Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T19:04:37.529Z Has data issue: false hasContentIssue false

Interpreting the lake-status record of the East Asian monsoon using a hydrological model

Published online by Cambridge University Press:  20 August 2020

Ge Yu
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, China
Liangtao Ye*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, China School of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241000, China
Zhengyu Liu
Affiliation:
Department of Geography, The Ohio State University, 154 N. Oval Mall, Columbus, OH43017, USA
Bin Xue
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, China
*
*Corresponding author email address: ylt25ylt@ahnu.edu.cn (L. Ye).

Abstract

The East Asian monsoon (EAM) has experienced significant changes over the past 10,000 years that influenced East Asian agricultural development. However, the magnitude and extent of the EAM precipitation fluctuations at 6 ka remain unresolved, owing to uncertainty in individual lake records and substantial variations in the expansion limits in simulations of the mid-Holocene EAM precipitation. Here we present an approach based on multiple lake-level records using the “1D lake level—2D lake area—3D catchment hydrology” model to reconstruct the precipitation patterns in northern China, and to further quantify the extent of the EAM precipitation expansion in the mid-Holocene relative to today. The precipitation reconstructions suggest an ~550–1100 km northward expansion and an ~530–840 km westward migration of the EAM at 6 ka. At that time, the EAM precipitation domain covered over 6 million square kilometers. Thus, this approach mitigates the uncertainty and arbitrariness of reconstructions of the limit of the EAM precipitation fields and provides a benchmark for future climate modeling studies.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., Zhou, W., 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Review 19, 743762.CrossRefGoogle Scholar
An, Z., Wu, G., Li, J., Sun, Y., Liu, Y., Zhou, W., Cai, Y., et al. , 2015. Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences 43, 2977.Google Scholar
Berger, A.L. 1978. Long-term variations of caloric insolation resulting from the earth's orbital elements. Quaternary. Research 9, 139167.Google Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.Y., Abe-Ouchi, A., Crucifix, M., et al. , 2007. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum. Part 1: Experiments and large-scale features. Climate of the Past 3, 261277.CrossRefGoogle Scholar
Chen, F., Chen, J., Holmes, J., Boomer, I., Austin, P., Gates, J., Wang, N., Brooks, S., Zhang, J., 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quaternary Science Reviews 29, 10551068CrossRefGoogle Scholar
Chen, F., Xu, Q., Chen, J., Birks, H.J.B., Liu, J., Zhang, S., Jin, L., et al. , 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports 5, 11186. DOI: 10.1038/srep11186.CrossRefGoogle ScholarPubMed
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., et al. , 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646.CrossRefGoogle ScholarPubMed
Chen, S., Shi, M., Cai, M., 2013. Empirical study on correlation between climate change and population migration: case study of arid areas in central region of Ningxia. Journal of Economics of Water Resources 31, 5559.Google Scholar
Climate Center of National Meteorology Bureau of China, 2007. China Precipitation Data 1951~2001. Climate Center of National Meteorology Bureau of China, Beijing.Google Scholar
Dingman, S.L., 2002. Physical Hydrology. 2nd Edition. Prentice Hall, New Jersey.Google Scholar
Ding, Y., Chan, C., 2005. The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics 89, 117142.Google Scholar
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Editorial Committee of Physical Geography in China of Chinese Academy Sciences, 1985. Physical Geography of China: Climate. Science Press, Beijing.Google Scholar
Fan, Q.S., Ma, H.Z., Wei, H.C., Shan, F.S., An, F.Y., Xu, L.M., Madsen, D.B., 2014. Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai–Tibetan Plateau. Journal of Asian Earth Science 85, 202209.CrossRefGoogle Scholar
Gao, L., Long, H., Shen, J., Wang, Y., Wang, J., 2014. Quartz OSL dating of lake shoreline ridge sediments: A case study of Lake Xingkai, Northeast China. Journal of Lake Science 26, 651660.Google Scholar
Geng, K., Zhang, Z., 1988. The geomorphic characteristics and evolution of the lakes in Dalainuoer area of Neimenggu Plateau during the Holocene. Journal of Beijing Normal University 4, 94101.Google Scholar
Goldsmith, Y., Broeckera, W.S., Xu, H., Polissara, P.J., deMenocal, P.B., Porat, N., Lan, J., Cheng, P., Zhou, W., An, Z., 2017. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proceedings of the National Academy of Sciences of the United States of America 114, 18171821.CrossRefGoogle ScholarPubMed
Guo, S.Q., Shi, Y., Yang, L.J., Cao, J.D., Zhang, W.Q., Zhang, J., Lin, F., et al. 1999. A study of paleoclimatic fluctuations in the last 2600 years in the Ningjin Lake area, Hebei Province. Journal of Geomechanics 5, 7379.Google Scholar
Guo, S.Q., Wang, S.M., Yang, L.J., 2005. Climatic and environmental change in North China Plain during the Last Glacial Maximum. Geological Review 51, 423427.Google Scholar
Harrison, S.P., Bartlein, P.J., Brewer, S., Prentice, I.C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., Willis, K., 2014. Model benchmarking with glacial and mid–Holocene climates. Climate Dynamics 43, 671688.CrossRefGoogle Scholar
Harrison, S.P., Bartlein, P.J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., Kageyama, M., 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5, 735743.CrossRefGoogle Scholar
Harrison, S.P., Digerfeldt, G., 1993. European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Review 12, 233248.CrossRefGoogle Scholar
Harrison, S.P., Yu, G., Tarasov, P.E., 1996. The late Quaternary lake-level record from northern Eurasia. Quaternary Research 45, 138159.CrossRefGoogle Scholar
Hastenrath, S., Kutzbach, J.E., 1983. Palaeoclimatic estimates from water and energy budgets of East African lakes. Quaternary Research 19, 1411533.CrossRefGoogle Scholar
Henderson, A.C.G., Holmes, J.A., Zhang, J.W., Leng, M.J., Carvalho, L.R., 2003. A carbon- and oxygen-isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau. Chinese Science Bulletin 48, 14631468.Google Scholar
Jie, D.M., Lu, J.F., Li, Z.M., Leng, X.T., Wang, S.Z, Zhang, G.R., 2001. Carbonate content of sedimentary core and Holocene lake level fluctuation of Dabusu Lake. Marine Geology and Quaternary Geology 21, 7782.Google Scholar
Kutzbach, J., 1980. Estimates of past climate at palaeolake Chad, North Africa, based on a hydrological and energy-balance model. Quaternary Research 14, 210223.CrossRefGoogle Scholar
Lei, G.L., Zhang, H.C., Zhang, W.X., Chang, F.Q., Fan, H.F., Yang, M.S., Cheng, Y., Niu, J., 2007. Characteristics of grain-size and sedimentation of shell bar section in salt Lake Qarhan, Qaidam Basin. Acta Sedimentology Sinica 25, 274282.Google Scholar
Li, H.Z., Liu, Q.S., Wang, J.X., 1992. Study of evolution of Huangqihai and Daihai lakes in Holocene in Inner Mongolia plateau. Journal of Lake Science 4, 3139.Google Scholar
Li, J.L., Hu, R.J., Huang, Y., Bao, A.M., Wang, Y.J., Pan, J., Li, D.Y., Li., R., 2015. Changes of Lake Chaiwopu area during 1964–2014 and its driving factors. Arid Zone Research 32, 417427.Google Scholar
Li, R.Q., Zheng, L.M., Zhu, G.R., 1990. Salt Lake in Inner Mongolia. Science Press, Beijing.Google Scholar
Li, S.K., 1992. Fluctuation of closed lake-level and its climatic significance on the Middle Kunlun Mountains. Journal of Lake Science 4, 1930.Google Scholar
Liu, H., Xu, L., Cui, H., 2002. Holocene history of desertification along the woodland-steppe border in Northern China. Quaternary Research 57, 259270.CrossRefGoogle Scholar
Liu, J., Chen, J., Zhang, X., Li, Y., Rao, Z., Chen, F., 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Science Reviews 148, 194208.CrossRefGoogle Scholar
Liu, J., Chen, S., Chen, J., Zhang, Z., Chen, F., 2017. Chinese cave δ18O records do not represent northern East Asian summer monsoon rainfall. Proceedings of the National Academy of Sciences of the United States of America 114, E2987E2988.CrossRefGoogle Scholar
Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lue, H., Cheng, H., et al. , 2014. Chinese cave records and the East Asia Monsoon. Quaternary Science Reviews 83, 115128.CrossRefGoogle Scholar
Li, Y.C., Zhang, C.L., Duan, H.Z., 2000. Environmental changes and prehistoric cultures in Baiyangdian Region. Journal of Tongji University 11, 2227.Google Scholar
Ma, R.H., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., et al. , 2011. China's lakes at present: Number, area and spatial distribution. Science China–Earth Science 54, 283289.CrossRefGoogle Scholar
Qin, B., Shi, Y.F., Yu, G., 1998. The reconstruction and interpretations of lake status at 6 ka and 18 ka B.P.in inland mainland Asia. Chinese Science Bulletin 43, 1145-1157.CrossRefGoogle Scholar
Qin, B., Yu, G., 1998. Implications of lake level variations at 6 ka and 18 ka in mainland Asia. Global Planetary Change 18, 5972.CrossRefGoogle Scholar
Qiu, S.W., Wang, E.P., Li, F.H., Wang, P.F., 2007. Development of the plain in the north of the Xingkai Lake and formation of its wetlands. Wetland Science 5, 153158.Google Scholar
Qiu, S.W., Wang, E.P., Wang, P.F., 1988. Changes in shorelines of Lake Xingkai and a discovery on paleo-river source of Sunacha River. Chinese Science Bulletin 12, 937940.Google Scholar
Reimer, P.J., Reimer, R., 2013. CALIB Radiocarbon Calibration. CALIB 14C Calibration Program. Queen's University, Belfast.Google Scholar
Sheng, C.Y., 1986. The Overall Climate in China. Science Press, Beijing.Google Scholar
Shen, H.Y., Jia, Y.L., Wei, L., 2005. Paleoprecipitation reconstruction during the Interstadial of the Last Glacial (40~22 ka BP) in Huangqihai Lake, Inner Mongolia. Acta Sedimentologica Sinica 23, 523530.Google Scholar
Shen, J., Liu, X.Q., Matsumoto, R., Wang, S.M., Yang, X.D., 2004. Palaeoclimatic evolution since the late Glaciation period inferred from multiple-proxy and high-resolution sediments from Lake Qinhai. Science China–Earth Science 34, 582589.Google Scholar
Shen, J., Wu, R.J., An, Z.S., 1998. Characters of the organic carbon isotope and palaeoenvironment in the section of Dabusu Lake. Journal of Lake Science 10, 810.Google Scholar
Shen, J., Wu, R.J., Yang, X.D., 1997. Palaeoclimatic change inferred from δ18O and carbonate content of the section in Dabusu Lake. Journal of Lake Science 9, 217222.Google Scholar
Shi, Y., Kong, Z., 1992. The Holocene Megathermal Climates and Environments in China. Ocean Press, Beijing.Google Scholar
Street-Perrott, F.A., Marchand, D.S., Roberts, N., 1989. Global Lake-level Variations from 18,000 to 0 Years Ago: a Palaeoclimatic Analysis. U.S. Department of Energy, Technical Report: DOE/ER/60304–H1 TR046, Washington DC.CrossRefGoogle Scholar
Sun, Q.L., Wang, S.M., Zhou, J., Shen, J., Cheng, P., 2009. Lake surface fluctuations since the late Glaciation at Lake Daihai, North central China: A direct indicator of hydrological process response to East Asian monsoon climate. Quaternary International 194, 4554.CrossRefGoogle Scholar
Swain, A.W., Kutzbach, J.E., Hastenrath, S., 1983. Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. Quaternary Research 19, 117.CrossRefGoogle Scholar
Tarasov, P.E., Pushenko, M.Y., Harrison, S.P., Saarse, L., Andreev, A.A., Aleshinskaya, Z.V., Davydova, N.N., et al. , 1996. Lake Status Records from the Former Soviet Union and Mongolia: Documentation of the Second Version of the Database. NOAA Paleoclimatology Publications Series Report 5, Boulder.Google Scholar
Tomlin, C.D., 1990. Geographic information systems and cartographic modeling. Prentice Hall Series in Geographic Information Science. Prentice Hall, New Jersey.Google Scholar
Wang, C.M., Guo, S.Q., 2005. Age dating of lacustrine deposits in the Ningjinbo area, Shijiazhong, North China Plain. Regional Geology of China 24, 655659.Google Scholar
Wang, F.B., Ma, C.M., Xia, X.C., Chao, Q.Y., Zhu, Q., 2008. Environmental evolution in Lop Nur since Late Pleistocene and its response to the global changes. Quaternary Science 28, 150153.Google Scholar
Wang, H.C., 1983. Expansion and contraction of Baiyangdian Lake since 10000 yr BP. Geographic Research 2, 818.Google Scholar
Wang, J.T., Jiao, K.Q., 1989. Geomorphology, Quaternary Sediments and Lake Surface Change in Chaiwopu–Dabancheng Region. In: Shi, Y.F., Weng, Q.Z., Qu, Y.G. (Eds.), Changes of Climate–Environment and Hydrogeological Conditions in Chaiwopu Basin, Xinjiang during the Quaternary. Ocean Press, Beijing. 11-12.Google Scholar
Wang, N., Liu, W.G., Chang, H., An, Z.S., 2009. Evolutionary process of the climate of Lop Nur region of Xinjiang since Mid–Pleistocene. Marine Geology and Quaternary Geology 29, 131137.Google Scholar
Wang, P., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., Liu, Z., 2014. The global monsoon across time scales: coherent variability of regional monsoons. Climate of the Past 10, 20072052.CrossRefGoogle Scholar
Wang, S.M., Ji, L., 1995. Hulun Lake–Palaeolimnology Study. Press of the University of Science and Technology of China, Hefei.Google Scholar
Wang, S.M., Shi, Y.F., 1992. Review and discussion on the Late Quaternary evolution of Qinhai Lake. Journal of Lake Science 4, 19.Google Scholar
Wang, S.M., Wu, R.J., Jiang, X.H., 1990. Environment evolution and palaeoclimate of Daihai, Inner Mongolia since Last Glaciation. Quaternary Science 10, 223232.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R. L., An, Z.S., Wu, J.Y., Shen, C. C., Dorale, J. A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Wang, Y., Yao, P.Y., Chi, Z.Q., Guan, Y.Y., Zhao, Z.L., 2010. Middle late Holocene environmental changes recorded by lacustrine sediments from Huangqihai Lake, Inner Mongolia. Bulletin of Mineralogy, Petrology and Geochemistry 29, 149156.Google Scholar
Webb, T., 1985. A global paleoclimatic data base for 6000 yr BP. Technical Report, DOE/EV 100097-6, US Department of Energy, Washington D.C., 155.Google Scholar
Winkler, W.G., Swain, A.M., Kutzbach, J.E., 1986. Middle Holocene dry period in the Northern Midwestern United States: lake levels and pollen stratigraphy. Quaternary Research 25, 235250.CrossRefGoogle Scholar
Wu, J.L., Liu, J.J., Wang, S.M., 2004. Climatic change record from stable isotopes in Lake Aibi, Xinjiang during the past 1500 years. Quaternary Science 24, 585590.Google Scholar
Wu, J.L., Wang, H.D., Wang, S.M., 1993. Palaeoclimatic estimates during the last 10000 years in Ebinur Lake basin, Xinjiang. Journal of Lake Science 5, 299306.Google Scholar
Xiao, J.L., Chang, Z.G., Wen, R.L., Zhai, D.Y., Itoh, S., Zaur, L., 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. Holocene. 19, 899908.CrossRefGoogle Scholar
Xiao, J., Si, B., Zhai, D., Itoh, S., Lomtatidze, Z., 2008. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology 40, 519528.CrossRefGoogle Scholar
Xing, W., Bao, K., Guo, W., Lu, X., Wang, G., 2015. Peatland initiation and carbon dynamics in northeast China: links to Holocene climate variability. Boreas 44, 575587.CrossRefGoogle Scholar
Xue, B., 2001. Reconstruction of Paleo-lake Status and Paleo-atmospheric Circulations of China during the Late Quaternary. Ph.D. dissertation, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing.Google Scholar
Xue, B., Yu, G., Zhang, F., 2017. Lake Status Records from China since the Late Quaternary: Data Base Documentation. Second Version. Science Press, Beijing.Google Scholar
Xue, J.B., Zhong, W., 2011. Holocene climate variation denoted by Barkol Lake sediments in northeastern Xinjiang and its possible linkage to the high and low latitude climates. Science China–Earth Science 54, 603614.CrossRefGoogle Scholar
Xu, Q.H., Xiao, J., Toshio, N., Yang, X., Yang, Z., Liang, W., Yoshio, I., 2004. Climate change of Daihai basin during the past 1500 years from a pollen record. Quaternary Science 24, 341347.Google Scholar
Yang, H.J., Wang, R., Chi, Z.Q., Yao, P.Y., Dong, J., Tian, M.Z., Liu, J., 2015. Sedimentary record of climate change during the past 25.5 ka of Laohetou profile from Baiyangdian, Hebei Province. Geoscience 29, 291298.Google Scholar
Yang, X., Scuderib, L.A., Wang, X., Scuderi, L.J., Zhang, D., Li, H., Forman, S., et al. , 2015. Groundwater sapping as the cause of irreversible desertification of Hunshandake Sandy Lands, Inner Mongolia, northern China. Proceedings of the National Academy of Sciences of the United States of America 112, 702706.CrossRefGoogle ScholarPubMed
Yin, Y., Liu, H., Hao, Q., 2015. The role of fire in the late Holocene forest decline in semi-arid North China. Holocene 26, 93101.CrossRefGoogle Scholar
Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S.P., Huang, C., Ke, M., Kong, Z., 2000. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography 27, 635664.CrossRefGoogle Scholar
Yu, G., Harrison, S.P., 1995. Lake Status Records from Europe: Data Base Documentation. NOAA Paleoclimatology Publications Series Report 3, Boulder.Google Scholar
Yu, G., Harrison, S.P., Xue, B., 2001a. Lake Status Records from China: Data Base Documentation. Technical Report in Max Planck Institute for Biogeochemistry 4, Max Planck Gesellschaft, Jena.Google Scholar
Yu, G., Xue, B., Harrison, S.P., 1999. Paleohydrology and paleoclimate as reflected in lake-level changes in China. PAGES Newsletter 9, 11-12CrossRefGoogle Scholar
Yu, G., Xue, B., Liu, J., Chen, X, Zheng, Y.Q., 2001b. Lake records from China and the palaeoclimate dynamics. China Meteorological Press, Beijing.Google Scholar
Zhai, D.Y., Xiao, J.L., Zhou, L., Wen, R.L., Chang, Z.G., Wang, X., Jin, X.D., Pang, Q.Q., Itoh, S., 2011. Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner Mongolia. Quaternary Research 75, 512522.CrossRefGoogle Scholar
Zhang, F.J., 2014. A first estimate of organic carbon burial in Holocene megathermal lake sediments in China. Master's thesis in Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing.Google Scholar
Zheng, M.P., Qi, W., Wu, Y.S., Liu, J.Y., 1991. A preliminary analysis of sedimentary environment and potassium exploration prospect in Lop Nur since the Late Pleistocene. Chinese Science Bulletin 23, 18101813.Google Scholar
Zheng, M.P., Xiang, J., 1989. Saline Lakes on the Qinghai–Xizang (Tibet) Plateau. Beijing Scientific and Technical Publishing House, Beijing.Google Scholar
Zhong, W., Xue, J.B., Li, X.D., Xu, H., Ouyang, J., 2010. A Holocene climatic record denoted by geochemical indicators from Barkol Lake in the northeastern Xinjiang, NW China. Geochemistry International 48, 792800.CrossRefGoogle Scholar
Zhu, Y., Shen, J., Lei, G.L., Wang, Y., 2011. Environmental evolution of Xingkai (Khanka) Lake since 200 ka by OSL dating of sand hills. Chinese Science Bulletin 56, 20172025.CrossRefGoogle Scholar