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Second-order curved shock theory is developed and applied to planar and axisymmetric
curved shock flowfields. Explicit equations are given in an influence coefficient format,
relating the second-order gradients of pre-shock and post-shock flow parameters to
shock curvature gradients. Two types of applications are demonstrated. First, the post-
shock flowfields behind known curved shocks are solved using the second-order curved
shock equations. Compared with the first-order curved shock equations, the second-
order equations give better agreement with solutions obtained using the method of
characteristics. Second, the second-order theory is applied to capture the curved shock
shape with limited flowfield information. In terms of the residual sum of squares of
the curved shock, the second-order curved shock equations give a value one order of
magnitude better than those given by the Rankine–Hugoniot equations and the first-
order equations. This improved accuracy makes the second-order theory a good candidate
for solving shock capture problems in computational fluid dynamics algorithms.

1. Introduction
The most distinctive features of supersonic flows are shock waves. Linear shock waves,

such as normal shocks and oblique shocks, are a fundamental aspect of fluid mechanics
and the associated theories are now well established. However, although analytical
studies of curved shock waves began a long time ago, this field is still in the process of
development. In early studies, Crocco (1937) discovered the Crocco point, at which the
post-shock flow curvature is equal to zero, and Thomas (1947) found the Thomas point,
which is used to identify compressive and expansive flowfields. In the following years,
much effort was focused on shock curvature and flow parameter gradients. On the basis of
the work by Crocco and Thomas, Lin & Rubinov (1948) showed that a normal shock can
attach to a continuously curved boundary only at a certain Mach number. Thomas (1949)
presented detailed profiles of the streamline curvature behind curved shocks in planar
flow. Kanwal (1959) obtained solutions for the streamwise gradients of flow parameters
on the downstream side of a three-dimensional shock. Hayes & Probstein (1959) extended
these works to the relevant normal derivatives in the close neighbourhood of a spherically
shaped (axisymmetric) shock. Gerber & Bartos (1960) derived the curved shock equation
coefficients assuming that the oncoming flow is steady, irrotational and uniform. These
coefficients can be applied to locate the initiation point of constant-property lines at
planar and axisymmetric shock waves. Hornung (1998) presented the shock-normal
derivatives for the inviscid equations of motion of a curved shock, taking account of
real-gas effects. A number of investigations of the jump conditions and the tangential
and normal derivatives of common flow characteristics were performed, although the
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effects of vorticity were not considered until, on the basis of the equation of state
and Crocco’s thermodynamic relation, Truesdell (1952) was able to derive the vorticity
function through a curved shock wave in planar flow, and Kanwal (1959) presented five
conditions for the vorticity to vanish behind the shock surface. Much later, Emanuel
(1988) developed a general theory to determine the tangential and normal derivatives of
properties just downstream of a curved, unsteady shock wave and presented a modern
treatment of curved shocks based on a vector calculus approach (Emanuel 2012).

Although many aspects of shock waves have been investigated over the years, most
research has been concerned with incident shocks. However, reflection is also an essential
phenomenon that occurs with shock waves. Pant (1971) analysed the regular reflection
of a curved shock from a straight rigid boundary and presented a relation between the
curvatures of the incident and reflected shocks. Ivanov (1995) described a hysteresis
effect arising in stationary reflection of shock waves. Christopher (2008) presented an
experimental illustration of the mechanism by which transition between regular and Mach
reflection is induced. Wang (2017) observed the phenomena of both regular reflection and
Mach reflection by adjusting the initial wedge angle. Mölder (2017b) solved the regular
reflection (RR) and Mach reflection (MR) flowfields near planar and axisymmetric curved
shocks and compared the theoretical results with numerical calculations and experiments.
Earlier, Mölder (1972) had investigated the pressure/deflection polar for Mach reflection
and obtained some important compatibility relations for the streamline direction across
the slip layer. It should be noted that most of the above studies were based on calorically
and thermally perfect flow.

Most derivations have been confined to curved shocks that possess only a single shock
curvature. This restriction has narrowed the range of application of curved shock theory
because in most situations of interest shock waves are doubly curved. Furthermore, the
incoming flows are generally non-uniform and rotational. To widen the scope of the
theory, Mölder (2015) derived curved shock equations by taking account of vorticity as
well as non-uniformity and compound shock curvature. Theoretically, these equations
can be used for three-dimensional flow. However, they are subject to the restriction that
the flow plane must coincide with the osculating plane, as in the case of the symmetry
plane of an elliptical conical flowfield at zero angle of attack. Although the derivation
and its results are complicated, the equations can be applied in subsonic flow regions, in
contrast to the method of characteristics, which can only be used for supersonic flowfields.
In addition, expressions in an influence coefficient form have been derived and applied
to analyse the effects of various pre-shock parameters on post-shock variables. This
extended curved shock theory can be used to illuminate many important phenomena
of shock wave dynamics from a unique perspective. Furthermore, the theory is applicable
not only to uniform flow, but also to non-uniform flow both up- and downstream of
a doubly curved shock surface. A novel derivation of post-shock vorticity based on the
theory has also been presented, in which the effects of pre-shock flow non-uniformities and
flow divergence on post-shock vorticity are taken into account. Curved shock theory has
contributed greatly to the development of shock wave research. Based on this theory,
Uskov & Mostovykh (2016) gave the flow gradients in the vicinity of a shock wave
for a thermodynamically imperfect gas. Mölder (2017a) applied curved shock theory
to concave shock waves in a study of reflection and obtained a relation between shock
curvature ratio and shock reflection. Emanuel (2018) extended curved shock theory to
unsteady flow and an imperfect gas. On the basis of curved shock theory, Filippi & Skews
(2018) used streamlines behind axisymmetric curved shock waves to predict the internal
surfaces that produced these streamlines.

Furthermore, since curved shock theory gives a connection between shock curvature
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and flow parameters, it can be extended to capture shock shape. Moretti & Abbett
(1966) and Moretti & Salas (1970) fitted a shock wave under the hypothesis that the
wave was a surface of discontinuity and the physical parameters should be compatible
with the Rankine–Hugoniot (R-H) equations. This method was then widely applied to
numerical computation of hypersonic flows. However, the information acquired by the
R-H equations is limited. For high-precision shock wave fitting, a higher-order theory
is required. The advantage of curved shock theory in acquiring high-order variables to
describe shock geometry makes this theory a good candidate for solving shock capture
problems in computational fluid dynamics (CFD) algorithms. For broader applications
such as the acquisition of higher-order physical information, first-order derivatives are
insufficient. However, modern computer algebra manipulators make it possible to derive
higher-order derivatives.

In this paper, second-order curved shock equations are derived that relate shock
curvature gradients directly to the second-order gradients of flow properties near the
shock. These equations are obtained by taking derivatives of both sides of each of the
curved shock equations and can be utilized for a doubly curved shock in steady flow where
the upstream flow can have a second-order pressure gradient, a streamline curvature
gradient and a vorticity gradient. An influence coefficient formulation of the second-
order curved shock equations is also derived and used to study the relations between pre-
and post-shock variables. Given some hypotheses, the equations can be used efficiently
to obtain approximate solutions for the flowfield behind a curved shock. They can also
be applied to shock wave fitting by solving for the shock curvature gradients.

2. Derivation of second-order curved shock theory
Second-order curved shock theory is developed on the basis of conventional curved

shock theory. For clarity, in this paper, the latter theory is termed first-order curved
shock theory to distinguish it from the second-order theory and is introduced before the
second-order curved shock equations are derived. The first-order equations were originally
derived by Mölder (2015). Although all the equations in the present paper are either newly
derived or rederived, the methodology and nomenclature follow those of Mölder.

2.1. Introduction to the first-order curved shock equations
The geometry of a curved shock A in supersonic flow is shown in figure 1. The flow

passes through the shock wave with an incoming velocity vector V1 and a leaving velocity
vector V2, which define the flow plane B. The flow-normal plane C, which is perpendicular
to the shock wave and the flow plane, has a trace b-b in the shock wave. The intersection
line a-a of the flow plane and shock wave has an intersection point c with the trace b-b.
The Cartesian coordinate system lies in the flow plane. The velocity angles δ1 and δ2 in
figure 2 are the acute angles between the velocity vectors and the X axis, so the flow
deflection angle δ is calculated as δ = δ2 − δ1. Similarly, the shock angle θ is defined
as the angle by which the line a-a is inclined to the incoming velocity vector V1. The
length σ is the distance measured along the trace a-a. The lengths s and n are the
distances measured respectively along and perpendicular to the streamline. Based on
these variables, the variable Sa, which represents the curvature of the shock wave in the
flow plane, is given by Sa = −1/Ra = ∂θ1/∂σ. In like manner, the curvature of the shock
wave in the flow-normal plane is Sb = −1/Rb = − cos θ1/y, where y is the distance from
the shock wave to the X axis.

For clarity in the derivation of the first-order curved shock equations, Mölder intro-
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Figure 1. Geometry of curved shock from Mölder (2015).

Figure 2. Variables in the flow plane.

duced the following normalized variables:

normalized pressure gradient: P = (∂p/∂s)/ρV 2,

streamline curvature: D = ∂δ/∂s,

normalized vorticity: Γ = ω/V.
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In terms of these variables, the Euler equations for steady flow then take the form

mass:
∂δ

∂n
= −(Ma2 − 1)P − j

sin δ

y
, (2.1)

s-momentum:
1

V

∂V

∂s
= − 1

ρV 2

∂p

∂s
= −P, (2.2)

n-momentum:
1

ρV 2

∂p

∂n
= −∂δ

∂s
= −D, (2.3)

energy:
1

ρ

∂ρ

∂n
= −Ma2[D + (γ − 1)Γ ],

1

ρ

∂ρ

∂s
= Ma2P, (2.4)

vorticity:
1

V

∂V

∂n
= D − Γ. (2.5)

In these equations, all variables have subscript either 1 or 2 depending on whether the
application is to flow before or after the shock. The variable y does not need a subscript,
since it has the same value for states 1 and 2 on opposite sides of the same shock. The
use of j to indicate flow with planar or axial symmetry will not be carried any further
here. Applying these relations to the Rankine–Hugoniot equations

p2
p1

=
2γ

γ + 1
Ma21 sin

2 θ − γ − 1

γ + 1
, (2.6)

p1 + ρ1V
2
1 sin2 θ = p2 + ρ2V

2
2 sin2(θ − δ) (2.7)

produces (after a few pages of algebraic manipulation) the first-order curved shock
equations

A1P1 +B1D1 + E1Γ1 = A2P2 +B2D2 + CSa +GSb, (2.8)

A′
1P1 +B′

1D1 + E′
1Γ1 = A′

2P2 +B′
2D2 + C ′Sa +G′Sb, (2.9)

where

A1 = 2 cos θ [(3Ma21 − 4) sin2 θ − (γ − 1)/2]/(γ + 1),

B1 = 2 sin θ [(γ − 5)/2 + (4−Ma21) sin
2 θ]/(γ + 1),

E1 = −2 sin3 θ [2 + (γ − 1)Ma21]/(γ + 1),

A2 = sin θ cos θ/ sin(θ − δ),

B2 = − sin θ cos θ/ cos(θ − δ),

C = −4 sin θ cos θ/(γ + 1),

G = 4 sin2 θ cos θ sin δ1/[(γ + 1) cos θ1]

(2.10)

Page 5 of 36

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

6 C. G. Shi, W. Q. Han, R. Deiterding, C. X. Zhu and Y. C. You

and

A′
1 = Ma21 cos

2 θ cos δ − (Ma21 − 1) cos(2θ + δ),

B′
1 = − sin(2θ + δ)−Ma21 sin

2 θ sin δ,

E′
1 = −[2 + (γ − 1)Ma21] sin δ sin

2 θ,

A′
2 =

[1 + (Ma22 − 2) sin2(θ − δ)] sin θ cos θ

sin(θ − δ) cos(θ − δ)
,

B′
2 = − sin(2θ),

C ′ = − sin(2δ)/[2 cos(θ − δ)],

G′ =
−[sin θ cos θ tan(θ − δ) sin δ2 − sin(θ + δ) sin θ sin δ1]

cos θ1
.

(2.11)

2.2. Derivation of second-order curved shock equations

The details of the derivation of the second-order curved shock equations and their
coefficients can be found in appendices A and B. Only the critical steps are shown in this
section. The second-order curved shock equations are derived by taking derivatives of
both sides of each of the first-order curved shock equations with respect to σ. To replace
the σ-derivatives in the differentiated conservation equations by s- and n-derivatives, the
derivative of any quantity with respect to distance along the pre-shock and the post-
shock can be written in terms of the two derivatives along and normal to the streamline
as follows:

(
∂•
∂σ

)
1

=

(
∂•
∂s

)
1

cos θ +

(
∂•
∂n

)
1

sin θ, (2.12)

(
∂•
∂σ

)
2

=

(
∂•
∂s

)
2

cos(θ − δ) +

(
∂•
∂n

)
2

sin(θ − δ). (2.13)

This gives

A1

(
∂P1

∂s
cos θ +

∂P1

∂n
sin θ

)
+B1

(
∂D1

∂s
cos θ +

∂D1

∂n
sin θ

)
+ P1

∂A1

∂σ
+D1

∂B1

∂σ
+ E1

∂Γ1

∂σ
+ Γ1

∂E1

∂σ

= A2

[
∂P2

∂s
cos(θ − δ) +

∂P2

∂n
sin(θ − δ)

]
+ P2

∂A2

∂σ

+B2

[
∂D2

∂s
cos(θ − δ) +

∂D2

∂n
sin(θ − δ)

]
+D2

∂B2

∂σ

+ C
∂Sa

∂σ
+ Sa

∂C

∂σ
+G

∂Sb

∂σ
+ Sb

∂G

∂σ
. (2.14)
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For algebraic clarity, we define the following variable gradients:

normalized second-order pressure gradient: P ′ =
1

ρV 2

∂2p

∂s2
,

streamline curvature gradient: D′ = ∂2δ/∂s2,

normalized vorticity gradient: Γ ′ = ∂Γ/∂σ,

shock curvature gradient: S′
a = ∂Sa/∂σ,

S′
b = ∂Sb/∂σ.

The derivative of any quantity with respect to distance normal to the streamline can
then be expressed in terms of these variables, P ′, D′, Γ ′, S′

a and S′
b. For instance, taking

derivatives of both sides of each of (2.2) and (2.3) with respect to n and s, respectively,
gives

ρ1V
2
1

∂P1

∂n
+ 2V1ρ1P1

∂V1

∂n
+ V 2

1 P1
∂ρ1
∂n

= −ρ1V
2
1

∂D1

∂s
− 2V1ρ1D1

∂V1

∂s
− V 2

1 D1
∂ρ1
∂s

.

(2.15)

Substituting the definitions into this equation gives

∂P1

∂n
= −D′

1 + (γ − 1)P1Ma21Γ1 + 2P1Γ1. (2.16)

The following equations can be obtained in a similar manner:

∂D1

∂n
= −P1

∂Ma21
∂s

− (Ma21 − 1)
∂P1

∂s
+

Sb cos δ1D1

cos θ1
+

S2
b sin

2 δ1
cos2 θ1

, (2.17)

∂P2

∂n
= −D′

2 + (γ − 1)P2Ma22Γ2 + 2P2Γ2, (2.18)

∂D2

∂n
= −P2

∂Ma22
∂s

− (Ma22 − 1)
∂P2

∂s
+

Sb cos δ2D2

cos θ1
+

S2
b sin

2 δ2
cos2 θ1

. (2.19)

Finally, we replace all variables P , D, Γ , Sa and Sb by expressions involving P ′, D′,
Γ ′, S′

a and S′
b from (2.14). This produces, after a few pages of algebraic manipulation,

the second-order curved shock equations

A′′
1P

′
1 +B′′

1D
′
1 + E′′

1Γ1
′ = A′′

2P
′
2 +B′′

2D
′
2 + C ′′S′

a +G′′S′
b + const′′, (2.20)

A′′′
1 P ′

1 +B′′′
1 D′

1 + E′′′
1 Γ1

′ = A′′′
2 P ′

2 +B′′′
2 D′

2 + C ′′′S′
a +G′′′S′

b + const′′′, (2.21)

where
A′′

1 = A1 cos θ −B1 sin θ (Ma21 − 1),

B′′
1 = − sin θA1 +B1 cos θ,

E′′
1 = E1,

A′′
2 = A2 cos(θ − δ)−B2(Ma22 − 1) sin(θ − δ),

B′′
2 = −A2 sin(θ − δ) +B2 cos(θ − δ),

C ′′ = C,

G′′ = G,

(2.22a)
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const′′ = −A1P1{[(γ − 1)Ma21 + 2]Γ1 sin θ − P1 cos θ(Ma21 − 2)}
+A2P2{[(γ − 1)Ma22 + 2]Γ2 sin(θ − δ)− P2 cos(θ − δ)(Ma22 − 2)}

−B1 sin θ

[
(Ma21 − 1)(Ma21 − 2)P 2

1 − P1
∂Ma21
∂s

+
Sb cos δ1D1

cos θ1
+

(
Sb sin δ1
cos θ1

)2]
+B2 sin(θ − δ)

[
(Ma22 − 1)(Ma22 − 2)P 2

2 − P2
∂Ma22
∂s

+
Sb cos δ2D2

cos θ1
+

(
Sb sin δ2
cos θ1

)2]
− P1

∂A1

∂σ
−D1

∂B1

∂σ
− Γ1

∂E1

∂σ
+ P2

∂A2

∂σ
+D2

∂B2

∂σ
+ Sa

∂C

∂σ
+ Sb

∂G

∂σ
. (2.22b)

and

A′′′
1 = A′

1 cos θ −B′
1 sin θ(Ma21 − 1),

B′′′
1 = − sin θA′

1 +B′
1 cos θ,

E′′′
1 = E′

1,

A′′′
2 = A′

2 cos(θ − δ)−B′
2(Ma22 − 1) sin(θ − δ),

B′′′
2 = −A′

2 sin(θ − δ) +B′
2 cos(θ − δ),

C ′′′ = C ′,

G′′′ = G′,

(2.23a)

const′′′ = −A′
1P1{[(γ − 1)Ma21 + 2]Γ1 sin θ − P1 cos θ(Ma21 − 2)}

+A′
2P2{[(γ − 1)Ma22 + 2]Γ2 sin(θ − δ)− P2 cos(θ − δ)(Ma22 − 2)}

−B′
1 sin θ

[
(Ma21 − 1)(Ma21 − 2)P 2

1 − P1
∂Ma21
∂s

+
Sb cos δ1D1

cos θ1
+

(
Sb sin δ1
cos θ1

)2]
+B′

2 sin(θ − δ)

[
(Ma22 − 1)(Ma22 − 2)P 2

2 − P2
∂Ma22
∂s

+
Sb cos δ2D2

cos θ1
+

(
Sb sin δ2
cos θ1

)2]
− P1

∂A′
1

∂σ
−D1

∂B′
1

∂σ
− Γ1

∂E′
1

∂σ
+ P2

∂A′
2

∂σ
+D2

∂B′
2

∂σ
+ Sa

∂C ′

∂σ
+ Sb

∂G′

∂σ
.

(2.23b)

We use the following notation:
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D streamline curvature,
D′ streamline curvature gradient,
P normalized pressure gradient,
P ′ normalized second-order pressure gradient,
Ma Mach number
Sa shock curvature in the flow plane,
S′
a gradient of shock curvature in the flow plane,

Sb shock curvature in the flow-normal plane,
S′
b gradient of shock curvature in the flow-normal plane,

Γ normalized vorticity,
Γ ′ normalized vorticity gradient,
γ ratio of specific heats,
δ flow deflection angle,
θ shock angle.
Equations (2.20) and (2.21) relate the variables P ′, D′, Γ ′, S′

a and S′
b on the up- and

downstream sides of a shock element. These equations, together with the coefficients in
(2.22) and (2.23), constitute the tools for analyzing the shock wave curvature gradient
and second-order flow gradients on the up- and downstream sides of a smooth, doubly
curved shock wave. In principle, the theory applies to doubly curved shock surfaces in
which the upstream or downstream gradients are non-uniform. All the coefficients can be
solved so long as the freestream Mach number Ma1, the flow inclination in front of the
shock δ1, and the shock angle θ or θ1 are known. Then, in the second-order curved shock
equations, five of the seven variables P ′

1, D′
1, P ′

2, D′
2, Γ ′

1, S′
a and S′

b must be known, and
the remaining two can be solved from the two simultaneous second-order curved shock
equations (2.20) and (2.21). Furthermore, when the coordinate system is aligned with
the uniform freestream, the shock angle θ is measured with respect to the freestream
direction, which means that δ1 = 0, so δ = δ2. This is the first open publication of
second-order curved shock wave theory.

2.3. Theoretical analysis with second-order curved shock equations
2.3.1. Second-order equations in influence coefficient format

The second-order curved shock equations can be solved, yielding the following explicit
expressions for the downstream second-order pressure gradient and streamline curvature
gradient:

P ′
2 =

B′′
2 (C

′′′S′
a +G′′′S′

b + const′′′ − L′′′)−B′′′
2 (C ′′S′

a +G′′S′
b + const′′ − L′′)

A′′
2B

′′′
2 −A′′′

2 B′′
2

, (2.24)

D′
2 =

−[A′′
2(C

′′′S′
a +G′′′S′

b + const′′′ − L′′′)−A′′′
2 (C ′′S′

a +G′′S′
b + const′′ − L′′)]

A′′
2B

′′′
2 −A′′′

2 B′′
2

,

(2.25)

where

L′′ = A′′
1P

′
1 +B′′

1D
′
1 + E′′

1Γ
′
1, (2.26)

L′′′ = A′′′
1 P ′

1 +B′′′
1 D′

1 + E′′′
1 Γ ′

1. (2.27)

These are the most general expressions for the second-order pressure gradient and
streamline curvature gradient for flow behind a doubly curved shock, with curvature
gradients S′

a and S′
b, facing a non-uniform upstream flow with second-order pressure

gradient P ′
1, streamline curvature gradient D′

1 and vorticity gradient Γ ′
1. The upstream
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non-uniformities are contained in the two expressions L′′ and L′′′. The upstream flow
inclination δ1 is contained in the two coefficients G′′ and G′′′. It embodies the effects of
flow convergence/divergence in front of the shock.

Both P ′
2 and D′

2 can be written in the influence coefficient form

P ′
2 = J ′

pP
′
1 + J ′

dD
′
1 + J ′

gΓ
′
1 + J ′

aS
′
a + J ′

bS
′
b + J ′

cconst
′′ + J ′′

c const
′′′, (2.28)

D′
2 = K ′

pP
′
1 +K ′

dD
′
1 +K ′

gΓ
′
1 +K ′

aS
′
a +K ′

bS
′
b +K ′

cconst
′′ +K ′′

c const
′′′, (2.29)

where the influence coefficients are

J ′
p = (A′′

1B
′′′
2 −A′′′

1 B′′
2 )/[A

′′B′′],

J ′
d = (B′′

1B
′′′
2 −B′′′

1 B′′
2 )/[A

′′B′′],

J ′
g = (E′′

1B
′′′
2 − E′′′

1 B′′
2 )/[A

′′B′′],

J ′
a = (B′′

2C
′′′ −B′′′

2 C ′′)/[A′′B′′],

J ′
b = (B′′

2G
′′′ −B′′′

2 G′′)/[A′′B′′],

J ′
c = −B′′′

2 /[A′′B′′],

J ′′
c = B′′

2 /[A
′′B′′],

K ′
p = −(A′′

1A
′′′
2 −A′′′

1 A′′
2)/[A

′′B′′],

K ′
d = −(B′′

1A
′′′
2 −B′′′

1 A′′
2)/[A

′′B′′],

K ′
g = −(E′′

1A
′′′
2 − E′′′

1 A′′
2)/[A

′′B′′],

K ′
a = −(A′′

2C
′′′ −A′′′

2 C ′′)/[A′′B′′],

K ′
b = −(A′′

2G
′′′ −A′′′

2 G′′)/[A′′B′′],

K ′
c = A′′′

2 /[A′′B′′],

K ′′
c = −A′′

2/[A
′′B′′],

(2.30)

and [A′′B′′] = (A′′
2B

′′′
2 −A′′′

2 B′′
2 ).

In most aeronautical applications, the freestream is uniform, so P ′
1 = D′

1 = Γ ′
1 = δ1 = 0

and L′′ = L′′′ = 0, and (2.28) and (2.29) simplify to

P ′
2 = J ′

aS
′
a + J ′

bS
′
b + J ′

cconst
′′ + J ′′

c const
′′′, (2.31)

D′
2 = K ′

aS
′
a +K ′

bS
′
b +K ′

cconst
′′ +K ′′

c const
′′′. (2.32)

The influence coefficient equations show explicitly how each of P ′
2 and D′

2 are deter-
mined by the upstream quantities and the shock curvature gradients, where the shock
properties (Ma1 and θ) determine the influence coefficients. The influence of pre-shock
flow convergence/divergence, as expressed by δ1, is unfortunately not as explicit, being
embedded in J ′

a, J ′
b and K ′

a, K ′
b, through the coefficients C ′′, C ′′′, G′′ and G′′′. Figure 3

shows the influence coefficients for the post-shock second-order pressure gradient P ′
2 for

both an acute and an obtuse shock facing a Mach 3 air flow. The blue curve shows
that, for weak shocks, the pre-shock second-order pressure gradient is amplified in the
same sense by a factor of about 25, whereas, for strong shocks, the incoming gradient
is amplified by as much as 200 with a reversal of sense. At some intermediate values
of shock angle of about 76◦ and 104◦, the incoming second-order pressure gradient has
no influence on the post-shock second-order gradient. The green curve shows that a pre-
shock flow curvature gradient D′

1 makes a negative contribution to the post-shock second-
order pressure gradient for almost all acute weak shocks. The effect is antisymmetric for
an obtuse shock. The contribution of the upstream vorticity gradient (red curve) to the
post-shock second-order pressure gradient is in the opposite sense to that of the pre-shock
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Figure 3. Influence coefficients for second-order pressure gradient.

Figure 4. Influence coefficients for streamline curvature gradient.

second-order pressure gradient, but is otherwise similar. The contribution of the flow-
plane curvature gradient S′

a to the second-order pressure gradient is shown by the cyan
curve. The flow-plane curvature gradient has less effect on the post-shock second-order
pressure gradient for most shock waves. The black curve shows the influence of the lateral
shock curvature gradient S′

b on the post-shock second-order pressure gradient when there
is no flow divergence/convergence in front of the shock. There can be, however, a change
in divergence/convergence, as represented by ∂δ1/∂σ, contributing to S′

b.
Figure 4 depicts the influence coefficients for the pre-shock and shock curvature

gradient terms affecting the post-shock flow curvature gradient D′
2. The blue curve shows

that a positive pre-shock second-order pressure gradient contributes positively to the
post-shock curvature gradient for a weak acute shock and negatively for a strong acute
shock. The effect is antisymmetric for an obtuse shock. The green curve shows that the
pre-shock flow curvature gradient has no influence on the post-shock curvature gradient
near acute shock angles of 53◦ and 81◦ and obtuse shock angles of 99◦ and 127◦. The
contribution of the pre-shock vorticity gradient (red curve) is similar, except that there

Page 11 of 36

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

12 C. G. Shi, W. Q. Han, R. Deiterding, C. X. Zhu and Y. C. You

are only three shock angles at which there is no contribution. The cyan and black curves
show the symmetric effects of the two shock curvature gradients S′

a and S′
b.

The graphs in figures 3 and 4 are either symmetric or antisymmetric for acute and
obtuse shocks. This is because the freestream has been set to be parallel to the axis of
symmetry (δ1 = 0). A non-zero value of δ1 has no effect in planar flow, but in axial flow,
it leads to pre-shock flow convergence or divergence effects.

2.3.2. Variation of second-order parameters for planar shock waves
Next, the second-order curved shock equations, as derived above, are applied to

planar shock waves and conical shocks. Again, because of the uniform and irrotational
freestream, the left-hand sides of the second-order curved shock equations are zero. For
planar shock waves, the transverse curvature Sb is also zero, as is the transverse curvature
gradient S′

b. However, the curvature in the flow plane has a finite value, Sa ̸= 0 for planar
curved shock waves and Sa = 0 for planar linear shock waves, as well as the gradient of
the shock curvature S′

a. Under these conditions, the second-order curved shock equations
become

P ′
2 = J ′

aS
′
a + J ′

plS
2
a , (2.33)

D′
2 = K ′

aS
′
a +K ′

plS
2
a , (2.34)

where the coefficients J ′
pl and K ′

pl are given in appendix B.
Equations (2.33) and (2.34) state that, immediately behind the shock, the second-

order pressure gradient along the streamline and the streamline curvature gradient are
both quadratically dependent on the shock curvature Sa. The magnitude and sign of
the dependence are determined by the coefficients. These coefficients are functions of the
freestream Mach number and the shock angle only. P ′

2 and D′
2 are plotted in figure 5 for

a freestream Mach number of 3 and a convex shock with a curvature of −1 and S′
a = 0.

At obtuse shock angles where θ > 104◦ and stronger acute shock angles where θ > 77◦,
the flow curvature gradient (green dashed lines) is positive, while it is negative at other
shock angles. The second-order pressure gradient (blue dashed lines) is negative for all
shock angles. At the Thomas and Crocco points, where P2 and D2, respectively, are zero
on the shock wave, P ′

2 and D′
2 are no longer equal to zero. They are useful guideposts

in the landscape of changing flowfields near curved shocks. The second-order theory can
be regarded as a supplement to the Thomas and Crocco points. For instance, it is the
Thomas point that separates compressive and expansive flowfields. With the information
from P ′

2, the compressive and expansive strengths can be analysed. Furthermore, the
parameter P ′

2 is the factor that determines whether the Thomas point can be continued
along the streamline to become a Thomas streamline. It is the Crocco point that identifies
the flow tendency. The rate of change of flow direction is determined by the variable D′

2,
and it is this variable that provides further information regarding whether a streamline
is linear or curved.

2.3.3. Pressure/deflection polar for planar shock waves
Pressure and flow deflection are two important variables for shock reflections. Taking

Mach reflection as an example, the pressure and flow direction remain the same on both
sides of the slip layer, whereas the values of other parameters may change (von Neumann
1943). This characteristic is the basis for the application of the pressure/deflection polar
(NACA 1952). A typical pressure/deflection polar with associated streamline and its
gradient is shown in figure 6. The vertical coordinate is the pressure ratio p and the
horizontal coordinate is flow deflection δ. If the shock is curved, then there is a value of
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Figure 5. Second-order pressure gradient and flow curvature gradient behind a planar shock
in uniform flow (Ma = 3 and Sa = −1).

P ′
2 and of D′

2 associated with every point on the shock polar, and the flow ‘direction’
gradient in the (p, δ) plane can then be written as

l′pl =

1

ρV 2Ma21

∂2p

∂s2

∂δ2

∂s2

=
1

ρV 2Ma21

∂2p

∂δ2
=

P ′

Ma21D
2
=

J ′
pl − J ′

a

∂Ra

∂σ
Ma21K

2
a

. (2.35)

The black curve in figure 6 is the shock polar, the red lines show the slope of
the ‘streamline’ behind the planar symmetric shock and the blue lines show the flow
‘direction’ gradient, here denoted by l′pl. The right-hand side of the figure represents acute
shocks, with positive flow deflection, and the left-hand side represents obtuse shocks, with
negative flow deflection. For a weak acute shock, l′pl is negative, opposite to the slope of
the ‘streamline’. At the Crocco point (±34◦), the slope goes through ±∞. So does the
flow ‘direction’ gradient. At the Thomas point (±31◦), the slope goes through another
change of sign, but the flow ‘direction’ gradient still has the same sign as before. For acute
shock angles, the slope and the flow ‘direction’ gradient are in opposite senses, while, for
the obtuse shock, their senses are the same. In planar flow, the polar streamline slope is
independent of shock curvature (Mölder 2015). However, the flow ‘direction’ gradient is
related to the shock curvature. With this characteristic, the polar figure can be applied to
the study of shock reflections. For regular reflection, the parameters behind the incident
shock must match the variables before the reflected shock. Thus, not only must the
incident post-shock P/D be equal to the reflected pre-shock P/D, but also the values
of P ′/D2 must be the same in the regions behind the incident shock and before the
reflected shock. A relation between the gradients of the incident shock curvature and the
reflected shock curvature can then be constructed. As for the Mach reflection, owing to
the von Neumann condition, the quantity Ma2P ′/D2 must remain the same across the
slip layer. Thus, the curvatures of incident, reflected and Mach shocks are connected by
the second-order curved shock equations.

2.3.4. Variation of second-order parameters for conical shock waves
When the flow is associated with a conical shock, curved shock theory can be utilized

to develop the post-shock flow second-order gradient terms facing a uniform upstream
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Figure 6. Shock polar and polar streamline behind a planar shock in uniform flow (Ma = 3
and Sa = −1).

flow, which means that P ′
1 = D′

1 = Γ ′
1 = 0, Sa = 0 and Sb = −1/Rb = − cos θ1/y.

The freestream is parallel to the x axis, so δ1 = 0, which makes G′′ = 0. Then, the
second-order curved shock equations become

P ′
2 = J ′

bS
′
b + J ′

csS
2
b, (2.36)

D′
2 = K ′

bS
′
b +K ′

csS
2
b, (2.37)

where the coefficients J ′
cs and K ′

cs are given in appendix B. These second-order gradients
are plotted in figure 7 for a Mach number of 3 and for streamlines that originate at a
point on the shock that is located a unit distance from the centreline y = 1. The left
half of this figure is for a cone with an acute shock angle and the right half for an obtuse
conical shock. For an acute conical shock, both P ′

2 and D′
2 are negative, confirming that

in the flow behind an acute conical shock, the pressure increases more slowly along the
streamline, as does the flow inclination. These are both conditions known to exist in flow
over a circular cone at zero angle of attack. For the less familiar obtuse conical shock, the
lateral streamline curvature gradient is positive, but the second-order pressure gradient is
negative, so the pressure decreases more slowly, but the streamline inclination increases
more rapidly along the streamline.

2.3.5. Pressure/deflection polar for conical shock waves
Using (2.36) and (2.37) for conical flow gives the polar streamline slope

l′cs =

1

ρV 2Ma21

∂2p

∂s2

∂δ2

∂s2

=
1

ρV 2Ma21

∂2p

∂δ2
=

P ′

Ma21D
2
=

J ′
cs − J ′

b

∂Rb

∂σ
Ma21K

2
b

. (2.38)

In figure 8, the red lines show the slopes of the ‘streamline’ for conical flow, while
the blue lines are the flow ‘direction’ gradient, here denoted by l′cs. These correspond to
(2.35) for planar flow. An examination of the nature of P ′

2, P2 and D2 shows that the
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Figure 7. Second-order pressure gradient and flow curvature gradient behind a conical shock
in uniform flow (Ma = 3 and y = 1).

flow ‘direction’ gradient in the (p, δ) plane is a function of the freestream Mach number,
shock angle, and shock curvature Sb. For most acute shock angles, the slope and the flow
‘direction’ gradient are in the opposite sense, except for part of the weak acute shock. In
conical flow, the polar streamline slope is independent of shock curvature. However, the
flow ‘direction’ gradient is related to shock curvature, as in planar flow. Unlike planar
flow, however, there is no possibility of a Crocco or Thomas point on a conical shock, so
the slope behind a conical shock is never zero. However, points where the ‘streamline’
curvature gradient is zero do exist. As in planar symmetric flow, the application of the
second-order equations to the pressure/deflection polar facilitates the study of shock
reflections in an axisymmetric flowfield by establishing relations between the curvatures
of incident, reflected and Mach shocks. Since the shock curvature is related to the shock
geometry, the second-order curved shock equations provide a novel perspective from
which to investigate aspects of shock reflections, such as the shape of the Mach disk.

3. Application of second-order curved shock theory to post-shock
flowfield calculation

The greatest restriction on curved shock theory is that it gives answers only in the
close neighbourhood of shock waves. However, P ′

2 and D′
2 are two variables that could be

used to approximately solve the post-shock flowfield under some hypotheses. From their
definitions, note that for a conical shock, P ′

2 and D′
2 are functions of post-shock Mach

number, shock angle and transverse curvature Sb. Thus, a selected conical flowfield is
calculated, and the parameters along the streamlines are evaluated with post-processing
software. With these parameters, P2, D2, P ′

2 and D′
2 can then be calculated along the

streamline using the central difference method, and are plotted in figure 9. It can be seen
that although P2 (blue solid curve) and D2 (red solid curve) change greatly along the
streamline, P ′

2 (blue dashed curve) and D′
2 (red dashed curve) barely change. Therefore,

curved shock theory can also be used to approximately solve the flowfield behind a
curved shock under the assumption that P2 and D2 or P ′

2 and D′
2 are constants along

the streamline. According to the assumption, post-shock streamlines can be drawn as

Page 15 of 36

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

16 C. G. Shi, W. Q. Han, R. Deiterding, C. X. Zhu and Y. C. You

−40 −20 0 20 40
0

4

8

12

Flow deflection angle (deg)

S
ho

ck
 p

re
ss

ur
e 

ra
tio

Figure 8. Shock polar and polar streamline behind a conical shock in uniform flow (Ma = 3
and y = 1).

follows by using Taylor series at the shock wave,

y = ys + (x− xs) tan δ +
(x− xs)

2

2

d2y

dx2
+

(x− xs)
3

6

d3y

dx3
+ . . . ,

d2y

dx2
=

D2

cos3 δ
,

d3y

dx3
=

3D2
2 tan δ +D′

2

cos4 δ
.

The post-shock flowfield is then updated using the vorticity equation (2.5). Most interest-
ingly, this is the case not only for an axisymmetric linear shock, but also for planar and
axisymmetric curved shocks. To confirm the feasibility of the theory, the curved shock
equations and the second-order equations are applied here to three typical curved shocks
with uniform oncoming flow. For comparison, the method of characteristics is then also
used to calculate the flowfield. The characteristic equations and compatibility relations
for the method of characteristics are as follows:(

dy

dx

)
0

=
Vy

Vx
,(

dy

dx

)
±
= tan

[
δ2 ± arcsin

(
1

Ma

)]
,

ρV d0V + d0p = 0,

d0p− V 2
sonic d0ρ = 0,

d±δ2 ±
(Ma2 − 1)

1
2

ρV 2
d±p+

j sin δ2 d±x

yMa cos

[
δ2 ± arcsin

(
1

Ma

)] = 0.

We use the following notation:
0 streamline direction,
± characteristic direction,
j planar flow (j = 0) or axially symmetric flow (j = 1).
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Figure 9. Flow gradients along the streamline behind a conical shock in uniform flow
(Ma = 3 and θ = 30◦).

Figure 10. Pressure flowfield behind an axisymmetric linear shock y/L1 = 0.3x/L1 (Sa = 0,
Sb ̸= 0, Ma = 6, L1 = 50): (a) method of characteristics; (b) first-order curved shock equations;
(c) second-order curved shock equations.

3.1. Axisymmetric linear shock (Sa = 0, Sb ̸= 0)
The flow character of the flowfield behind an axisymmetric linear shock at incoming

Mach number 6 is shown in figure 10. The shock wave has only one curvature and its
shape is a frustum of a cone, like a conical shock wave with a centre body. The shock angle
in the flow plane is 16.7◦. L1 = 50 is the reference length for dimensionless treatment.
The flowfields calculated using the method of characteristics, the curved shock equations
and the second-order curved shock equations are separately represented in figure 10. All
three post-shock flowfields have similar flow character. However, owing to a difference
between the real and supposed values in the hypothesis that P2 and D2 are constants
along the streamline, the pressure ratio given by the curved shock equations is larger
than that given by the method of characteristics, especially in the region far from the
shock. Increasing the order of the flow parameters gives a better match with the results
of the method of characteristics, as can be seen from figure 10. The reason is that P ′

2

and D′
2 remain almost constant along the streamlines compared with P2 and D2, and,

as mentioned above, this increases the accuracy significantly.
For a quantitative analysis, streamlines originating from the shock at x/L1 = 0.2

and 0.4 are extracted from the three flowfields as shown in figure 11. The blue curves
show that, in comparison with the method of characteristics (the black curves), the
difference in the pressure ratio calculated using the first-order curved shock equations
increases along the streamlines and there is a huge gap at the end of the streamlines.
Furthermore, as a streamline comes closer to the wall, the deviation becomes greater.
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Figure 11. Pressure distribution along streamlines (Sa = 0 and Sb ̸= 0) from the method of
characteristics (MOC) and the first- and second-order curved shock equations (CST).

The maximum deviation in the pressure ratio from the first-order curved shock equations
along streamline a occurs at the end, and is 6.8%. However, on increasing the order of
the curved shock equations, the accuracy improves significantly, as shown by the green
curves for the second-order equations. This close coincidence between the green and black
curves exists not only far from the wall, but also close to the wall, which demonstrates the
accuracy of the second-order curved shock equations in obtaining the post-shock flowfield.
In comparison with the first-order curved shock equations, the maximum difference in the
pressure ratio calculated using the second-order equations along streamline ‘a’ decreases
significantly to 0.8%.

3.2. Axisymmetric doubly curved shock (Sa ̸= 0, Sb ̸= 0)
For an axisymmetric curved shock, the flow character of the post-shock flowfields at

incoming Mach number 6 is shown in figure 12. The streamwise shape of the curved shock
is a quadratic curve given by the equation y/L2 = 0.025(x/L2)

2 + 0.35x/L2. L2 = 50
is the reference length for dimensionless treatment. The cross-sectional geometry of the
curved shock is circular, which means that the curvature of the shock wave in the flow-
normal plane is non-zero. As shown in figure 12, three post-shock flowfields are computed
by means of the method of characteristics, the first-order curved shock equations and the
second-order curved shock equations, respectively. On the whole, the flowfields obtained
using the first- and second-order curved shock equations have a flow character similar
to that obtained using the method of characteristics. However, there are still differences.
The pressure ratio from the first-order curved shock equations increases more rapidly
than that from the method of characteristics. It can be seen from figure 12 that there is
a better match between the results of the second-order curved shock equations and those
of the method of characteristics.

The streamlines originating from the shock at x/L2 = 0.2 and 0.4 are extracted from
the three flowfields for quantitative analysis. Figure 13 shows the pressure distribution
along these streamlines. Compared with the method of characteristics (black curves), the
deviation in the pressure ratio calculated using the first-order curved shock equations
(blue curves) increases significantly along the streamline owing to the hypothesis that
P2 and D2 are constants along the streamline. The maximum difference occurs at the
end of streamline ‘a’, and is 19.8%. In contrast, the results from the second-order curved
shock equations (green curves) are close to those from the method of characteristics,
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(a) (b) (c)

Figure 12. Pressure flowfield behind an axisymmetric curved shock
y/L2 = 0.025(x/L2)

2 + 0.35x/L2 (Sa ̸= 0, Sb ̸= 0, Ma = 6, and L2 = 50): (a) method
of characteristics; (b) first-order curved shock equations; (c) second-order curved shock
equations.

Figure 13. Pressure distribution along streamlines (Sa ̸= 0 and Sb ̸= 0) from the method of
characteristics (MOC) and the first- and second-order curved shock equations (CST).

which means that these equations could be used to solve the axisymmetric post-shock
flowfield with greater accuracy. It can be seen that the differences in the pressure ratio
from the second-order curved shock equations increase downstream, but only slightly,
with a maximum of 2.4% at the end of streamline ‘a’. Thus, by increasing the order of
the curved shock equations, the accuracy has significantly improved by 17.4%.

3.3. Planar symmetric curved shock (Sa ̸= 0, Sb = 0)
The equations are also used to approximately solve a planar post-shock flowfield.

Figure 14 shows the flow character of the flowfields behind a planar symmetric curved
shock at incoming Mach number 6. The shock wave shape is a quadratic curve given
by the equation y/L3 = 0.05(x/L3)

2 + 0.3x/L3. L3 = 100 is the reference length
for dimensionless treatment. The results in figure 14 are acquired using the method
of characteristics and the first- and second-order curved shock equations. All three
post-shock flowfields show the same trend, with the pressure ratio increasing along the
streamline. However, owing to the difference between the real and supposed values for
P2 and D2 in the hypothesis that the pressure gradient and streamline curvature remain
unchanged along the streamline, the pressure ratio from the first-order curved shock
equations is greater than that from the method of characteristics, especially in the region
far from the shock. From figure 14, it can be seen that there is a better coincidence
between the results of the second-order curved shock equations and the method of
characteristics, owing to the increasing order of the flow parameters. Compared with
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(a) (b) (c)

Figure 14. Pressure flowfield behind a planar symmetric curved shock
y/L3 = 0.05(x/L3)

2 + 0.3x/L3 (Sa ̸= 0, Sb = 0, Ma = 6, and L3 = 100): (a) method
of characteristics; (b) first-order curved shock equations; (c) second-order curved shock
equations.

Figure 15. Pressure distribution along streamlines (Sa ̸= 0 and Sb = 0) from the method of
characteristics (MOC) and the first- and second-order curved shock equations (CST).

the method of characteristics, the difference in the pressure ratio from the first-order
curved shock equations increases along the streamline. As the streamline comes closer to
the wall, the deviation becomes larger, which is also the case for the flowfield from the
second-order curved shock equations. However, with the increased order of the curved
shock equations, the maximum difference in pressure ratio is smaller.

The pressure distribution for the three flowfields along streamlines originating from
the shock at x/L3 = 0.3 and 0.5 is presented in figure 15. As before, the results of the
method of characteristics, the first-order curved shock equations and the second-order
curved shock equations are represented by black, blue and green curves, respectively. The
pressure ratio calculated from the first-order curved shock equations (blue curves) again
increases significantly along the streamlines, which leads to a large deviation from the
result of the method of characteristics (black curves), with a maximum of 17.0% at the
end of streamline ‘a’. However, the results from the second-order curved shock equations
(green curves) remain close to those of the method of characteristics, and the difference
is controlled in a small range for the whole post-shock flowfield, with a maximum of just
1.2% at the end of streamline ‘a’. Thus, the second-order curved shock equations are
capable also of calculating the planar post-shock flowfield with good accuracy.

We have shown that the second-order curved shock equations are capable of calculating
post-shock flowfields for planar and axisymmetric flow more accurately than the first-
order curved shock equations. However, there are still differences with the results of the
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method of characteristics. The main reason for these is the assumption that P ′
2 and D′

2

are constants along the streamline. Although, from figure 9, P ′
2 and D′

2 remain almost
constant, there are still differences initially, as a result of which differences accumulate
as the calculation proceeds. Furthermore, from (2.24) and (2.25), it can be seen that the
curvature of the shock wave and the incoming flow parameters have effects on P ′

2 and
D′

2, which means that there are deviations depending on differences between shock waves
and incoming flows. Fortunately, these differences are less than 5% for most shock waves.
Therefore, the second-order curved shock equations can be used for solving post-shock
flowfields.

4. Application of Curved Shock Theory to Shock Wave Capture
In addition to its use for post-shock flowfield calculation, curved shock theory has

another application to shock wave capture, owing to its advantage of high precision in
the close neighbourhood of a shock wave. In the past, the Rankine–Hugoniot (R-H)
equations were widely used for shock wave capture. However, the information acquired
by the R-H equations is limited. Since high-order variables describing shock geometry can
be acquired from the curved shock equations, curved shock theory is a better candidate
for fitting the shock shape. Figure 16 gives the scheme of shock capture using curved
shock theory. We consider a mesh cell as an example. The cell is shown by black lines
and the shock wave is shown in red. Since the shock wave is divided into parts by the
meshes, each part of the wave in a mesh cell can be considered as a curve. The mesh nodes
through which the shock wave passes are then taken as endpoints of the shock wave. After
the numerical simulation, information about aerodynamic parameters can be acquired
at every mesh node, as can the gradients through high-order schemes. With information
at the endpoints of the shock wave, the curvature of the shock wave and its gradient at
points a and b can be solved with given pre-shock and post-shock parameters through
the first- and second-order curved shock equations, respectively. The second derivative
y′′ is then evaluated from the curvature of the shock wave via the equation

Sa =
y′′

(1 + y′2)
3
2

, (4.1)

and the third derivative y′′′ is obtained from

S′
a =

dSa

dσ
=

y′′′(1 + y′2)− 3y′y′′2

(1 + y′2)3
. (4.2)

With these derivatives, a high-order polynomial can be utilized to fit the shock
curve. Two cases are presented here to verify this approach. The first case is a planar
symmetric curved shock wave and the second is an axisymmetric doubly curved shock
wave. Aerodynamic parameters and their gradients at the endpoints of a shock wave are
input as given conditions. Both shock waves are fitted using three methods: the R-H
equations, first-order curved shock theory and second-order curved shock theory.

4.1. Planar symmetric curved shock (Sa ̸= 0, Sb = 0)
4.1.1. Shock capture with given aerodynamic parameters at the endpoints of a shock

wave
In practical applications, only the pre- and post-shock parameters are needed to solve

the shock wave geometry. However, for a quantitative analysis, a planar symmetric curved
shock is given explicitly as a function y = 1

2 (e
x − 1) with a range 0 < x < 1. The post-

shock parameters at the beginning and end of the shock curve are given at incoming Mach
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δδ

Figure 16. Scheme of shock capture.

number 6. The pressure ratio is 8.2335 at the beginning of the shock curve and 27.0823 at
the end. The given post-shock parameters are used to solve for the curvature of the shock
wave and its gradient. The shock wave angles calculated from the R-H equations are then
fitted with a linear equation y′ = tan θ = 0.8591x+0.5000 using the least-squares method
under the condition that parameters at the endpoints of the shock wave are known from
CFD. Since the shock wave angle is connected to the slope of the shock wave, the shock
wave is matched with a quadratic equation y = 0.4296x2 + 0.5000x, which is integrated
from the equation y′ = tan θ = 0.8591x+0.5000. Similarly, with the shock wave curvature
Sa evaluated from the first-order curved shock equations, the second derivative y′′ can
be obtained from (4.1). Afterwards, according to the least-squares method, the relation
between the second derivative y′′ and x is fitted as y′′ = 0.8591x + 0.5000. Then, after
two integrations, the shock wave is fitted as a cubic equation y = 0.1432x3 +0.2500x2 +
0.4296x. For second-order curved shock theory, the third derivative is evaluated from
(4.2) and fitted as y′′′ = 0.8658x + 0.5014. After three integrations, the shock wave is
fitted as a quartic equation y = 0.0361x4 + 0.0836x3 + 0.2124x2 + 0.5393x.

Figure 17 shows shock wave curves obtained by three different methods with given
parameters of two mesh nodes at the shock wave. The original shock wave is represented
by the black curve. The red, blue and green curves represent shock waves obtained
using the R-H equations, first-order curved shock theory and second-order curved shock
theory, respectively. From the comparison, it is clear that with the increase in order, the
differences between the fitted and original curves decrease. The green curve is the closest
to the black curve, whereas the red curve deviates the most, which demonstrates the
merits of second-order curved shock theory in solving the geometry of shock waves.

The results of a regression analysis are shown in table 1. The residual sum of squares
(RSS) is a variable indicating the degree of fit of an equation to data. It is the sum of the
squares of the deviations between equation values and data. The total sum of squares
is defined as the sum of the squared differences of the dependent variable and its mean.
Furthermore, goodness of fit R2 is a statistical model describing the extent of fit between
fitted and original curves and ranges from 0 to 1. A large R2 indicates a tight fit. From
table 1, it can be seen that the maximum difference decreases from 0.0704 to 0.0364
when the method is changed from the R-H equations to first-order curved shock theory,
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Figure 17. Planar symmetric curved shocks solved by three methods with parameters of two
mesh nodes given (Sa ̸= 0, Sb = 0 and Ma = 6).

Maximum difference RSS R2

Rankine–Hugoniot equations 0.0704 0.1786 0.9714
First-order curved shock theory 0.0364 0.0767 0.9877
Second-order curved shock theory 0.0122 0.0101 0.9984

Table 1. Regression analysis for planar symmetric curved shock with parameters of two mesh
nodes given.

and it decreases further to 0.0122 with the use of second-order curved shock theory. The
RSS for the R-H equations is 0.1786, which is approximately three times as large as that
for first-order curved shock theory. Furthermore, the RSS declines significantly when
the second-order curved shock theory is used, which means that the accuracy is further
improved. The R2 value rises from 0.9714 to 0.9877 when the method is changed from
the R-H equations to first-order curved shock theory and then to 0.9984 for second-order
curved shock theory, which confirms that the fitted curve is similar to the original curve.
However, it cannot be denied that a deviation still exists with only two mesh nodes given.

4.1.2. Shock capture with given aerodynamic parameters at the endpoints and midpoint
of a shock wave

The parameters of three nodes at a shock wave are given from CFD as known
conditions, at the endpoints and the midpoint of the shock wave. To ensure a fair
comparison, shock angles calculated by the R-H equations are again matched with the
linear equation using the least-squares method. Thus, based on the relation between
angles and slopes of shock wave, the shock wave is fitted with a quadratic equation y =
0.4296x2+0.4649x, which is integrated from the equation y′ = tan θ = 0.8591x+0.4649.
Furthermore, since the shock wave curvature is related to the second derivative y′′,
the shock wave from the first-order curved shock theory is fitted as a cubic equation
y = 0.1432x3 + 0.2325x2 + 0.4845x after two integrations. For the second-order curved
shock theory, the shock wave is fitted as a quartic equation y = 0.0361x4 + 0.0776x3 +
0.2417x2 + 0.5064x after three integrations.

The fitted curves are plotted with different colours in figure 18: the original shock wave
is shown by the black solid curve, while the red, blue and green dashed curves represent
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Figure 18. Planar symmetric curved shock solved by three methods with parameters of three
mesh nodes given (Sa ̸= 0, Sb = 0 and Ma = 6).

Maximum difference RSS R2

Rankine–Hugoniot equations 0.0367 0.0489 0.9922
First-order curved shock theory 0.0061 0.0017 0.9997
Second-order curved shock theory 0.0026 0.0002 1.0000

Table 2. Regression analysis for planar symmetric curved shock with parameters of three
mesh nodes given.

the shock waves obtained from the R-H equations, first-order curved shock theory and
second-order curved shock theory, respectively. The section between 0.45 and 0.55 is
magnified in the insert to show the curves more clearly. It can be seen that the fitted
curve gets closer to the original curve as the order of the theory is increased. Even in the
magnified area, the green curve for second-order curved shock theory is still almost the
same as the original curve. In contrast, although the red and blue curves show a similar
trend to the black curve, there are obvious differences.

The results of a regression analysis for a planar symmetric curved shock with given
parameters of three nodes at a shock wave are presented in table 2. It can be seen that
the maximum difference for the R-H equations is 0.0367, and this goes down to 0.0061 for
first-order curved shock theory. The maximum difference for second-order curved shock
theory is the least, with a value of just 0.0026. The RSS for the R-H equations is 0.0489,
which is approximately 25 times larger than for first-order curved shock theory. There is a
significant further improvement in accuracy when the order of the theory is increased, and
the RSS is decreased by an order of magnitude, to 0.0002, for second-order curved shock
theory. The goodness of fit increases from 0.9922 to 0.9997 when first-order curved shock
theory replaces the R-H equations, and this goes up to 1.0000 when second-order curved
shock theory is used to fit the geometry of given shock wave, which means that the fitted
curve shows a good match with the original curve. In other words, the accuracy increases
for all three methods when more parameters are given, and, furthermore, second-order
curved shock theory yields solving the planar symmetric curved shock explicitly with
only three mesh nodes given as known conditions.
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Figure 19. Axisymmetric curved shock solved by three methods with parameters of two mesh
nodes given (Sa ̸= 0 and Sb ̸= 0).

Maximum difference RSS R2

Rankine–Hugoniot equations 0.0986 0.3485 0.9587
First-order curved shock theory 0.0561 0.1823 0.9784
Second-order curved shock theory 0.0239 0.0383 0.9955

Table 3. Regression analysis for planar symmetric curved shock with parameters of two mesh
nodes given.

4.2. Axisymmetric curved shock (Sa ̸= 0, Sb ̸= 0)
4.2.1. Shock capture with given aerodynamic parameters at the endpoints of a shock

wave
Similarly to the first case, the geometry of the axisymmetric curved shock is in this

case specified as an exponential curve given by the equation y = 1
2 (3

x − 1) with 0 <
x < 1, and the height at the centre is 0.1. The oncoming Mach number is 6, and the
parameters behind the shock wave are calculated by the method of characteristics. Only
the parameters at the shock wave endpoints are given as known information. The linear
equation y′ = tan θ = 1.0986x + 0.5493 is solved by the least-squares method to fit
the shock wave angles. After the process of integration, the shock wave is fitted with
the quadratic equation y = 0.5493x2 + 0.5493x+ 0.1. Accordingly, with the shock wave
curvature Sa, the shock wave is matched as a cubic equation y = 0.2012x3 + 0.3017x2 +
0.4410x+ 0.1 using the first-order shock wave equations. For second-order curved shock
theory, the shock wave is fitted as a quartic equation y = 0.0567x4+0.1110x3+0.2318x2+
0.6243x+ 0.1.

Shock wave curves obtained by the three methods are presented in figure 19. As before,
the black solid curve represents the original shock wave, and the red, blue and green
dashed curves represent the shock waves calculated using the R-H equations, first-order
curved shock theory and second-order curved shock theory, respectively. It is clear that
the fitted curve is closer to the original curve when the order of the theory is increased,
with the deviation between the green and black curves being least and the red curve
showing the greatest deviation from the original. Thus, second-order curved shock theory
again has the highest accuracy among the three methods.
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Figure 20. Axisymmetric curved shock solved by three methods with parameters of three
mesh nodes given (Sa ̸= 0 and Sb ̸= 0).

Table 3 presents the results of a regression analysis for an axisymmetric curved shock
with given parameters of two mesh nodes at a shock wave. First, the maximum difference
for the R-H equations is 0.0986, which is about twice that for first-order curved shock
theory, while second-order curved shock theory gives the lowest value, 0.0239, among the
three methods. Second, the RSS for the R-H equations is 0.3485, which is approximately
twice that for first-order curved shock theory. There is a further significant increase in
accuracy for the second-order theory, with the RSS being an order of magnitude smaller,
0.0383. Finally, the goodness of fit rises from R2 = 0.9587 for the R-H equations to 0.9784
for first-order curved shock theory and to 0.9955 for the second-order theory. Thus, the
shock curve from second-order curved shock theory agree fairly well with the original
shock curve, although there is still a noticeable deviation when only information at the
endpoints is given.

4.2.2. Shock capture with given aerodynamic parameters at the endpoints and midpoint
of a shock wave

To get a better fit, the number of known conditions is increased to three: at the
endpoints and midpoint of the shock wave. As before, a linear equation solved by the
least-squares method is applied to fit the shock wave angles: y′ = tan θ = 1.0986x+0.5002.
The shock wave is then fitted with a quadratic equation y = 0.5493x2 + 0.5002x + 0.1
after integration. Similarly, the shock wave is matched as a cubic equation y = 0.2012x3+
0.2748x2 + 0.5258x + 0.1 by first-order curved shock theory and as a quartic equation
y = 0.0567x4+0.1003x3+0.2871x2+0.5608x+0.1 by second-order curved shock theory.

All these expressions are plotted in figure 20. The region from 0.45 to 0.55 is magnified
in the insert to give a clearer view of the curves. It can be seen that the fitted curves
are closer to the original curve when more conditions are given. However, there is still an
obvious difference between the red and black curves representing the results of the R-H
equations and the original shock, respectively. The blue and green curves representing
the results of first- and second-order curved shock theory show better agreement with
the black curve. However, in the magnified area, it is clear that the deviation between the
green and black curves is the least, whereas there is a greater, but still small, deviation
between the blue and black curves. Thus, second-order curved shock theory again has an
advantage over the other two methods for shock wave calculation.
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Maximum difference RSS R2

Rankine-Hugoniot equations 0.0514 0.0953 0.9887
First-order curved shock theory 0.0093 0.0040 0.9995
Second-order curved shock theory 0.0049 0.0006 0.9999

Table 4. Regression analysis for an axisymmetric curved shock with parameters of three mesh
nodes given.

Table 4 presents the results of a regression analysis for the axisymmetric curved shock
with given parameters of three mesh nodes at a shock wave. It can be seen that the
maximum difference decreases significantly when information at an additional node is
given. The value for the R-H equations is now 0.0514, which is still the greatest among
the three methods. The maximum differences for first- and second-order curved shock
theory are 0.0093 and 0.0049, respectively, about one-fifth of the values for the previous
case. The RSS for the R-H equations is 0.0953, which is approximately one-third of the
previous value. However, it is still much larger than the RSS for first-order curved shock
theory, which in turn is an order of magnitude greater than that for second-order curved
shock theory, 0.0006. Finally, R2, which describes the goodness of fit between the fitted
and original curves, increases from 0.9887 for the R-H equations to 0.9995 for first-order
curved shock theory and to 0.9999 for second-order curved shock theory, indicating that
the fitted shock curve agrees well with the original curve. To sum up, second-order curved
shock theory is again able to calculate the axisymmetric curved shock explicitly with the
parameters of three nodes given.

5. Conclusions
Second-order curved shock theory relates shock curvature gradients and flow diver-

gence/convergence to the second-order gradients of pressure, vorticity and streamline
curvature. In this paper, explicit expressions for the second-order flow gradients have been
obtained in influence coefficient form. The first- and second-order curved shock equations
have been applied to solve the post-shock flowfield in both planar and axial flows. The
results show that the second-order curved shock equations improve the accuracy of results
by more than 10% in comparison with the first-order curved shock equations. Curved
shock theory has also been used to fit shock waves in planar and axisymmetric flows.
Regression analyses show that the shock wave residual sum of squares for the second-order
equations is an order magnitude lower than those for the R-H and first-order equations.
Furthermore, the goodness of fit for the second-order curved shock equations is almost 1
in both planar and axisymmetric flows, which means that the second-order curved shock
equations can capture planar symmetric and axisymmetric shock waves explicitly with
a limited number of given conditions, owing to the merits of using high-order variables.
These high-order variables used to describe the shock geometry make this theory a good
candidate for solving shock capture problems in CFD algorithms.
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Appendix A. Derivation of second-order curved shock equations
Taking derivatives of both sides of each of (2.2) and (2.3) with respect to n (distance

normal to the streamline) and s (distance along the streamline), respectively, gives

∂ρ1V
2
1 P1

∂n
= −∂ρ1V

2
1 D1

∂s
,

ρ1V
2
1

∂P1

∂n
+ 2V1ρ1P1

∂V1

∂n
+ V 2

1 P1
∂ρ1
∂n

= −ρ1V
2
1

∂D1

∂s
− 2V1ρ1D1

∂V1

∂s
− V 2

1 D1
∂ρ1
∂s

.

(A 1)
The derivatives ∂ • /∂s and ∂ • /∂n can be expressed in the following forms:

∂Vk

∂s
= −PkVk,

∂Vk

∂n
= Vk(Dk − Γk),

∂ρk
∂s

= ρkMa2kPk,
∂ρk
∂n

= −ρkMa2k[Dk + (γ − 1)Γk].

where k = 1, 2 depending on whether the application is to flow before or after the shock.
With these substitutions, (A 1) becomes

ρ1V
2
1

∂P1

∂n
+ 2ρ1V

2
1 P1(D1 − Γ1)− ρ1V

2
1 P1Ma21[D1 + (γ − 1)Γ1]

= −ρ1V
2
1

∂D1

∂s
+ 2ρ1V

2
1 D1P1 − ρ1V

2
1 Ma21P1D1. (A 2)

On replacing ∂D1/∂s by D′
1, (A 2) becomes

∂P1

∂n
= −D′

1 + (γ − 1)P1Ma21Γ1 + 2P1Γ1

Similarly, for subscript 2, the following equation is obtained:
∂P2

∂n
= −D′

2 + (γ − 1)P2Ma22Γ2 + 2P2Γ2.

Taking derivatives of both sides of each of (2.1) and (2.3) with respect to s and n,
respectively, gives

−
∂

[
(Ma21 − 1)P1 +

sin δ1
y1

]
∂s

=
∂D1

∂n
,

∂D1

∂n
= −P1

∂Ma21
∂s

− (Ma21 − 1)
∂P1

∂s
−

y1 cos δ1
∂δ1
∂s

− sin2 δ1

y21
.

(A 3)

On replacing ∂P1/∂s by P ′
1s, (A 3) becomes

∂D1

∂n
= −P1

∂Ma21
∂s

− (Ma21 − 1)P ′
1s −

cos δ1 D1

y1
+

sin2 δ1
y21

Similarly, for subscript 2, the following equation is obtained:

∂D2

∂n
= −P2

∂Ma22
∂s

− (Ma22 − 1)P ′
2s −

cos δ2 D2

y2
+

sin2 δ2
y22
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Derivation of the second-order curved shock equations (2.20) and (2.21) starts from
(2.8) and (2.9),

A∗
1P1 +B∗

1D1 + E∗
1Γ1 = A∗

2P2 +B∗
2D2 + C∗Sa +G∗Sb.

The superscript ∗ is used to identify the equations. For instance, A∗
1 equals to A1 for

(2.20) and represents A′
1 for (2.21). Taking derivatives of both sides with respect to σ

gives

A∗
1

∂P1

∂σ
+ P1

∂A∗
1

∂σ
+B∗

1

∂D1

∂σ
+D1

∂B∗
1

∂σ
+ E∗

1

∂Γ1

∂σ
+ Γ1

∂E∗
1

∂σ

= A∗
2

∂P2

∂σ
+ P2

∂A∗
2

∂σ
+B∗

2

∂D2

∂σ
+D2

∂B∗
2

∂σ
+ C∗ ∂Sa

∂σ
+ Sa

∂C∗

∂σ
+G∗ ∂Sb

∂σ
+ Sb

∂G∗

∂σ
.

Changing σ-derivatives to s- and n-derivatives gives

A∗
1

(
∂P1
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∂n
sin θ

)
+ P1

∂A∗
1
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1
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2
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2
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2
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With some substitutions, this equation becomes
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1P
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1s cos θ + P1

∂A∗
1
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. (A 4)
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On replacing 1/y by −Sb/ cos θ1, (A 4) becomes

A∗
1P

′
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1
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1 cos θ +A∗

1 sin θ
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Collecting terms gives
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+ Sa

∂C∗

∂σ
+ Sb

∂G∗

∂σ
,

where the unknown derivatives are given by

∂A2

∂σ
=

∂ sin θ cos θ
sin(θ−δ)

∂σ
=

sin(θ − δ) cos 2θ ∂θ
∂σ − sin θ cos θ cos(θ − δ)∂(θ−δ)

∂σ

sin2(θ − δ)
,

∂B2

∂σ
= −

∂ sin θ cos θ
cos(θ−δ)

∂σ
= −

cos(θ − δ) cos 2θ ∂θ
∂σ + sin θ cos θ sin(θ − δ)∂(θ−δ)

∂σ

cos2(θ − δ)
,

∂C

∂σ
= − 4

γ + 1
cos 2θ

∂θ

∂σ
,
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∂A1

∂σ
=

2

γ + 1

∂ cos θ
[(
3Ma21 − 4

)
sin2 θ − γ−1

2

]
∂σ

=
2

γ + 1

[
3 cos θ sin2 θ

∂Ma21
∂σ

− sin3 θ
(
3Ma21 − 4

) ∂θ

∂σ

+2 sin θ cos2 θ
(
3Ma21 − 4

) ∂θ

∂σ
+

γ − 1

2
sin θ

∂θ

∂σ

]
,

∂E1

∂σ
= − 2

γ + 1

∂ sin3 θ
[
(γ − 1)Ma21 + 2

]
∂σ

= − 2

γ + 1

{
(γ − 1) sin3 θ

∂Ma21
∂σ

+3 sin2 θ cos θ
[
(γ − 1)Ma21 + 2

] ∂θ

∂σ

}
,

∂B1

∂σ
=

2

γ + 1

∂ sin θ
[
γ−5
2 +

(
4−Ma21

)
sin2 θ

]
∂σ

=
2

γ + 1

[
γ − 5

2
cos θ

∂θ

∂σ
+3 sin2 θ cos θ

(
4−Ma21

) ∂θ

∂σ
− sin3 θ

∂Ma21
∂σ

]
,

∂G

∂σ
=

4

γ + 1

∂ sin2 θ cos θ sin δ1
cos θ1

∂σ

=
4

γ + 1

sin2 θ cos θ

cos θ1

∂ sin δ1
∂σ

+
4

γ + 1
sin2 θ sin δ1

∂ cos θ
cos θ1

∂σ
+

4

γ + 1

cos θ sin δ1
cos θ1

∂ sin2 θ

∂σ

=
4

γ + 1

sin2 θ cos θ cos δ1
cos θ1

∂δ1
∂σ

+
4

γ + 1
sin2 θ sin δ1

− sin θ cos θ1
∂θ
∂σ + cos θ sin θ1

∂(δ1+θ)
∂σ

cos2 θ1

+
4

γ + 1

2 sin θ cos2 θ sin δ1
cos θ1

∂θ

∂σ
,

∂A′
2

∂σ
=

∂
[1+(Ma2

2−2) sin2(θ−δ)] sin θ cos θ

sin(θ−δ) cos(θ−δ)

∂σ

=
1

sin 2(θ − δ)
{ sin 2θ

[(
Ma22 − 2

)
sin 2(θ − δ)

∂(θ − δ)

∂σ
+sin2(θ − δ)

∂Ma22
∂σ

]
+2 cos 2θ

[
1 +

(
Ma22 − 2

)
sin2(θ − δ)

] ∂θ

∂σ
}

−
sin 2θ

[
1 +

(
Ma22 − 2

)
sin2(θ − δ)

]
cos 2(θ − δ)

2 sin2(θ − δ) cos2(θ − δ)

∂(θ − δ)

∂σ
,

∂B′
2

∂σ
= −∂sin2θ

∂σ
= −2 cos 2θ

∂θ

∂σ
,

∂C ′

∂σ
= −

∂ sin(2δ)
2 cos(θ−δ)

∂σ
= −

4 cos(θ − δ) cos 2δ ∂δ
∂σ + 2 sin 2δ sin(θ − δ)∂(θ−δ)

∂σ

4 cos2(θ − δ)
,

∂A′
1

∂σ
=

∂
[
Ma21 cos

2 θ cos δ − (Ma21 − 1) cos (2θ + δ)
]

∂σ

= −2 sin θ cos θMa21cos δ
∂θ

∂σ
− sin δMa21 cos

2 θ
∂δ

∂σ

+
[
cos δ cos2 θ − cos (2θ + δ)

] ∂Ma21
∂σ

+ sin (2θ + δ) (Ma21 − 1)
∂ (2θ + δ)

∂σ
,
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∂B′

1

∂σ
= −

∂
[
sin (2θ + δ) +Ma21 sin

2 θ sin δ
]

∂σ

= − cos (2θ + δ)
∂ (2θ + δ)

∂σ
− 2 sin θ cos θMa21sin δ

∂θ

∂σ

−Ma21 sin
2 θ cos δ

∂δ

∂σ
− sin δ sin2 θ

∂Ma21
∂σ

,

∂E′
1

∂σ
= −

∂
[
2 + (γ − 1)Ma21

]
sin δ sin2 θ

∂σ

= −2
[
2 + (γ − 1)Ma21

]
sin θ cos θ sin δ

∂θ

∂σ

−
[
2 + (γ − 1)Ma21

]
sin2 θ cos δ

∂δ

∂σ
− (γ − 1) sin2 θ sin δ

∂Ma21
∂σ

,

∂G′

∂σ
= −

∂ sin θ cos θ tan(θ−δ) sin δ2−sin(θ+δ) sin θ sin δ1
cos θ1

∂σ

= − sin θ

cos θ1
cos θ tan(θ − δ) cos δ2

∂δ2
∂σ

− sin θ cos θ sin δ2
cos θ1 cos2(θ − δ)

∂(θ − δ)

∂σ

+
sin2 θ

cos θ1
tan(θ − δ) sin δ2

∂θ

∂σ
+

sin (θ + δ)

cos θ1
sin θ cos δ1

∂δ1
∂σ

+ [sin (θ + δ) sin δ1 − cos θ tan(θ − δ) sin δ2]
cos θ cos θ1

∂θ
∂σ + sin θ sin θ1

∂θ1
∂σ

cos2 θ1

+
sin θ

cos θ1
sin δ1 cos (θ + δ)

∂ (θ + δ)

∂σ
,

∂Ma21
∂σ

=
∂

ρ1V
2
1

γp1

∂σ

=
2ρ1V1

γp1
[−P1V1 cos θ + V1 (D1 − Γ1) sin θ]

+
V 2
1

γp1

{
ρ1Ma21P1 cos θ − ρ1Ma21 sin θ [D1 + (γ − 1)Γ1]

}
−ρ1V

2
1

γp21

(
ρ1V

2
1 P1 cos θ − ρ1V

2
1 D1 sin θ

)
= [P1 cos θ + (Γ1 −D1) sin θ]

[
Ma41 (1− γ)− 2Ma21

]
,

∂Ma22
∂σ

=
∂

ρ2V
2
2

γp2

∂σ

=
2ρ2V2

γp2
[−P2V2 cos(θ − δ) + V2 (D2 − Γ2) sin(θ − δ)]

+
V 2
2

γp2

{
ρ2Ma22P2 cos(θ − δ) −ρ2Ma22 sin(θ − δ) [D2 + (γ − 1)Γ2]

}
−ρ2V

2
2

γp22

[
ρ2V

2
2 P2 cos(θ − δ)− ρ2V

2
2 D2 sin(θ − δ)

]
= [P2 cos(θ − δ) + (Γ2 −D2) sin(θ − δ)]

[
Ma42 (1− γ)− 2Ma22

]
,

∂Ma21
∂s

=
1

γp1

(
−2ρ1V

2
1 P1 +Ma21ρ1V

2
1 P1

)
− ρ21V

4
1 P1

γp21

= P1Ma21
(
Ma21 − γMa21 − 2

)
,
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∂Ma22
∂s

=
1

γp2

(
−2ρ2V

2
2 P2 +Ma22ρ2V

2
2 P2

)
− ρ22V

4
2 P2

γp22

= P2Ma22
(
Ma22 − γMa22 − 2

)
,

∂θ

∂σ
= Sa + (Ma21 − 1) sin θP1 − cos θD1 +

sin θ sin δ1
y

= Sa + (Ma21 − 1) sin θP1 − cos θD1 −
Sb sin θ sin δ1

cos θ1
,

∂ (θ − δ)

∂σ
= Sa + (Ma22 − 1) sin(θ − δ)P2 − cos(θ − δ)D2 +

sin(θ − δ) sin δ2
y

= Sa + (Ma22 − 1) sin(θ − δ)P2 − cos(θ − δ)D2 −
Sb sin(θ − δ) sin δ2

cos θ1
,

∂δ1
∂σ

=
∂θ1
∂σ

− ∂θ

∂σ
= Sa −

∂θ

∂σ
= −(Ma21 − 1) sin θP1 + cos θD1 +

Sb sin θ sin δ1
cos θ1

,

∂δ2
∂σ

=
∂δ

∂σ
+

∂δ1
∂σ

=
∂θ

∂σ
− ∂(θ − δ)

∂σ
+

∂δ1
∂σ

.

Appendix B. Coefficients for planar symmetric and axisymmetric
flows with uniform and irrotational freestream

The coefficients for planar symmetric flow with a uniform and irrotational freestream
are as follows:

Ja =
B2C

′ −B′
2C

A2B′
2 −A′

2B2
, Ka =

A′
2C −A2C

′

A2B′
2 −A′

2B2

J ′
pl =

[
J ′
c + J ′′

c

1 + (Ma22 − 2)sin2(θ − δ)

cos(θ − δ)

]
sin θ cos θ

sin(θ − δ)
Ja

×
{[

(γ − 1)Ma22 + 2
] 2sin2δ

sin (2θ)
− Ja cos(θ − δ)

(
M2

2 − 2
)}

−
[

J ′
c

2 cos(θ − δ)
+ J ′′

c

] (
γMa42 −Ma22+2

)
sin (2θ) sin(θ − δ)J2

a

+J ′′
c Ja

sin (2θ) sin2(θ − δ)

sin 2(θ − δ)

[
Ja cos(θ − δ) +

2sin2δ

sin (2θ)
−Ka sin(θ − δ)

]
×
[
Ma42 (1− γ)− 2Ma22

]
+

{
J ′′
c Ja

sin (2θ)
[
Ma22 sin

2(θ − δ)− 1
]

2sin2(θ − δ)cos2(θ − δ)

+J ′′
c

[
cos (2δ) + cos (2θ)

cos(θ − δ)
− sin (2δ) sin(θ − δ)

2cos2(θ − δ)

]
−J ′

c sin (2θ)

[
Ka

sin(θ − δ)

2cos2(θ − δ)
+Ja

cos(θ − δ)

2sin2(θ − δ)

]}
×
[
1 + (Ma22 − 1) sin(θ − δ)Ja2 − cos(θ − δ)Ka

]
+J ′

c

[
Ja

sin(θ − δ)
− Ka

cos(θ − δ)
− 4

γ + 1

]
cos (2θ)

+J ′′
c

[
cos (2θ) cos(θ − δ)

sin(θ − δ)
Ja − cos (2θ)Ka −cos (2δ) + cos (2θ)

cos(θ − δ)

]
,
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K ′
pl =

[
K ′

c +K ′′
c

1 + (Ma22 − 2)sin2(θ − δ)

cos(θ − δ)

]
sin θ cos θ

sin(θ − δ)
Ja

×

{
2sin2δ

[
(γ − 1)Ma22 + 2

]
sin (2θ)

− Ja cos(θ − δ)
(
Ma22 − 2

)}

−
[

K ′
c

2 cos(θ − δ)
+K ′′

c

] (
γMa42 −Ma22 + 2

)
sin (2θ) sin(θ − δ)J2

a

+K ′′
c Ja

sin (2θ) sin(θ − δ)

cos(θ − δ)

[
Ja cos(θ − δ)−Ka sin(θ − δ) +

2sin2δ

sin (2θ)

]
×
[
Ma42 (1− γ)− 2Ma22

]
+

{
K ′′

c

[
cos (2θ) + cos (2δ)

cos(θ − δ)
− sin (2δ) sin(θ − δ)

2cos2(θ − δ)

]
−K ′′

c Ja
sin (2θ)

[
1− sin2(θ − δ)Ma22

]
2sin2(θ − δ)cos2(θ − δ)

−K ′
c sin θ cos θ

[
Ka

sin(θ − δ)

cos2(θ − δ)
+ Ja

cos(θ − δ)

sin2(θ − δ)

]}
×
[
1 + (Ma22 − 1) sin(θ − δ)Ja − cos(θ − δ)Ka

]
+K ′

c cos (2θ)

[
Ja

sin(θ − δ)
− Ka

cos(θ − δ)
− 4

γ + 1

]
+K ′′

c

[
cos (2θ) cos(θ − δ)

sin(θ − δ)
Ja − cos (2θ)Ka −cos (2θ) + cos (2δ)

cos(θ − δ)

]

The coefficients for axisymmetric flow with a uniform and irrotational freestream are as
follows:

Jb =
B2G

′

A2B′
2 −A′

2B2
, Kb =

A2G
′

A2B′
2 −A′

2B2
,

J ′
cs = −

{
J ′
c cos(θ − δ) + J ′′

c

[
Ma22sin

2(θ − δ) + cos 2(θ − δ)
]} sin θ cos θ

sin(θ − δ)
J2
b

(
Ma22 − 2

)
−
[

J ′
c

2 cos(θ − δ)
+ J ′′

c

]
sin (2θ) sin(θ − δ)

×

[
J2
b

(
γMa42 −Ma22 + 2

)
−cos δ

cos θ
Kb +

(
sin δ

cos θ

)2
]

+J ′′
c Jb

sin (2θ) sin2(θ − δ)

sin 2(θ − δ)
[Jb cos(θ − δ) +Kb sin(θ − δ)]

[
Ma42 (1− γ)− 2Ma22

]
+

{
J ′′
c Jb sin (2θ)

2 cos2(θ − δ)

[
Ma22 −

1

sin2(θ − δ)

]
+

J ′′
c sin θ [sin 2(θ − δ) cos δ − 2 sin δ]

2cos2(θ − δ)

−J ′
c sin (2θ)

[
cos(θ − δ)Jb

2sin2(θ − δ)
− sin(θ − δ)Kb

2cos2(θ − δ)

]}
×
{[

(Ma22 − 1)Jb − sin δ

cos θ

]
sin(θ − δ)− cos(θ − δ)Kb

}
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K ′
cs =

{
K ′

c cos(θ − δ) +K ′′
c

[
1 + (Ma22 − 2)sin2(θ − δ)

]} sin θ cos θ

sin(θ − δ)

(
2−Ma22

)
J2
b

−
[

K ′
c

2 cos(θ − δ)
+K ′′

c

]
sin (2θ) sin(θ − δ)

×

[(
γMa42 −Ma22 + 2

)
J2
b−

cos δ

cos θ
Kb +

(
sin δ

cos θ

)2
]

+K ′′
c Jb

sin (2θ) sin(θ − δ)

2 cos(θ − δ)
[Jb cos(θ − δ) +Kb sin(θ − δ)]

[
Ma42 (1− γ)− 2Ma22

]
+

{
K ′′

c

sin (2θ)
[
Ma22sin

2(θ − δ)− 1
]
Jb

2sin2(θ − δ)cos2(θ − δ)
+K ′′

c sin θ

[
sin(θ − δ) cos δ

cos(θ − δ)
− sin δ

cos2(θ − δ)

]
−K ′

c sin (2θ)

[
cos(θ − δ)Jb

2sin2(θ − δ)
− sin(θ − δ)Kb

2cos2(θ − δ)

]}
×
{[

(Ma22 − 1)Jb − sin δ

cos θ

]
sin(θ − δ) + cos(θ − δ)Kb

}
.
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