as an
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example. Similar plots for Fe1 and Pt1 are given in Fig S3. These landscapes are at U = 0

relative to the standard hydrogen electrode (SHE). The contrasting energetics along the two

mechanisms highlights the importance of quantifying confidence in which mechanism is fa-

vored. Traditionally, prediction of the favored path is based on whether NNH2* or NHNH* is

thermodynamically favorable from NNH*. Using this approach, the traditionally predicted

dominant mechanisms are shown in Fig. 2c. Here, both Pt1 and Fe1 are expected to un-

dergo an alternating mechanism, whereas Ru1 is expected to undergo a distal mechanism.

The importance of this is that in order to tune the free energy landscapes shown to maximize

catalytic activity, the design principles for Ru1 could be inherently different than the others

based on this mechanistic distinction. Therefore, it is important to attribute a confidence

value to what we would expect to be the dominant reaction mechanism before any broad

claims could be justifiably made.

For each adsorption energy of NNH2* and NHNH* in the ensemble, the difference is taken

to obtain a histogram of dominant pathway predictions (Fig. 3). Additionally, eq. 8 is used

to obtain confidence values that the distal mechanism would be preferred. In the case of Ru1

(Fig. 3a), it is observed that most of the ensembles are in favor of NNH2* formation opposed

to NHNH*, with a confidence value of 95.3 %. However, it must be noted that there is a

nonzero number of ensembles that prefer NHNH* formation. Therefore, while there is a high

confidence in the reaction proceeding via the distal mechanism, the alternating mechanism

cannot be fully ruled out. Similarly for Pt1 (Fig. 3b), while the majority of functionals

indicate NHNH* being preferred, there is a nonzero number of functionals that suggest

the distal mechanism could occur with a confidence of 0.9 %. Therefore, in this case the

distal mechanism cannot be entirely ruled out either. However, for the Fe1 system, all of the

functionals favor NHNH*, and thus there is a high degree of confidence that the reaction will

proceed exclusively via the alternating mechanism. In summary, the dominant mechanism

varies on a case by case basis, and the degree of confidence with each mechanism also

fluctuates. Therefore, the most likely mechanism to occur should be viewed in a probabilistic
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Figure 2: a) Reaction scheme for the distal and alternating mechanisms of ammonia syn-
thesis b) Free energy landscape of both the distal and alternating mechanisms on the Ru1

system at USHE = 0 c) Free energy landscapes of the thermodynamically predicted dominant
mechanisms on Ru1, Pt1, and Fe1
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manner based upon confidence values obtained by the BEEF-vdW ensemble.

Figure 3: Histograms of the ensemble-wise difference between ∆GNNH∗2 and ∆GNHNH∗ on a)
Ru1 b) Fe1 c) Pt1. A negative difference indicates that the functional prefers a distal mech-
anism, and a positive difference indicates a preference towards the alternating mechanism.
The inset confidence values are calculated using eq. 8 and indicate the fraction of functionals
within the ensemble that favour NNH2* formation

3.3 Potential Determining Step Uncertainty

Shifting focus towards the predicted dominant mechanisms, the PDS determines the limiting

potential and thus, to a first approximation, the electrocatalytic activity of a given system.

Moreover, the nature of the step can lead to varying strategies when looking for future

candidates. For example, if the PDS was NNH* formation, then emphasis should be placed

on tweaking the system to increase NNH* binding via methods such as tuning the local
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coordination environment.45 Thus, we quantify the confidence of the PDS for each of the

systems using eq. 9. These results are presented in Fig. 4a, and it is observed that, for

almost all functionals within the ensemble, the PDS is either NNH* formation or NH2*

desorption to form NH3. In this figure, we can observe the two steps trade-off in confidence,

i.e. higher confidence in one leads to lower confidence in the other. This provides strong

evidence to the importance of these two steps towards activity, as proposed in previous

studies8 on bulk metals. Here, it is observed that there is a high confidence that the PDS

on Fe1 is NNH* formation and NH2* desorption on Pt1. Therefore, strategies to improve

these systems (ie. strengthening NNH* adsorption and weakening NH2 adsorption) can be

confidently identified. However, on Ru1 both PDS are relatively likely (with 0.34 and 0.66

confidence for NNH* and NH2, respectively). Therefore, in this case of Ru1 while weakening

of NH2* adsorption should be the focus for future improvement, the influence of NNH*

formation cannot be ignored.

With each of the ensemble members yielding their own free energy landscape, a distri-

bution of limiting potentials is extracted for each system (Fig. 4b-d). Comparing these

distributions to literature values,23–25 it is observed that the distribution was able to bound

most of them. This further solidifies this methodology of uncertainty quantification. Com-

paring the BEEF-vdW optimal limiting potentials, we find that they predict a hierarchy of

Ru1 > Pt1 > Fe1. However, further information can be extracted from the shape of the UL

distributions. Calculating the skewness for each of the distributions we find their values to

be 0.17 for Fe1, 0.35 for Pt1, and 0.96 for Ru1. As the skewness increases with the optimal

BEEF-vdW becoming less negative, an underlying maximum limiting potential is implied.

Put differently, if the right side of Ru1’s distribution is mirrored on the left, it would increase

well into the positive regime. However, if a limit was to exist, a folding would occur causing

a skewed distribution shape. Since scaling relations can cause the presence of activity volca-

noes with a maximum achievable activity,46,47 these results indicate the presence of scaling

within these systems. This will be discussed in greater detail in the following section. With
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Fe1’s symmetry, we can conclude that it does not approach the peak UL. For Pt1 we predict

the ensemble does have some folding from interacting with the volcano peak, while the large

skewness of Ru1 implies a high amount of interaction. Therefore, the distribution shape also

suggests that Ru1 has the best chance of reaching the maximum achievable activity.

Figure 4: a) Confidence values of the potential determining step for each of the systems.
The observed give and take between the confidence of these steps implies scaling. There is a
0.1 % predicted confidence the PDS on Ru1 was the protonation of N* which is not included.
Distributions of the limiting potentials associated with b) Fe1 c) Pt1 d) Ru1. Skewness for
each of these distributions is calculated to be 0.17, 0.35, and 0.96 for Fe1, Pt1, and Ru1,
respectively. The dashed lines are UL values obtained from literature.23–25 The red solid line
is the limiting potential from the optimal BEEF-vdW XC functional
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3.4 NRR Scaling Relations Uncertainty

The presence of scaling relations between intermediate adsorption energies enforces a limit

to the maximum achievable activity, and thus we explore scaling among NNH*, NH2*, and

N*. Previous investigations have reported scaling among these three intermediates,7,8,24 with

particular emphasis placed on the former two due to their importance towards activity. Due

to the observed give and take between cPDS=i among NNH* formation and NH2* desorption,

we first study the scaling between these two intermediates (Fig. 5a). The solid black line is

the linear fit obtained for the optimal BEEF-vdW values, illustrated as black dots, which all

fall close to this line of best fit indicating strong scaling. Extending this analysis to include

the uncertainty estimates of the BEEF-vdW ensembles, clusters of adsorption energies are

obtained corresponding to each system. For every XC in the ensemble, there is one point

within each of the system’s clusters, thereby creating sets of three points. Therefore, for

each of the 2000 XC functionals within the ensemble, a scaling relation can be extracted via

an ordinary least squares fit creating an ensemble of scaling relations. It is observed that

the clusters do follow a linear trend with each other, further implying the presence of strong

scaling. To quantitatively assess the degree of scaling, we generate a histogram of the R2

values for all 2000 scaling relations shown in Fig. 5b. For the majority of the relations in

the ensemble, the correlation coefficient is quite high, lying mainly around 1.0. Therefore,

the adsorption energies for most of the XC functionals in the BEEF-vdW ensemble are quite

linear. It is worth noting that for these fits no assumptions are made about the slope of the

scaling relation nor the intercepts, allowing for a generalized ensemble of scaling relationships.

A prior work studied the systematic error present in scaling relations in oxygen reduction

via BEEF-vdW.48,49 Here, we instead propagate the BEEF-vdW ensemble to obtain an

ensemble of scaling relations, and study the distribution shape in fitting parameter space to

obtain further fundamental insights. We are given the freedom to select either ∆GNNH∗ or

∆GNH∗2 as the descriptor for these scaling relations. By allowing both the fitting parameters

to be completely unrestricted, the choice of descriptor significantly influences the distribution
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in parameter phase space. To gain insights into the best descriptor and describe the scaling

between NNH* and NH2*, we fit a multivariate normal to the parameter distribution of the

scaling relation ensemble. In Fig. 5c, we plot the fit using NH2* as the signal and NNH*

as the response. Since the distribution is on an angle with respect to the axes, these fitting

parameters cannot be decoupled and must be considered in tandem. To gives an estimate

of the relation’s robustness towards XC selection, the determinant of the covariance matrix,

|Σ|, is computed to be of order 10−1. In comparison, the fit using NNH* as the signal

shows a much more constricted shape (Fig. 5d). There is still some diagonal behaviour

in the distribution so this maintains the coupled nature of the parameters. |Σ| for this

distribution quantitatively highlights this compression by being of order 10−3, 2 orders of

magnitude smaller than when using NH2* as the descriptor. By considering the spread of the

distribution in parameter space, identification of the more appropriate signal for describing

these scaling relations emerges. This is because a tighter distribution in phase space is an

indication of greater robustness towards computational parameter selection. In this case,

since the distribution using NNH* as the signal yielded a more narrow distribution, we

suggest that it is the more suitable descriptor for describing this specific scaling relation.

Since N* has been used as a descriptor in other NRR studies,9,24 its scaling strength with

NNH* is evaluated (Fig. S4a). The adsorption energy clusters are observed to be relatively

isolated from each other, and some ambiguity arises in terms of their scaling. While some

of the functionals demonstrate a strong scaling correlation coefficient, the majority of the

functionals favor weak correlation with the largest bin at an R2 of 0 (Fig. S4b). Therefore, we

conclude that the scaling exhibited between these intermediates is relatively weak. Applying

the same methodology as above to gauge the spread in parameter space, N* is identified

as the better descriptor with its determinant of the covariance matrix being three orders of

magnitude smaller than when using NNH* as the signal (Fig. S4c,d). Similarly, considering

the scaling between N* and NH2*, weak scaling is observed among the three systems (Fig.

S5a,b). While N* is once again the more suitable descriptor (Fig. S5c,d), it describes a
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weaker scaling phenomenon. Therefore, we focus on the stronger observed scaling between

NNH* and NH2*, which is more influential towards overall predicted performance. The

method we present here is generalizable and presents a robust framework to systematically

identify the best scaling descriptors.

As scaling relations form the backbone of activity volcanoes, they highlight the im-

portance of properly identifying a descriptor which is invariant to choice of computational

parameters. The fundamental principle behind activity volcanoes is that limiting potentials

may be expressed in terms of a single descriptor through the use of scaling relations. This

results in a Sabatier-type relationship with a maximum achievable activity allowed by scal-

ing for a system corresponding to a given descriptor. In this case, since we have identified

NNH* and NH2* as the two intermediates with the most influence on predicted activity, and

they demonstrate strong scaling to a high confidence, they are critical in determining the

properties of the activity volcano. The limiting potential may be expressed in the form:

UL = −1

e
min(∆GNNH∗ ,∆G2NH3 −∆GNH∗2+NH3) (12)

From the presence of scaling between ∆GNNH∗ and ∆GNH∗2+NH3 , this expression can then be

simplified to only depend on either ∆GNNH∗ or ∆GNH∗2+NH3 . We chose the former due to

its stability in phase space. Therefore, for the i-th scaling relation the limiting potential is

given by:

U
(i)
L (∆GNNH∗) = −1

e
min(∆GNNH∗ ,∆G2NH3 −m(i)∆GNNH∗ − b(i)) (13)

where m(i) and b(i) are from the i-th member of the scaling ensemble. Stemming from Eq. 13,

the path to creating an ensemble of activity volcanoes emerges; propagation of the scaling

relations obtained in Fig. 5a. This allows for a probabilistic investigation into the activity

volcano following a similar approach we outlined previously,46 and is described in detail

in the Supporting Information. Choosing the expectation value of a given ensemble
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∆GNNH∗ as the descriptor, we calculate the probabilistic activity volcano for NRR on these

single atom systems (Fig. 5e). The uncertainty in this activity volcano stems from two

sources: i) spread in the combined distribution of ∆GNNH∗ and ii) variability in the scaling

relations of NNH* and NH2*. Firstly, all three BEEF-vdW ensembles for ∆GNNH∗ on each

of the three systems are superimposed into a single distribution. The standard deviation,

σNNH, is then calculated for this combined distribution to give an uncertainty estimate in the

descriptor. This provides the uncertainty estimate for the weaker binding leg of the volcano.

Secondly, the ensemble of scaling relations creates another dimension of uncertainty which

is the source of uncertainty in the stronger binding leg. Propagating the uncertainty allows

us to calculate a conditional probability density function p(UL|〈∆GNNH∗〉) which highlights

the most probable regions of limiting potential values given an ensemble average of ∆GNNH∗

for an arbitrary system. This conditional probability density function is the contour in Fig.

5e. The limiting potential found from the optimal BEEF-vdW fitting parameters is able to

explain the investigated systems to a high degree. A similar quantity, the expected limiting

potential, weights the limiting potential by its conditional probability as follows:

UEL(〈∆GNNH∗〉) =

∫ Umax
L

−∞
UL p(UL|〈∆GNNH∗〉) dUL (14)

where Umax
L is the maximum observed limiting potential across all activity volcanoes in the

ensemble. Near the peak of the volcano the expected limiting potential diverges, highlighting

the limitations of the standard activity volcano alone in describing this regime. In corrobo-

ration with the skewness trend observed in the limiting potential distributions, Ru1, which

has the largest skewness, is closest to the peak where Fe1 with the lowest skewness is furthest

from the peak. Therefore, we conclude that the degree of skewness is a consequence of this

imposed maximum activity of the activity volcano. In further agreement with the limiting

potential distributions, Ru1 has the highest potential for yielding the best NRR activity as

the conditional probability for its descriptor is the most condensed in the region of peak

activity. Additionally, the location of the BEEF-vdW optimal values on this volcano agree
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well with the computed activity volcano. This demonstrates the strength in the observed

scaling relation, particularly as both Ru1 and Fe1 fall on the stronger binding leg which

is described by this relation. Extracting design criteria from this volcano, the maximum

activity on the UL volcano of -0.56 V lies at a 〈∆GNNH∗〉 of 0.52 eV. However, on the UEL

curve the maximum activity of -0.75 lies at a 〈∆GNNH∗〉 of 0.40 eV. In comparison with

Ru1’s 〈∆GNNH∗〉 of 0.34 eV, it is extremely close to the peak of the UEL volcano. Therefore,

in terms of looking for a material that excels at NRR activity, Ru1 is a good place to start,

and tweaking of this system to address selectivity is a promising avenue of exploration. In

short, uncertainty estimates propagated through the scaling relations could explain activity

behaviour and provide design criteria for within a given materials class.

3.5 Selectivity Uncertainty

A major obstacle to the development of high performance NRR catalysts is the competition

with the HER reaction.9 In this section, we outline a procedure to computationally evaluate

an electrocatalyst’s predicted selectivity capabilities with uncertainty estimation. To begin,

we first compare the limiting potentials of NRR and HER. When the limiting potential of

NRR falls below HER, then the potential required to activate NRR will also activate the

parasitic HER reaction. Therefore, to improve NRR selectivity, we are striving for an NRR

limiting potential that is less negative than HER. Thus, in Fig. 6a-c, we took an XC-wise

difference of the limiting potentials of NRR and HER on each of the three systems. A larger

fraction of functionals predicting a positive difference between these potentials implies a

higher confidence for suppressing HER and better selectivity. On both Pt1 and Fe1, a small

confidence of HER suppression cUL
HER, calculated using eq. 10, is observed. No XC functionals

on Pt1 predict HER suppression, where only 0.05 % of the functionals on Fe1 predict that

HER could be suppressed. The optimal BEEF-vdW difference of the limiting potentials are

also well into the negative region. On the other hand, 6 % of the XC functionals predict

that HER could be suppressed, the highest confidence of the three systems. Additionally,
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Figure 5: a) Scaling Relationship of ∆GNNH∗ and ∆GNH∗2+NH3 . Black dots are the optimal
BEEF-vdW values, with the solid black line the corresponding linear fit. The red, orange,
and blue dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble
for Pt1, Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the
scaling relation fits in the ensemble. Probability density distribution in parameter space for
when c) ∆GNH∗2+NH3 and d) ∆GNNH∗ are the descriptors. The black stars correspond to the
parameters from the optimal BEEF-vdW fit. e) Probabilistic activity volcano for NRR on
these systems with the descriptor 〈∆GNNH∗〉. The solid black line is the limiting potential
based on the optimal BEEF-vdW fitting parameters obtained from the sample. The solid
blue line is the expected limiting potential which is the limiting potential weighted by the
probability distribution. Orange squares are the BEEF-vdW optimal values

22



Ru1’s optimal BEEF-vdW difference is closest to zero. Therefore, we predict Ru1 to be the

most likely to demonstrate improved selectivity. Expanding on this analysis we quantify the

confidence that there will be no competition between NRR and HER, cNRR. This is done

using eq. 11 which compares not only the limiting potential difference, but also whether

NNH* or H* is favourable to adsorb on the surface. In other words, the latter term ensures

that it is thermodynamically preferred for the surface to be covered by the nucleating NNH*

intermediate than H*. Interestingly, all three systems exhibit cNRR values of 0, indicating

that we predict none of the systems would be able to completely suppress HER, and at least

some competition is expected to be present. Thus, further efforts into specifically addressing

selectivity is necessary.

To further investigate the relationship between NRR and HER, we also study the scaling

of the intermediate adsorption energies with the H* adsorption energy. We draw particular

attention to the scaling of ∆GNNH∗ with ∆GH∗ as the former was identified to be the best

descriptor towards NRR activity. The scaling between these two quantities are plotted in Fig.

7a and it is observed that the scaling does not appear as strong as that seen in Fig 5a. This is

then confirmed via the histogram analysis presented in Fig. 7b where there is a larger spread

in correlation coefficients. Therefore, while we can conclude that there is a considerable

strength to the scaling from most of the XC’s favoring high correlation coefficients, it is

indeed not as strong as the NNH* and NH2* scaling. Applying a computational parameter

stability analysis using both H* and NNH* as descriptors we observe that they are of both

similar magnitude in terms of |Σ| (Fig. 7c,d). However, it is interesting to note that when

using NNH* as a descriptor, the distribution aligns much more diagonally in comparison

to using H* as a descriptor. Therefore, when using NNH* as a signal for this scaling, the

resulting computational parameters have a higher degree of coupling than when using H*.

This highlights the importance of descriptor selection, as in addition to affecting stability

towards computational parameter selection, it also influences how the parameters interact

with each other. Investigating the scaling relationship of N* and NH2* with H* we observe
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Figure 6: Histogram of the XCs that compare the limiting potentials of NRR and HER on a)
Pt1, b) Fe1, and c) Ru1. Functionals that have a positive difference indicate that HER could
be suppressed. The solid black lines are the limiting potential difference from the optimal
BEEF-vdW values. d) Confidence values that the competition between NRR and HER can
be completely suppressed. None of the three systems indicate that they could completely
block the presence of HER
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interesting phenomena for both (Fig. S6,S7). For N* and H* we see similarly strong

scaling as compared to using NNH* which is in contrast to the weak scaling observed for

N* compared to other NRR intermediates. Additionally, when using N* as the signal, the

scaling is extremely resistant to computational parameter changes, with a |Σ| of order 10−5.

Alternatively, the scaling between NH2* and H* is observed to have widely varying scaling

strength depending on the XC with many falling on either side of the spectrum. Moreover,

the use of NH2* as a descriptor is seen to be very sensitive to computational parameters

with a |Σ| of order 10−1.

Due to the scaling of ∆GNNH∗ with ∆GH∗ , we can then write an activity volcano for HER

in terms of ∆GNNH∗ . The limiting potential for HER in general can be expressed as:

UHER
L (∆GH∗) = −1

e
|∆GH∗| (15)

Substituting in for ∆GH∗ using the scaling relations allows this to become a function of

∆GNNH∗ and produce an ensemble of activity volcanoes where the i-th member can be

expressed as:

U
(i),HER
L (∆GNNH∗) = min

(
−1

e
(m(i)∆GNNH∗ + b(i)),

1

e
(m(i)∆GNNH∗ + b(i))

)
(16)

And, by applying the same procedure as for the NRR volcano, a conditional probability of

p(UHER
L |〈∆GNNH∗〉) can also be calculated for this reaction along with an expected limiting

potential UHER
EL (Fig. S8). Moreover, making this change of variables allows for both the

NRR and HER activity volcanoes to be compared on a shared domain (Fig. 8a). On this com-

bined plot we also evaluate the difference between p(UHER
L |〈∆GNNH∗〉) and p(UL|〈∆GNNH∗〉)

which provides information on where the limiting potential is more likely to be associated

with either NRR or HER. Firstly, it is observed that near the volcano peak the NRR volcano

lay well below the HER volcano, and the probability differences are relatively concentrated.

Therefore, near the peak we are most confident that the NRR peak lies below the HER peak,

25



meaning that HER is activated and selectivity would be negatively impacted. Moving away

from the peak the probability differences become negligible. On the HER volcano the prob-

ability differences become more dispersed than at the peak, but still relatively condensed.

Along the NRR volcano however, the probability difference became smaller than the resolu-

tion of 0.5%. In short, this means that while we have a reasonable degree of confidence as

to where the limiting potential is more likely to be associated with HER when moving away

from the peak, for NRR it becomes less clear. In terms of selectivity, this then indicates that

moving away from the peak is necessary to increase the likelihood that the limiting potential

of NRR could be such that HER is suppressed. It also becomes apparent from this volcano

that the legs are not parallel. To explore this further, we take the difference of the limiting

potentials as a function of 〈∆GNNH∗〉 (Fig. 8b). On this plot, when the limiting potential

difference becomes positive, it is predicted that NRR could be activated without activating

HER. Propagating the scaling relations ensemble further, we generate histograms for each

〈∆GNNH∗〉 corresponding to the contour in the plot. Regions of high concentration indicate

a higher confidence in the limiting potential difference given 〈∆GNNH∗〉. When 〈∆GNNH∗〉 is

approximately 0.55-0.65 eV, which is near the volcano peaks, the range of limiting potential

difference values is quite compressed. This supports the earlier observation that near the

peaks there is less confidence in being able to suppress HER. Decreasing the binding strength

of NNH* on the surface (ie. increasing 〈∆GNNH∗〉) results in the limiting potential difference

becoming more negative, thus straying from the ideal scenario of a positive difference in po-

tential. On the other hand, stronger binding of NNH* results in the difference approaching

zero. Moreover, the spread in the differences widens on this side of the domain, indicating

that some of the XCs predict a positive difference, and there becomes a nonzero probability

of HER suppression. This behavior illuminates a selectivity-activity trade-off for these sys-

tems. As 〈∆GNNH∗〉) approaches the volcano peak, the selectivity is likely to worsen. Moving

away from the peak, specifically to the left leg, is thus necessary to increase the likelihood of

improved selectivity. By creating histograms for each given descriptor in the domain, cUL
HER
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is then extended to be a function of 〈∆GNNH∗〉). Overlaying this confidence function with

the NRR activity volcano allows for visualization of this selectivity-activity trade-off (Fig.

8c). Here, it is observed that indeed, moving along the stronger binding leg of the volcano

shows the greatest increase in the confidence of HER suppression at the expense of activity.

Considering both the expected and limiting potential volcanoes, their intersection occurs at

approximately 〈∆GNNH∗〉) = −0.5 eV. Therefore, a material at this adsorption strength has

the highest chance of suppressing HER for as little activity sacrificed as possible. Thus, a

design criteria emerges, that in the pursuit of both high activity and selectivity, exclusively

searching for materials that are near the NRR volcano peak is not enough, and instead we

should be searching for materials on the strong binding leg as this has the highest chance

for improved selectivity.

4 Conclusions

In this work, we present a robust methodological framework to investigate electrocatalysts to-

wards electrochemical ammonia synthesis. We demonstrate that a Bayesian error estimation

ensemble approach is capable of describing the uncertainty associated with computational

parameter selection in DFT calculations for this context. Applying this framework to NRR

on Fe1, Ru1, and Pt1 we showcase its ability to generate limiting potential distributions

that encompasses reported literature values. We observe that Ru1 has the largest skew in

its distribution implying the presence of an upper bound. The scaling relationships among

the NRR intermediates N*, NNH*, and NH2* are studied, and the strength of the scal-

ing between ∆GNNH∗ and ∆GNH∗2+NH3 is able to explain the upper limiting potential limit

through the generation of a probabilistic activity volcano. We also apply this methodology

to investigate the selectivity of these systems towards NRR, and observe the presence of

a selectivity-activity trade-off. This results in a design principle that future efforts should

be focused toward exploring materials on the stronger binding left leg of the volcano. Fu-
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Figure 7: a) Scaling Relationship of ∆GNNH∗ and ∆GH∗ . Black dots are the optimal BEEF-
vdW values, with the solid black line the corresponding linear fit. The red, orange, and blue
dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble for Pt1,
Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the scaling
relation fits in the ensemble. Probability density distribution in parameter space for when
c) ∆GH∗ and d) ∆GNNH∗ are the descriptors. The black stars correspond to the parameters
from the optimal BEEF-vdW fit.
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Figure 8: a) Combined probabilistic activity volcanoes for NRR and HER on the same do-
main of 〈∆GNNH∗〉). The contour is the probability difference of p(UHER

L |〈∆GNNH∗〉) and
p(UL|〈∆GNNH∗〉). Positive (negative) regions indicate the limiting potential given 〈∆GNNH∗〉
is more likely to be associated with HER (NRR). b) Limiting potential differences as a
function of 〈∆GNNH∗〉. Contour is a 2D histogram of limiting potentials differences from
propagation the volcano ensemble. Positive values indicate HER suppression. c) Confi-
dence of HER suppression cUL

HER overlaid with the optimal BEEF-vdW NRR activity volcano
and expected limiting potential curve. Descriptor value that optimizes both selectivity and
activity is the intersection of these curves highlighted by the arrow
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ture studies could explore the single atom design space further using the procedure outlined

here. Since the approach presented here requires little extra computational resources, we

hope this will become a routine part of electrocatalyst design workflow. The methodological

process presented here paves the way towards computational NRR works whose conclusions

are robust towards the selection of parameters. We believe this will open the door towards

more conservative computational studies that can provide more realistic estimates towards

catalytic performance.
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López, N.; Pérez-Ramı́rez, J. Stabilization of Single Metal Atoms on Graphitic Carbon

Nitride. Advanced Functional Materials 2017, 27.

(21) An, S.; Zhang, G.; Wang, T.; Zhang, W.; Li, K.; Song, C.; Miller, J. T.; Miao, S.;

Wang, J.; Guo, X. High-Density Ultra-small Clusters and Single-Atom Fe Sites Em-

bedded in Graphitic Carbon Nitride (g-C3N4) for Highly Efficient Catalytic Advanced

Oxidation Processes. ACS Nano 2018, 12, 9441–9450.

(22) Tian, S.; Wang, Z.; Gong, W.; Chen, W.; Feng, Q.; Xu, Q.; Chen, C.; Chen, C.;

Peng, Q.; Gu, L.; Zhao, H.; Hu, P.; Wang, D.; Li, Y. Temperature-Controlled Selectivity

of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by

the Ru1/mpg-C3N4 Catalyst. Journal of the American Chemical Society 2018, 140,

11161–11164.

(23) Yin, H.; Li, S. L.; Gan, L. Y.; Wang, P. Pt-embedded in monolayer g-C3N4 as a promis-

ing single-atom electrocatalyst for ammonia synthesis. Journal of Materials Chemistry

A 2019, 7, 11908–11914.

(24) Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building Up a Picture of the Elec-

trocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts.

Journal of the American Chemical Society 2019, 141, 9664–9672.

33



(25) Chen, Z.; Zhao, J.; Cabrera, C. R.; Chen, Z. Computational Screening of Efficient

Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Elec-

troreduction. Small Methods 2019, 3, 1–9.

(26) Kepp, K. P. Accuracy of theoretical catalysis from a model of iron-catalyzed ammonia

synthesis. Communications Chemistry 2018, 1.

(27) Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.;

Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density functionals for surface science:

Exchange-correlation model development with Bayesian error estimation. Physical

Review B - Condensed Matter and Materials Physics 2012, 85, 32–34.

(28) Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacob-

sen, K. W.; Bligaard, T.; Nørskov, J. K. Assessing the reliability of calculated catalytic

ammonia synthesis rates. Science 2014, 345, 197–200.

(29) Sumaria, V.; Krishnamurthy, D.; Viswanathan, V. Quantifying Confidence in DFT

Predicted Surface Pourbaix Diagrams and Associated Reaction Pathways for Chlorine

Evolution. ACS Catalysis 2018, 8, 9034–9042.

(30) Vinogradova, O.; Krishnamurthy, D.; Pande, V.; Viswanathan, V. Quantifying Con-

fidence in DFT-Predicted Surface Pourbaix Diagrams of Transition-Metal Electrode-

Electrolyte Interfaces. Langmuir 2018, 34, 12259–12269.

(31) Bagger, A.; Arnarson, L.; Hansen, M. H.; Spohr, E.; Rossmeisl, J. Electrochemical

CO Reduction: A Property of the Electrochemical Interface. Journal of the American

Chemical Society 2019, 141, 1506–1514.

(32) Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Real-space grid implementation of

the projector augmented wave method. Phys. Rev. B 2005, 71, 035109.

34



(33) Larsen, A. H. et al. The atomic simulation environmenta Python library for working

with atoms. Journal of Physics: Condensed Matter 2017, 29, 273002.

(34) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

(35) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Physical

Review B 1976, 13, 5188–5192.

(36) Xu, J.; Antonietti, M. The Performance of Nanoparticulate Graphitic Carbon Nitride

as an Amphiphile. Journal of the American Chemical Society 2017, 139, 6026–6029.

(37) Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon

nanotube three-dimensional porous composites as high-performance oxygen evolution

electrocatalysts. Angewandte Chemie - International Edition 2014, 53, 7281–7285.

(38) Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.;

Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nature Communications

2014, 5, 2–9.

(39) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.;

Stimming, U. Trends in the Exchange Current for Hydrogen Evolution. Journal of The

Electrochemical Society 2005, 152, J23.

(40) Wellendorff, J.; Bligaard, T. On the importance of gradient-corrected correlation for

van der Waals density functionals. Topics in Catalysis 2011, 54, 1143–1150.

(41) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made

simple. Physical review letters 1996, 77, 3865.

(42) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas

correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

35



(43) Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within

density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical

Review B - Condensed Matter and Materials Physics 1999, 59, 7413–7421.
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Generation of the Probabilistic Activity Volcanoes

In this work we investigate scaling among the reaction energies of the NRR intermediates

NNH*, NH2*, and N*. From conducting an ordinary least squares fit on the energies of

each member XC in the ensemble, a distribution of fitting parameters is obtained. This

distribution provides another perspective of uncertainty by studying the stability of these

scaling relationships towards functional selection. Using this ensemble of parameters allows

for propagation of the uncertainty to generate an ensemble of activity volcanoes. Of the 2000

XC functionals in the ensemble, 19 are deemed unphysical because the slopes are such that

an activity maximum did not occur. This approach is then utilized to generate a probabilistic

activity volcano in terms of a conditional probability. This quantity describes the probability

of the limiting potential UL taking on a specific value given a single descriptor (in this

case 〈∆GNNH∗〉). For notational convenience, we will represent the descriptor 〈∆GNNH∗〉 as

G. Calculation of this conditional probability proceeds similarly to our previously outlined

procedure but with relaxed scaling slope constraints.1 First, for a given descriptor value and

volcano in the ensemble there is an associated uncertainty, and we treat it as a gaussian

distribution:

pG(x|µ = G, σ2
NNH) =

1√
2πσ2

NNH

exp

(−(x− µ)2

2σ2
NNH

)
(S1)

where x is in the descriptor domain and σ2
NNH is the variance of the combined ∆GNNH∗

distribution. For the i-th volcano in the ensemble, we can calculate the probability for

a specific limiting potential value given G as a summation of all points on the volcano

corresponding to that potential:

p̂i(UL|G) =

∫ ∞

−∞
pG(x|µ = G, σ2

NNH) δ (f(x)− UL) dx (S2)

where f(x) is an oracle function that maps the descriptor space to limiting potential space.

More explicitly, this oracle function takes the form:

2



UL = f(G) = −1

e
min(G,∆G2NH3 −m(i)G− b(i)) (S3)

which is just Eq. 13 from the main manuscript. Notice the i superscripts for the scaling slope

and intercept as these values are pulled from the scaling ensemble, and thus Nens different

oracle functions emerge. For each ensemble member, the dirac delta function in Eq. S2 will

extract two points in descriptor space, one for each leg of the i-th volcano. Normalization

for a given descriptor value is then done via:

pi(UL|G) =
p̂i(UL|G)∫ Umax

L

−∞ p̂i(UL|G) dUL

(S4)

Thus for every relation in the scaling ensemble, a different pi(UL|G) emerges, with the average

giving p(UL|G). To obtain the full probabilistic contour, we iterate over G and then calculate

p(UL|G) for each UL in a specified domain.
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∆ENNH∗ and ∆EH∗ BEEF-vdW Ensembles

Figure S1: Ensembles obtained from the BEEF-vdW XC for formation of NNH* on a) Ru1,
b) Fe1, and Pt1. d) Skewness and Kurtosis values for each of the ensembles. A normal
distribution has a skewness of 0 and kurtosis of 3, thus indicating that these systems can be
treated as normal
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Figure S2: Ensembles obtained from the BEEF-vdW XC for formation of H* on a) Ru1,
b) Fe1, and Pt1. d) Skewness and Kurtosis values for each of the ensembles. A normal
distribution has a skewness of 0 and kurtosis of 3, thus indicating that these systems can be
treated as normal
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Additional Free Energy Diagrams

Figure S3: Free Energy diagrams for both the distal and alternating mechanisms on a) Fe1
and b) Pt1
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Additional Scaling Figures

Figure S4: a) Scaling Relationship of ∆GNNH∗ and ∆GN∗ . Black dots are the optimal BEEF-
vdW values, with the solid black line the corresponding linear fit. The red, orange, and blue
dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble for Pt1,
Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the scaling
relation fits in the ensemble. Probability density distribution in parameter space for when
c) ∆GNNH∗ and d) ∆GN∗ are the descriptors. The black stars correspond to the parameters
from the optimal BEEF-vdW fit
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Figure S5: a) Scaling Relationship of ∆GNH∗
2

and ∆GN∗ . Black dots are the optimal BEEF-
vdW values, with the solid black line the corresponding linear fit. The red, orange, and blue
dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble for Pt1,
Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the scaling
relation fits in the ensemble. Probability density distribution in parameter space for when
c) ∆GNH∗

2
and d) ∆GN∗ are the descriptors. The black stars correspond to the parameters

from the optimal BEEF-vdW fit
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Figure S6: a) Scaling Relationship of ∆GNH∗
2+NH3 and ∆GH∗ . Black dots are the optimal

BEEF-vdW values, with the solid black line the corresponding linear fit. The red, orange,
and blue dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble
for Pt1, Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the
scaling relation fits in the ensemble. Probability density distribution in parameter space for
when c) ∆GNH∗

2+NH3 and d) ∆GH∗ are the descriptors. The black stars correspond to the
parameters from the optimal BEEF-vdW fit
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Figure S7: a) Scaling Relationship of ∆GN∗+NH3 and ∆GH∗ . Black dots are the optimal
BEEF-vdW values, with the solid black line the corresponding linear fit. The red, orange,
and blue dots correspond to a sampling of 100 XC functionals from the BEEF-vdW ensemble
for Pt1, Ru1, and Fe1, respectively. b) Distribution of correlation coefficients for each of the
scaling relation fits in the ensemble. Probability density distribution in parameter space for
when c) ∆GN∗+NH3 and d) ∆GH∗ are the descriptors. The black stars correspond to the
parameters from the optimal BEEF-vdW fit
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Probabilistic HER Volcano

Figure S8: Probabilistic activity volcano for HER on these systems with the descriptor
〈∆GNNH∗〉. The solid black line is the limiting potential based on the optimal BEEF-vdW
fitting parameters obtained from the sample. The solid blue line is the expected limiting
potential which is the limiting potential weighted by the probability distribution. Orange
squares are the BEEF-vdW optimal values
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