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Abstract

Oral administration of monoclonal antibodies (mAbs) may enable the localized treatment of 

infections or other conditions in the gastrointestinal tract (GI) as well as systemic diseases. As 

with the development of oral protein biotherapeutics, one of the most challenging tasks in 

antibody therapies is the loss of biological activity due to physical and chemical instabilities. New 

families of complexation hydrogels with pH-responsive properties have demonstrated to be 

excellent transmucosal delivery vehicles. This contribution focuses on the design and evaluation 

of hydrogel carriers that will minimize the degradation and maximize the in vivo activity of anti-

TNF-α, a mAb used for the treatment of inflammatory bowel disease (IBD) in the GI tract and 

systemically for the treatment of rheumatoid arthritis. P(MAA-g-EG) and P(MAA-co-NVP) 

hydrogels systems were optimized to achieve adequate swelling behavior, which translated into 

improved protein loading and release at neutral pH simulating the small intestine conditions. 

Additionally, these hydrogel systems preserve antibody bioactivity upon release resulting in the 

systemic circulation of an antibody capable of effectively performing its biological function. The 

compatibility if these hydrogels for mAb bioactivity preservation and release makes them 

candidates for use as oral delivery systems for therapeutic antibodies.
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INTRODUCTION

Protein-based drugs have emerged as one of the most promising classes of therapeutics.1 In 

2011, the Biotechnology Industry Organization reported ~200 protein-based medicines on 

the market and ~400 in development.2 Specifically, antibodies have become a major class of 

protein-based therapeutic agents3 with about one-fifth of new drugs in clinical testing today 

being antibody therapeutics.4

Antibody therapies have been widely used to provide immunity against diseases or to help 

fight off infections.5,6 As an example, anti-TNF-α antibodies are currently used for the 

treatment of inflammatory bowel diseases (IBDs), an inflammatory disorder of the 

gastrointestinal (GI) tract, and rheumatoid arthritis (RA), an autoimmune disease that causes 

abnormal inflammation levels that damage joints and organs.6,7 Anti-TNF-α antibodies have 

demonstrated high effcacy in treating IBDs and RA; however, because they are commonly 

delivered by injection (i.e., intravenous, subcutaneous, or intramuscular) and neutralize TNF 

throughout the body, their use is associated with serious side effects, including reactivation 

of tuberculosis and a long-term risk of malignancy.8 Moreover, the common route of 

administration and the large doses required make antibody therapies expensive and hardly 

accessible for patients.

There is, therefore, a developing interest in designing dosage forms of antibody therapeutics, 

which could be administered orally for the treatment of infections and other local conditions 

in the GI tract but also for systemic conditions such as RA.8 Oral dosage forms of antibodies 

would have the advantages of reduced cost due to the simplicity of the administration. 

However, as with all the orally administered proteins and peptides, orally delivered 

antibodies are subject to denaturation at the acidic pH of the stomach as well as degradation 

by proteases present in the stomach, small intestine, and to a lesser extent, the colon.8,9 

Exposure to these harsh conditions may result in changes in structural conformation of the 

antibodies, which could lead to loss of biological activity (e.g., neutralizing activity).

Previous work in our group has focused on developing platforms for the delivery of insulin 

and other protein-based therapeutics via the oral route, including the development of the 

complexation hydrogel system poly(methacrylic acid-grafted-poly(ethylene glycol)) or 

P(MAA-g-EG).10 These complexation hydrogel carriers are suitable candidates for the oral 

delivery of proteins and peptides because their network structure exhibits pH-dependent 

swelling and changes in the network pore structure due to the reversible formation/

dissociation of interpolymer complexes,11 responding to pH changes in the GI tract and 

providing protection to the encapsulated biomolecules from protease degradation

To address the medical need of improved antibody therapies, we designed and evaluated 

orally deliverable anti-TNF-α antibody systems by optimizing the hydrogel-based carriers to 

minimize the degradation and maximize the in vivo activity of anti-TNF-α a mAb. Hydrogel 

systems were designed to optimize anti-TNF-α loading and release. A detailed evaluation on 

protein structure and in vitro bioactivity was performed to allow for the rational screening 

and selection of appropriate polymer composition. Finally, prescreened anti-TNF-α loaded 

hydrogels were tested in an ex vivo closed-loop model. The studies described herein 
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demonstrate that the designed hydrogel vehicles preserved antibody bioactivity suggesting 

that this platform can be effectively used as a orally delivery system for therapeutic 

antibodies.

MATERIALS AND METHODS

Materials

Methacrylic acid (MAA), N-vinylpyrroidone (NVP), tetraethylene glycol dimethacrylate 

(TEGDMA), and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) were obtained from 

Sigma-Aldrich (St. Louis, MO). Poly(ethylene glycol) monomethyl ether monomethacrylate 

(PEGMMA, 1000 g mol−1), poly(ethylene glycol) 1000 dimethacrylate (PEG1000DMA, 

with nominal PEG molecular weight of 1000 g mol−1, corresponding to 23 repeating units) 

and poly(ethylene glycol) 400 dimethacrylate (PEG400DMA, with nominal PEG molecular 

weight of 400 g mol−1, corresponding to 9 repeating units) were purchased from 

Polysciences, Inc. (Warrington, PA). All chemicals were used as received except for MAA 

which was vacuum distilled at 54 °C and 25 mmHg prior to use to remove the inhibitor 

hydroquinone. All solvents were of ACS or HPLC grade.

Synthesis of P(MAA-g-EG) and P(MAA-co-NVP) Hydrogel Microparticles

P(MAA-g-EG) and P(MAA-co-NVP) hydrogel microparticles were synthesized with three 

different cross-linkers added to the monomer mixture at the same cross-linking density. The 

cross-linkers used in this work were TEGDMA, PEG400DMA, and PEG1000DMA.

Polymer films were prepared by UV-initiated free radical polymerization of MAA and 

PAGMMA or MAA and NVP.11 In the synthesis of these materials, the monomer content is 

defined as the monomers used to form the polymeric backbone and the cross-linking agent 

that yields the covalently bonded network. Monomers were mixed in the molar ratio of 1:1. 

The cross-linkers were added at a concentration of 0.75 mol % of the total monomer content. 

The photoinitiator Irgacure-184 was added in the amount of 0.1 wt % of the total amount of 

monomers. The monomers, cross-linking agent, and photoinitiator mixture was diluted in 

50% (v/v) ethanol and briefly sonicated (Bransonic 8510, Branson Ultrasonic Corp., 

Danbury, CT) to homogeneity. The polymerization of hydrogel films was carried out under 

a nitrogen environment in a sealed glovebox by exposing the sonicated mixture contained 

between glass plates to UV light (Dymax 2000 Light Curing System, Torrington, CT) at an 

intensity of 16–17 mW cm−2 for 30 min. Films were then washed with deionized water and 

dried (≤24 h at RT and 48 h at 30 °C under vacuum). Dried films were crushed and sieved to 

≤75 μm to obtain hydrogel microparticles. As has been reported from macroscopic imaging 

analysis of similar hydrogel systems designed in our group, the morphology of these 

hydrogel particles is irregular, as expected from particles created by crushing and sieving, 

and their surface contains a mixture of smooth and rough areas (data not shown).12,13

Hydrogel Swelling Characterization

Equilibrium swelling studies were used to study the pH-responsive behavior of P(MAA-g-

EG and P(MAA-co-NVP) hydrogel films. A 9 mm (aspect ratio of 18) punch was used to 

cut discs from the polymer films after purification but prior to film drying. Hydrogel discs 
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were dried at room temperature for about a day and then vacuum-dried for 48 h at 30 °C. 

Equilibrium swelling behavior was determined by swelling the hydrogel discs in buffer 

solutions at 37 °C for 24 h. For the pH range between 3.2 and 8.0 the discs were placed in 

β,β-dimethylglutaric acid (DMGA) buffer, which maintained ionic strength using 0.1 N 

sodium chloride (NaCl), whereas samples at a pH of 2.0 were placed in pepsin-free 

simulated gastric fluid (0.1 N HCl, 2 g/L NaCl). After the incubation period, the swollen 

hydrogels were carefully blotted to remove excess solution, and weighted to determine 

equilibrium weight swelling ratio (q).

In Vitro Microparticle Cytotoxicity

L929 fibroblasts cell line (American Type Culture Collection, ATCC, Rockwell, MD) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), 1% L-glutamine, and 1% penicillin and streptomycin, at 37 °C in 

humidified environment of 5% CO2 (Sheldon Signature HEPA Clean CO2 incubator, 

VWR). For cytotoxicity experiments, cells were detached mechanically by carefully 

scrapping the T-75 flask surface and adjusted to the required concentration of viable cells, 

by counting in a hemocytometer.

L929 fibroblasts cells were seeded at 20 000 cells per well in 96 well-plates (Thermo 

Scientific, Waltham, MA) in phenol red-free DMEM with 2% FBS. Tissue culture plates 

containing cells were incubated at 37 °C, 5% CO2 for 24 h before testing. On the testing 

day, cells were incubated with particle suspensions at concentrations of 1, 0.5, 0.25, and 

0.125 mg/mL in phenol red-free DMEM with 2% FBS. Live control wells (medium only) 

and lysed control wells were included. Following 2 and 48 h of incubation, the particles 

were removed and the cells were rinsed 3× with sterile Hank’s balanced salt solution 

(HBSS). Cell viability was then assayed by adding the CellTiter Aqueous One Solution 

reagent (MTS, Promega) directly to the culture wells and incubating for 2 h. Finally, the 

absorbance at 690 nm (background) and 490 nm (MTS assay) was recorded using a 

microplate reader (Synergy HT, BioTek Instruments, Inc., Winooski, VT). The 690 nm 

readings from each well were subtracted from absorbance (OD) values at 490 nm, and the 

viability fraction was defined as

(1)

Anti-TNF-α Antibody Loading into Hydrogel Microparticles

Anti-TNF-α antibody (clone XT3.11, BioXCell Fermentation/Purification Services, West 

Lebanon, NH) was loaded into hydrogel microparticles by equilibrium partitioning.14 

Initially, microparticles were incubated overnight at a concentration of 10 mg/mL in 10 mM 

phosphate buffer (PBS, pH 7.4) in low-protein binging centrifuge tubes with constant end-

to-end rotation to ensure wetting and swelling of the hydrogel microparticles. An initial 

sample of the particle suspension supernatant was taken and replaced with fresh buffer. 

Anti-TNF-α antibody stock solution (2 mg/mL in PBS, pH 7.4) was transferred to 

microparticles suspension to achieve a protein concentration of 1 mg/mL and incubated at 
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room temperature (RT) with constant end-to-end rotation. After 12 h of incubation, the 

particles were collapsed by the addition of 0.1 N HCl until reaching a pH 3.5. The 

supernatant was removed and its pH was adjusted to 7.4 with 0.1 N NaOH, and stored at 4 

°C until assayed. Microparticles were rinsed with water and 0.1 N HCl to remove any 

surface-absorbed protein. Finally, Anti-TNF-α antibody-loaded microparticles were freeze-

dried.

Determination of anti-TNF-α antibody concentrations in supernatants was carried out with a 

BCA Protein Assay Kit (Thermo Scientific, Sugar Land, TX). The apparent loading 

effciency was calculated on the basis of the anti-TNF-α antibody concentration in the 

supernatant before and after loading.

In Vitro Anti-TNF-α Antibody Release from Hydrogel Carrier under Dynamic Conditions

Release studies aimed to simulate the pH changes the hydrogel microparticles would 

experience in vivo when passing through the stomach and into the small intestine (i.e., from 

an acidic pH to a neutral pH).14 For this experiment, 10 mg of anti-TNF-α antibody-loaded 

microparticles were suspended in DMGA buffer at pH 3.2 with an ionic strength of 0.1 M at 

a concentration of 1 mg/mL. Samples of 200 μL were withdrawn at predetermined time 

intervals up to 90 min and replaced with fresh buffer at pH 3.2 while microparticles 

suspensions were maintained at 37 °C with constant end-to-end rotation. After 90 min, pH 

was titrated to 7.4 by careful addition of 1 N NaOH. Samples were taken and replaced with 

fresh buffer at predetermined time intervals up to 3 h. The determination of anti-TNF-α 

antibody concentration in the supernatant samples was carried out with a Micro BCA 

Protein Assay Kit (Thermo Scientific, Sugar Land, TX).

Antibody Structural Stability after Release

The structural stability of anti-TNF-α after release from hydrogel microparticles was 

assessed by circular dichroism and fluorescence spectroscopy as described elsewhere.15,16 

UV circular dichroism (CD) was used to evaluate protein secondary structure using a Jasco 

J-710 spectropolarimeter (Jasco, Easton, MD) at a wavelength range of 190–260 nm.15,17–19 

For tertiary structure protein analysis, a Cary 5000 spectrometer (Varian, Inc., Australia) 

was used to collect fluorescence spectra (300–500 nm) at an excitation wavelength of 280 

nm that corresponds to tyrosine and tryptophan residues.18,19

Collected CD and fluorescence spectra for released and unencapsulated antibody’s were 

analyzed for peak intensity and location (wavelength) shifts compared to that of 

uncapsulated antibody control, which are indicative of alterations in protein structure.18,19 

Representative data out of three independent analyses is presented.

Anti-TNF-α Residual Functionality after Release

Functionality of anti-TNF-α antibody is described as the antibody ability to recognize and 

bind to TNF-α and was assessed via enzyme-linked immunosorbent assay (ELISA). Briefly, 

high protein binding 96-well Costar microtiter plates (Corning Life Sciences, Lowell, MA) 

were coated overnight with recombinant murine TNF-α (PeproTech, Rocky Hill, NJ) in PBS 

at a concentration of 5 μg/mL. After blocking for 2 h at RT with 3% (w/v) bovine serum 
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albumin (BSA, Sigma-Aldrich) in PBS-T (PBS containing 0.05% (v/v) Tween 20), the 

released antibody samples as well as unencapsulated anti-TNF-α were added to their 

respective wells at a concentration of 10 μg/mL and incubated for 90 min at 4 °C. Alkaline 

phosphatase-conjugated Goat Anti-Rat IgG was added as detection antibody and the 

colorimetric reaction was developed at RT for 50 min using phosphatase substrate. The 

optical density (OD) of each well was measured at 405 nm using a microplate reader 

(Synergy HT, BioTek Instruments, Inc., Winooski, VT). Final results are presented as 

residual functionality, which represent the normalization of the data by the unencapsulated 

antibody control.

In Vitro Anti-TNF-α Residual Bioactivity after Release from Hydrogel Microparticles

An in vitro potency assay based on the TNF-α-induced cytotoxicity on L929 murine 

fibroblast cells20,21 was utilized to determine the maintenance of antibody functionality after 

release from hydrogel microparticles. For this assay, L929 fibroblast were cultured and 

harvested as described in the In Vitro Microparticle Cytotoxicity section. After being 

harvested, cells were seeded into 96-well flat-bottomed plates at a concentration of 3.5 × 104 

cells per well and incubated overnight at 37 °C in 5% CO2.

Samples of antibody released from different formulations of hydrogel microparticles and 

uncapsulated antibody control were diluted at a uniform concentration (85% effective dose 

(ED)85 determined for the uncapsulated control) and preincubated with a fixed amount of 

TNF-α (250 pg/mL) for 4 h at 37 °C. Samples were then transferred to corresponding wells 

on L929 culture plates and incubated for additional 24 h in the presence of actinomycin D at 

37 °C.20,21 Cells were finally assayed for cell viability using the CellTiter Aqueous One 

Solution reagent (MTS, Promega) directly to the culture as previously described. Residual in 

vitro bioactivity was determined by normalizing OD values from each sample to the values 

obtained by cells cultured in the absence of TNF-α.

Ex Vivo Closed-Loop Studies To Evaluate Antibody Bioactivity

Animals—Sprague-Dawley rats with jugular vein catheters were purchased from Taconic 

(Hudson, NY). All rats were housed under specific pathogen-free conditions where all 

bedding, caging, and feed were sterilized prior to use. All animal procedures were conducted 

with the approval of the Temple University Institutional Animal Care and Use Committee.

Adult rats entered the Temple animal facility, catheters were flushed and maintained as 

recommended by the manufacturer, and before surgery, a liquid diet (LD101 formulation, 

Test Diet, St. Louis, MO) was implemented for at least 72 h to help clear the intestinal line 

of obstructions. The rats were then fasted overnight (<24 h) prior to surgery for which only 

water was made available.

Closed-Loop Surgical Procedure and Treatments

An in situ closed-loop method was employed to investigate the bioavailability of anti-TNF-

α antibody following direct administration of antibody-loaded hydrogel microparticle 

formulations to intestinal segments of rats.22 On the day of surgery, rats were placed under 

anesthesia with isoflurane (induction dose of 5% in oxygen followed by 1.5%–3% during 
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procedure) and placed on heating pads to maintain the proper body temperature. Once the 

surgical plane of anesthesia had been reached, a 6 cm abdominal midline incision was made, 

exposing the organs and abdominal cavity, and giving access to the intestines. An 

approximate 10 cm section of the ileum was isolated and tied off carefully using suture 

thread to ensure that blood circulation is not compromised creating a closed loop. The 

intestine was then placed back into the cavity, and the wound temporarily stapled shut. Rats 

were then left to rest for at least 30 min to recover from surgical trauma. Afterward, a blood 

sample was taken to establish baseline plasma levels.

Then, the intestinal incision was reopened and hydrogel formulations were directly injected 

using a 1-in., 25-gauge needle inside the intestinal loop. The hydrogel formulations included 

in this close-loop study were anti-TNF-α-loaded P(MAA-g-EG) and anti-TNF-α-loaded 

P(MAA-co-NVP) hydrogel microparticles. The dose of anti-TNF-α loaded into hydrogel 

microparticles was 70 μg/kg body weight.

The isolated intestinal section was then placed back within the abdominal cavity, and the 

incision was closed again with staples. Blood samples were then taken at 5, 10, 15, 30, 60, 

120, 180, and 240 min from the jugular vein using the preadapted catheters. After every 

blood sample was taken, catheters were flushed as recommended by manufacturer to avoid 

clogging and reduce chances for sample contamination. Once the last blood sample was 

been taken, the rats were euthanized via an overdose of isoflurane (5% in oxygen), with a 

bilateral thoracotomy performed after breathing had ceased as a second method of 

euthanasia.

Antibody Detection in Serum and Functionality

Anti-TNF-α antibody in serum was measured by ELISA as previously described. 

Semiquantitative levels of anti-TNF-α were calculated from a standard of anti-TNF-α 

antibody that was included in each assay.

In vitro potency L929 bioassay described in the previous section of this manuscript was 

utilized to verify the neutralization activity of the released anti-TNF-α mAb.

Statistical Analysis

Statistical ANOVA analysis was carried out using JMP 7 software (SAS Institute, Cary, 

NC). Comparisons for the multiple formulations were achieved using Turkey’s HSD 

analysis with differences considered significant when p ≤ 0.05.

RESULTS AND DISCUSSION

Higher Swelling Ratio Was Obtained with P(MAA-g-EG) Hydrogels and Those Formulations 
Containing More Hydrophilic Cross-Linkers

Dynamic swelling experiments were completed to study the pH-responsive behavior of the 

polymer protein carriers in simulated physiological fluids and the effects of the various 

cross-linkers utilized for hydrogel synthesis. In this type of pH-responsive systems, the 

polymer network contains weak acid or base groups that undergo complexation by hydrogen 

bonding, thus exhibiting pH-dependent swelling properties with fast expansion and 
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contraction.23 In the case of acrylic acid-based copolymers, the monomer MAA provides the 

weak acid groups that allow for swelling performance.23,24 As shown in Figure 1, minimal 

swelling occurred in gastric conditions (i.e., low pH) due to the anionic nature of these 

systems and the hydrogen bonding between the carboxyl groups on the MAA moiety and the 

etheric oxygen of the PEG chain. Once the pKa (4.8–4.9) of these carboxyl groups is 

exceeded, swelling of the system is observed.25,26

When the equilibrium swelling ratio of the two hydrogel systems tested in this study is 

compared, a higher swelling ratio is observed for P(MAA-g-EG) hydrogels (Figure 1). The 

lower swelling weight ratio of P(MAA-co-NVP) may be the result of an improved 

hydrogen-bonding strength between MAA and NVP.27,28 In both hydrogel systems, a slight 

increase in hydrogel swelling weight ratio was observed as the hydrophilicity of the 

incorporated cross-linker increases (from TEGDMA to PEGDMA-1000). The 

PEGDMA-1000 has approximately 23 ethylene glycol units where as PEGDMA-400 and 

TEGDMA have ~9 and 4 ethylene glycol units, respectively. Incorporating cross-linkers 

with higher hydrophilicity may help the network swell to a greater extent in the aqueous 

medium. Thus, by changing the nature of the cross-linker used to synthesize these hydrogel 

systems, the hydrogel network structure could be optimized (i.e., increase in the mesh 

size)13,29 for the delivery of large molecular weight proteins such as immunoglobulins.

In Vitro Biocompatibility of Hydrogel Microparticles Was Demonstrated in Fibroblast 
(L929) Cell Cultures

Fibroblast (L929) cells were used to determine biocompatibility of P(MAA-g-EG) and 

P(MAA-co-NVP) microparticles. Several parameters such as hydrogel composition, cross-

linker type, microparticles size, and microparticle concentration were evaluated. Results and 

observations are summarized in Table 1. Cell viability was determined using MTS assay 

after 2 and 48 h of incubation with the microparticles. Similar responses were observed 

when cells were exposed to the different carriers formulations, showing low or absence of 

cytotoxic effect. Only when microparticles of size higher than 75 μm or particle 

concentrations equal or higher than 0.5 mg/mL were tested was a slight decrease in cell 

viability observed (data not shown).

Hydrogel-Swelling Behavior Translated into Improved Protein Loading and Release 
Capabilities

Previous work within our group has demonstrated the effcacy of the tested hydrogel systems 

to encapsulate several proteins (e.g., insulin, calcitonin,22,30,31 and growth hormone). 

However, all the proteins tested until now have relative low molecular weight compared to 

immunoglobulin, which average molecular weight is 150 kDa and have a more define 

globular conformation. Anti-TNF-α antibodies were successfully loaded into both P(MAA-

g-EG) and P(MAA-co-NVP) hydrogel microparticles (Figure 2A). However, while common 

loading percentages of 90% were observed for proteins such as insulin,22,31 the observed 

loading effciencies for anti-TNF-α antibodies were between 40 and 60%. Results from 

Figure 2A show that for P(MAA-g-EG)-based formulations, the loading effciencies were 

above 50% while for P(MAA-co-NVP)-based systems loading effciencies ≤50% were 

obtained. The observations of different loading profiles between P(MAA-g-EG) and 
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P(MAA-co-NVP)-based systems is a result of the different equilibrium swelling behavior 

observed for both chemistries as previously discussed (Figure 1). The apparent loading 

effciencies of the antibody were not affected by the size of the cross-linking molecule, as no 

statistical significance was obtained between the formulations with different cross-linkers.

In vitro release studies were performed at a two-step pH change. To mimic the transition of 

the polymer formulations from the gastric environment to the upper small intestine, the pH 

of the release buffer was changed from pH 3.2 to 7.4 after 90 min of initial incubation at pH 

3.2. Figure 2B shows the release profile of P(MAA-g-EG) microparticles prepared with the 

different cross-linkers. At low pH conditions, low amounts of released anti-TNF-α antibody 

are detected, reaching a maximum of 10–50% at this pH depending on the specific cross-

linking agent. Microparticles prepared with PEGDMA-1000, the more hydrophilic cross-

linking, showed the higher amount of antibody released at low pH conditions. This 

observation may be a result of a higher mesh size of the network at the gastric pH for 

formulations containing the longer cross-linker PEGDMA-1000, which allow protein 

leaking at low pH.

After 90 min, the pH was stepped from 3.2 to 7.4 and an immediate increase in the amount 

of antibody released was observed for all polymer carriers and reached a maximum in about 

2 h (Figure 2B). Microparticles prepared with PEGDMA-1000 cross-linker exhibited a 

faster release rate than PEGDMA-400 or TEGDMA-containing hydrogels. This can be 

explained by the presence of protein at or near the surface of the polymer as a result of the 

protein diffusion already initiated in low pH conditions. Similar released profiles were 

observed for P(MAA-co-NVP) microparticles prepared with the different cross-linkers; 

however, less amount of antibody was released from P(MAA-co-NVP) microparticles at low 

pH (data not shown). This is consistent with the equilibrium swelling profile observed for 

these formulations corroborating the stronger hydrogen bonding between MAA and NVP.30

On the basis of these loading and release results, TEGDMA was chosen as the cross-linker 

to move forward for in vitro functionality and stability studies as well as ex vivo studies. 

More hydrophilic cross-linker, longer cross-linker agents (i.e., PEGDMA-400 and 

PEGDMA-1000), showed higher percentages of protein released at low pH, which could 

translate to higher protein losses while the carriers are passing through the gastric 

environment of the stomach and therefore a lower amount of antibody will reach the site of 

action or absorption (i.e., intestinal area) in vivo.

Anti-TNF-α Antibody in Vitro Neutralization Activity Is Maintained upon Release from 
P(MAA-g-EG) Microparticles

An in vitro TNF-α neutralization assay was employed to assess the ability of anti-TNF-α-

loaded hydrogel microparticles to preserve the biological function of the monoclonal 

antibody after loading and release from these carriers. Initial studies were performed in 

order to determine the optimal TNF-α cytotoxic dose and anti-TNF-α antibody 

neutralization dose to use in the assay. From these initial studies, it was determined that a 

500 pg/mL dose of TNF-α was suffcient to achieve around 95% of cytotoxicity in L929 

cells, while a dose of 5 μg/mL of anti-TNF-α antibody was necessary to protect close to 

100% of cells (Figure 3A).
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To test the in vitro bioactivity of antibody released from hydrogel microparticles, anti-TNF-

α antibody was released from P(MAA-g-EG) and P(MAA-co-NVP) microparticles at pH 

7.4 for at least 6 h at 37 °C. After release period was completed, supernatants containing 

released antibody were collected and concentrated to be able to employ a uniform 

concentration (5 μg/mL) for all tested formulations in the assay well. Unencapsulated 

antibody incubated for ~6 h at 37 °C in PBS, pH 7.4, was used as control and was also 

added at a concentration of 5 μg/mL to allow for direct comparison between the different 

groups.

As observed in Figure 3B, which showed residual bioactivity results for anti-TNF-α 

antibody released from P(MAA-g-EG) and P(MAA-co-NVP) microparticles synthesized 

using TEGDMA cross-linker, the bioactivity of this monoclonal antibody was preserved, as 

evidence by the protection of L929 cells from the cytotoxic effect of recombinant TNF-α, 

when released from P(MAA-g-EG) microparticles with protection levels similar or higher 

than ~90%. Anti-TNF-α antibody released from P(MAA-co-NVP) microparticles showed a 

40% loss of bioactivity (Figure 3B), which suggests that specific interactions between the 

NVP monomer and the protein are occurring causing a decrease in the ability of the antibody 

to neutralize its target molecule (i.e., TNF-α). Residual antibody bioactivity results were 

consistent with residual antibody functionality results as evaluated by ELISA (data not 

shown).

Structural Integrity of Anti-TNF-α Antibody after Release from Hydrogel Microparticles

To get some insights on any structural changes that may be occurring to the anti-TNF-α 

mAb during loading and release from P(MAA-co-NVP) and that resulted in the observed 

bioactivity losses, a detailed structural analysis on protein released from hydrogel 

microparticles was performed. In specific, changes in the secondary and tertiary structure of 

the protein were evaluated and compared with uncapsulated protein control.

It has been previously reported that immunoglobulins have a predominance of β-sheet 

conformation, which is characterized by a single dominant minimum between 217 and 219 

nm in CD spectra.32 This characteristic CD spectrum was observed for the anti-TNF-α mAb 

uncapsulated control with a minimum around the 219 nm, as shown in Figure 4A. However, 

shifts in the position of the characteristic minimum as well as differences in molar ellipticity 

(intensity) were observed for antibodies released from the tested hydrogel microparticle 

formulations. While antibodies released from P(MAA-g-EG) showed a slight shift of the 

minimum to the left (from 219 nm to ~216 nm) compared to that of the unencapsulated 

control, loss in the secondary structure of the antibody released from P(MAA-co-NVP) 

hydrogels is evidenced by the pronounced shift of the characteristic minimum as well as a 

significant increase in molar ellipticity (Figure 4A).

For tertiary structure analysis, both maximum peak position and peak intensity changes in 

the fluorescence spectra are related to folding changes in the protein.17,18 For the anti-TNF-

α antibodies released from both hydrogel chemistries, changes in the maximum position 

were not observed; however, a notorious decrease in the peak intensity was observed in the 

spectra of the antibody released from both microparticle formulations suggesting a potential 

unfolding of the antibody (Figure 4B). The intensity decrease was higher for antibodies 
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released from P(MAA-co-NVP) microparticles, which is a result of the change in the 

availability of tryptophan and tyrosine residues on the protein surface due to a change in 

conformation.18

Bioavailability and ex Vivo Bioactivity of Anti-TNF-α Antibody upon Release from Hydrogel 
Microparticles

In the present study, an in situ closed-loop method was employed to investigate the 

bioavailability and ex vivo functionality of anti-TNF-α antibody released from hydrogel 

microparticles following direct administration to an intestinal section. The antibody 

absorption profile and ex vivo bioactivity characterization upon the intestinal administration 

of hydrogel formulation to rats at a dose of 70 μg/kg body weight are shown in Figure 5. 

Significant levels of anti-TNF-α antibody were detected in serum for both P(MAA-g-EG) 

and P(MAA-co-NVP) microparticles; suggesting that antibody is being released from the 

complexation hydrogels and absorbed through the intestinal mucosa. Maximum levels of 

antibody in serum were observed ~15 min after injection in the intestinal section and 

antibody serum levels between 3 and 6 μg/mL were still detected after 4 h of injection. 

When both hydrogel formulations were compared, higher antibody bioavailability was 

observed with the P(MAA-co-NVP) formulation. A control group consisting of soluble anti-

TNF-α antibody delivered by subcutaneous administration was used in this study (data not 

shown) in order to compare the effcacy of our hydrogel systems to current antibody 

therapies. Rats that received subcutaneous administration of soluble antibody showed 

significant levels of antibody in serum during the first 60 min after administration but 

rapidly declined after that time until antibody levels were not identified by the analytical 

assay utilized in this study (data not shown).

Figure 5B demonstrates that both microparticle formulations deliver anti-TNF-α antibodies 

with equivalent TNF-α neutralization ability. The equivalent bioactivity demonstrated by 

anti-TNF-α released from P(MAA-g-EG) microparticles occurred while lower 

concentrations of antibodies were maintained in circulation compared to antibodies released 

from P(MAA-co-NVP) microparticles (Figure 5A). This corroborates the in vitro 

observations demonstrating the ability of P(MAA-g-EG) microparticles to provide an 

adequate stabilization and release functional anti-TNF-α mAb.

The observed absorption of functional anti-TNF-α antibodies through the intestinal mucosa 

into circulation after release from P(MAA-g-EG) and P(MAA-co-NVP) may translate into 

effective formulations for the treatment of diseases such as rheumatoid arthritis in which the 

neutralization of excess levels of TNF-α in circulation is required. However, considering 

that for most protein formulations delivered orally low bioavailability percentages in serum 

have been observed,10 it is most likely that not all the antibodies released from the hydrogel 

microparticles in the small intestine were transported into circulation, which opens the 

possibility to explore the use of these hydrogel formulations for the localized treatment of 

inflammatory bowel diseases.7
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CONCLUSION

Some of the most diffcult challenges to improve current antibody-based therapies is the 

design of effective formulations that allow for the use of more patient-friendly 

administrations routes (i.e., oral administration) avoiding the side effects of large antibody 

doses administered intravenously. The studies reported herein demonstrated the potential use 

of complexation hydrogel systems (i.e., P(MAA-g-EG) and P(MAA-co-NVP microparticles) 

as an effective antibody oral delivery platform. These hydrogel microparticles provide the 

ability to protect the antibody from the harsh acidic environment of the GI tract and release 

it in the neutral pH of the small intestine where the antibody can be transported to systemic 

circulation. Additionally, these particles preserve antibody bioactivity upon release resulting 

in the systemic circulation of antibodies capable of effectively performing their biological 

function (i.e., neutralization of TNF-α cytokine). Complementary studies are required to 

investigate the effcacy of the formulations based on these particles for in vivo protection in a 

disease model.
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Figure 1. 
Higher swelling ratio was obtained with P(MAA-g-EG) hydrogels and those formulations 

containing more hydrophilic cross-linkers. pH-dependent equilibrium weight swelling ratio, 

q, of (A) P(MAA-g-EG) and (B) P(MAA-co-NVP) hydrogel disks synthesized with 

TEGDMA, PEGDMA-400, and PEGDMA-1000 as cross-linkers. Disks from each 

formulation were placed in DMGA buffer (pH value ranging from 2.0 to 8.0) for 15 min. 

The weight–swelling ratio was calculated by dividing the swollen weight of the disk by the 

dry weight of the disk.
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Figure 2. 
Hydrogel-swelling behavior translated into improved protein loading and release capacities. 

(A) Loading effciency of anti-TNF-α antibody in P(MAA-g-EG) and P(MAA-co-NVP) 

microparticles (≤75 μm) formulated with TEGDMA, PEGDMA-400, and PEGDMA-1000 

as cross-linkers. Hydrogel microparticles were incubated in an anti-TNF-α solution in PBS 

(pH 7.4), and 1 N HCl was added to the solution to lower the pH and collapse the 

microparticles. (B) Anti-TNF-α antibody release from P(MAA-g-EG) hydrogel 

microparticles synthesized with different cross-linkers: PEGDMA-1000, PEGDMA-400, 

and TEGDMA. Protein release from the microparticles was studied under dynamic pH 

conditions (from pH 3.0 to pH 7.4) to mimic the transit of the particles through the GI tract. 

Released protein was quantified using MicroBCA protein assay.
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Figure 3. 
Anti-TNF-α antibody in vitro neutralization activity is maintained upon release from 

P(MAA-g-EG) microparticles. Optimization of TNF-α cytotoxic dose and anti-TNF-α 

antibody neutralization dose. A 500 pg/mL dose of TNF-α was suffcient to achieve around 

95% of cytotoxicity in L929 cells, while 5 μg/mL of anti-TNF-α antibody was necessary to 

protect close to 100% of cells. (A) Titration of cytolytic activity of the recombinant TNF-α. 

(B) Neutralization of TNF-α by different doses of antibod. The viability of the cells was 

quantified by MTS assay and represented as percentages against control cells cultured in the 

absence of TNF-α. Error bars represents standard deviation of three independent 

experiments performed in triplicate. (C) Anti-TNF-α-loaded P(MAA-g-EG) microparticles 

are capable of releasing bioactive antibody, while loading and release from P(MAA-co-

NVP) microparticles affects antibody bioactivity. Percentage residual bioactivity from TNF-

α cytolytic activity achieved by anti-TNF-α antibody. L929 cells were cultured for 24 h in 

the presence of TNF-α and unencapsulated antibody, or antibodies released from 

microparticles. The viability of the cells was quantified by the MTS assay and represented as 

percentages against control cells cultured in the absence of TNF-α. Error bars indicate 

standard error of three independent experiments performed in triplicate.
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Figure 4. 
Structural integrity of anti-TNF-α antibody after release from hydrogel microparticles. 

Representative data from three independent experiments is presented: (A) secondary 

structure by CD spectra and (B) tertiary structure by fluorescence spectroscopy.
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Figure 5. 
Bioavailability and ex-vivo bioactivity of anti-TNF-α antibody upon release from hydrogel 

microparticles. (A) Plasma anti-TNF-α levels versus time profiles following direct injection 

of anti-TNF-α-loaded P(MAA-g-EG) microparticles (n = 6) and anti-TNF-α-loaded 

P(MAA-co-NVP) microparticles (n = 6) into an intestinal closed-loop in healthy adult 

Sprague-Dawley rats. Blood samples were then taken at 5, 10, 15, 30, 60, 120, 180, and 240 

min. The dose of anti-TNF-α loaded into microparticles was 70 μg/kg body weight. Anti-

TNF-α mAb concentration in diluted serum was measured by ELISA (B) L929 cell TNF-α 

neutralization bioassay was utilized to assess the functionality of the released anti-TNF-α 

antibody in serum taken 15 min after hydrogel formulation injection into the intestinal loop. 

Concentration and % protection are presented as mean ± SEM The asterisk (*) represents a 

statistically significant difference from all other treatments at p ≤ 0.05.
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Table 1

Summary of Cytotoxicity Response Observed after P(MAA-g-EG) and P(MAA-co-NVP) Microparticles Were 

Incubated in L929 Fibroblast Cell Cultures for 24 h

parameter evaluated cytotoxicity response in L929 fibroblast cell
cultures

hydrogel chemistry maintain low cytotoxicity

cross-linker maintain low cytotoxicity

increase in microgel size increase cytotoxicity

increase in microgel
 concentration

increase cytotoxicity
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