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We advance a quantitative description of the critical shear rate γ̇c needed to dislodge a
spherical particle resting on a surface with a model asperity in laminar and turbulent fluid
flows. We have built a cone-plane experimental apparatus which enables measurement
of γ̇c over a wide range of particle Reynolds number Rep from 10−3 to 1.5 × 103. The
condition to dislodge the particle is found to be consistent with the torque balance
condition after including the torque component due to drag about the particle center.
The data for Rep < 0.5 is in good agreement with analytical calculations of the drag
and lift coefficients in the Rep → 0 limit. For higher Rep, where analytical results are
unavailable, the hydrodynamic coefficients are found to approach a constant for Rep >
1000. We show that a linear combination of the hydrodynamic coefficients found in the
viscous and inertial limits can describe the observed γ̇c as a function of the particle and
fluid properties.
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1. Introduction

The threshold condition needed to dislodge particles, which are initially at rest on a
surface, due to a fluid flow is important in a wide range of physical systems and industries.
Examples include wind blown dynamics of sand dunes, erosion of sediments and rocks
on river beds and ocean floors, deposition of proppants in hydraulic fracturing of shales,
and drug delivery via inhalation. In spite of a long standing interest in such problems
(see Shields 1936; Buffington & Montgomery 1997), the conditions under which particles
are dislodged by a fluid flow are not well established quantitatively. The Shields number,
given by the ratio of the hydrodynamic drag and gravitational force acting on the particles
at the surface, is often used to characterize the physical conditions at the threshold of
motion (see Shields 1936; Wiberg & Smith 1987; Buffington & Montgomery 1997). When
this number exceeds a value corresponding to an effective friction, the fluid is considered
to dislodge the particles. This appears to imply that the condition to dislodge a particle
can be characterized by considering the mean forces acting on the particle alone (see
Phillips 1980; Wiberg & Smith 1987). Accordingly, the recorded Shields number at the
threshold of motion has been reported over a wide range of Reynolds numbers estimated
at the particle scale and shows broad trends with considerable scatter (see Buffington &
Montgomery 1997) that depend on bed preparation, particle size and degree of exposure
to the fluid flow (see Charru, Mouilleron & Eiff 2004; Charru, et al. 2007; Ouriemi, et al.
2007; Hong, Tao & Kudrolli 2015; Clark, et al. 2015).

http://arxiv.org/abs/1603.03932v2
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A spherical particle resting on a rough surface in a linear sheared fluid flow is an
important model to understand the threshold of motion of a particle exposed to a fluid
flow. A recent analysis of this model by Lee & Balachandar (2012) appears to suggest
that torques, and not just the forces, can be important to determining the onset of
particle motion in sheared fluid flow. In the case of sufficiently low Reynolds numbers,
the net hydrodynamic force and torque acting on a sphere attached to a smooth wall
in a linear shear flow has been analytically calculated by O’Neill (1968) and Leighton
& Acrivos (1985). At moderate and higher Reynolds number, where fluid inertia is
important, analytical results do not exist. However, numerical results have been obtained
by Zeng, et al. (2009) for the drag and lift coefficients acting on a particle attached to
a surface at moderate Reynolds numbers. These results indicate that both the lift and
moment coefficients about the particle center decrease relative to the drag coefficient
with increasing Reynolds numbers. Thus, there is a need for further investigations to
quantitatively test the relative contribution of forces and torques acting on a particle
as a function of Reynolds numbers in order to clarify the conditions needed to dislodge
particles in sheared fluid flows.
Here, we discuss a new experimental system that enables us to quantitatively measure

the threshold of motion of a particle in a linearly sheared fluid where the fluid flow and
particle motion are visualized to understand its characteristics. Model asperities with well
defined pivot points are used to investigate its importance in determining the onset of
motion. We demonstrate that the torque balance condition is important to determining
the threshold in laminar as well as turbulent sheared flows. Further, we quantitatively
describe the critical shear rate required to dislodge a particle as a function of its physical
properties using an interpolation of hydrodynamic drag and lift coefficients obtained in
the viscous and inertial limits.

2. Experimental system

A schematic of the experimental apparatus is shown in Fig. 1(a). It consists of a
stationary transparent cylindrical container with a flat bottom filled with a fluid with
a dynamic viscosity µ and density ρf , prepared using water and glycerol mixture ratios
reported by Cheng (2008). Because glycerol-water mixtures are sensitive to temperature,
we performed all experiments in a room controlled to within 0.5oC and the viscosity
variation within ±2%. This estimate is based on the errors due to the variation in the
room temperature and the measurement of fluid volumes used to prepare the glycerol
and water mixture. In test experiments, we did not observe any systematic errors in the
onsets to within the fluctuations noted for over 3 hours after the fluids were mixed due to
evaporation or hygroscopy. Therefore, the experiments were all performed well within this
time after the fluids were prepared to avoid any such effects. An inverted cone-shaped
top plate, with an apex which coincides with the bottom of the container and radius
R = 95mm, is rotated about its axis with a prescribed frequency f similar to a conical
rheometer. The flows in this geometry are well studied (see for example Sdougos, et al.,
1984) with the primary flow being concentric with the axis of rotation and increasing
linearly from the bottom to the top plate. The corresponding shear rate is given by
γ̇ = 2πf/ tanβ, where β is the angle complementary to the cone apex angle. A weak radial
secondary flow also occurs which is inward near the flat surface and outward near the
cone surface that increases with flow Reynolds number given by Re = ρf γ̇R

2 tanβ/2µ,
which corresponds to the fluid velocity at the midpoint between the top plate and the
bed surface.
In order to test the relative effects of gravity, inertia and viscosity, we use spherical
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Figure 1. (a) A schematic diagram of the apparatus. The conical top plate spins about
its vertical central axis with a prescribed frequency f resulting in a uniform shear rate
γ̇ = 2πf/ tan β. A vertical light sheet through the particle is used for visualization. (b)
Cross-sectional and top view of a spherical particle lodged against a rod which is bent into
a U-shaped pocket. The line joining the center of the sphere and the point of contact with the
asperity makes an angle φ with respect to the vertical axis. (c) Cross-sectional and top view of
a spherical particle lodged inside a circular pocket. (d) Flow field observed using Particle Image
Velocimetry (PIV) corresponding to Rep = 0.1 superimposed on a sample image.

particles composed of Delrin, polytetrafluoroethylene (PTFE), glass, aluminum, ceramic,
titanium, and stainless steel with density ρs = 1400, 2170, 2500, 2700, 3875, 4512, and
7960 kgm−3, respectively. While a range of particle diameters were probed, we discuss
the data for d = 3.175± 0.005mm for simplicity of presentation. The Reynolds number
at the particle scale Rep is defined by using the velocity v = γ̇d/2 corresponding to the
center of the particle. Then,

Rep =
ρf γ̇d

2

2µ
=

ρfπfd
2

µ tanβ
. (2.1)

Two kinds of model asperities were used including a rod bent into a U shaped pocket
illustrated in Fig. 1(b) and a circular pocket using a flat ring illustrated in Fig. 1(c). The
angle φ subtended by the line joining the particle center and the pivot point from the
vertical characterizes the barrier size relative to the particle size in both cases. The U
shape allows the particle to be fully exposed to the fluid flow while also allowing it to
move freely in the pocket. This leads the particle to rattle inside the pocket when the flow
becomes time-dependent at higher Rep as shown in the Supplementary Documentation.
In contrast, the circular pocket geometry leads the particle to be confined in all directions
inside the pocket and is observed to be stationary at both high and low Rep before
getting dislodged. Because the bottom of the sphere is shielded by the ring, the particle
is partially exposed to the fluid flow as in a granular bed. This leads to an approximate
10% lowering of Cd and a 7% lowering of Co for a circular pocket with φ = 38o compared
to a fully exposed particle using estimates obtained by Pozrikidis (1997) for low Rep
flows.
Further, because the fluid velocity has to match the velocity of the spinning top
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Figure 2. The measured critical shear rate γ̇c as a function of fluid height h/d required to
dislodge a PTFE particle. We observe that γ̇c is essentially constant for h/d & 2 in the case
of both low and high viscosity fluids used in the experiments. The horizontal dashed lines are
guides to the eye.

boundary, the proximity of the top boundary can lead to a greater drag coefficient at least
at low Reynolds numbers compared to unbounded flows (see Happel & Brenner 1973).
We varied the distance rb between the particle and the axis of rotation to understand
the effect of the top boundary for a high and low viscosity fluid used in our experiments.
Because of the slope of the top surface, this results in a gap height h = rb tanβ between
the top boundary and the container bottom. The measured γ̇c as a function of h is shown
in Fig. 2. Indeed, we observe that γ̇c is lower for z/d < 2, but remains essentially constant
for z/d & 2 for both low and high viscosity fluids used in the experiments. Accordingly,
we have confined our discussion to h = 2d, which corresponds to the particle being placed
at a distance rb = 7 cm from the axis of rotation, where the direct effect of the top surface
can be expected to be small.

3. Flow visualization

In order to characterize the nature of the flow, we performed experiments with tracer
particles added to a water-glycerol mixture corresponding to ρf = 1100 kg m−3 and
µ = 3mPa s in which the tracers are neutrally buoyant. The fluid was illuminated with a
light sheet which transects the particle in a vertical plane through its center. In case of
sufficently slow flows, we use Particle Image Velocimetry (PIV) to obtain the fluid flow
with a sequence of images acquired at 2 frames per second, and analyzing the images using
the shareware computer program OpenPIV (http://www.openpiv.net/). An example of
which is shown in Fig. 1(d) for low Rep. The fluid velocity shown by the length of the
arrows can be noted to be symmetric about the vertical axis and increase linearly in
regions away from the sphere. The measured shear rate from PIV is found to be within
5.5% of that calculated using the rotation rate of the top plate.
The flow structure at higher Rep can be deduced by examining the streaks made by

the tracers over one second in Fig. 3 and the corresponding movies in the Supplementary
Documentation. One can observe that the flow is essentially symmetric for Rep ∼ 1, but
grows asymmetric as Rep is increased. A vortex can be clearly observed at Rep ∼ 20 and
the wake grows and becomes time dependent for Rep ∼ 220. Further, one also observes
the development of a smaller vortex for Rep > 22 in the front of the sphere near the
substrate (see Movie in Supplementary Documentation). In all cases, the flow well in
front of the particle appears to be laminar, and the eddies generated by the flow around
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Figure 3. The fluid flow observed around a spherical particle glued to the substrate visualized
with tracer particles. The exposure time is 1.0 s. (a) f = 0.01 Hz, Re = 30, and Rep = 0.7,
(b) f = 0.03 Hz, Re = 91, and Rep = 2.2, (c) f = 0.1Hz, Re = 304, and Rep = 7.3, and
(d) f = 0.3Hz, Re = 916, and Rep = 22, (e) f = 1.0Hz, Re = 3041, and Rep = 73, and (f)
f = 3.0Hz, Re = 9160, and Rep = 220. The flow is symmetric at low Rep and vortices develop
as Rep is increased and a vortex clearly develops in the wake at Rep ∼ 20. The flow in the
wake clearly becomes time dependent at Rep = 220. A smaller vortex in front of the sphere is
observed for Rep > 22. (See movies in Supplementary Documentation.)

the particle have decayed by the time the fluid flow returns after going around the circular
track over the range of Rep visualized.
We also tested the effect of the secondary flows that can arise in this system at high

Re. In particular, we examined the departure angle of the particles from the azimuthal
direction when they are dislodged over a U-shaped barrier by visualizing the system
through the transparent bottom of the container. By measuring the departure angle
for all the particles used in our study, we find angles from the azimutal direction to
3± 4.5o when Rep is varied between 40 to 243. Such a variation would lead to less than
2% underestimation of the shear rate at onset which is within the experimental error.
Therefore, we conclude that secondary flows are negligible in determining the main trends
observed in the study.

4. Measured critical shear rate

With this characterization of the flow, we now discuss the measured critical shear rate
γ̇c as a function of experimental control parameters. Figure 5(a) shows γ̇c as a function
of µ corresponding to a U-shaped pocket with φ = 44o. Each data point corresponds to
three independent measurements and the error is less than 5%. The data was obtained
by linearly increasing the rotation frequency of the top plate to a prescribed value f and
holding it constant for a fixed wait time of 100 s. The threshold is reached if the particle
is observed to roll out over the barrier during this wait time interval. The particle was
observed to move and dislodge immediately after threshold was reached at low Rep.
However, the particle was observed to rattle inside the pocket and dislodge after a few
seconds in the case of the U-shaped pocket when Rep & 10. In the case of a circular
pocket, no such rattling was observed and the particle dislodged right after first moving.
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Figure 4. (a) A schematic diagram representing the forces acting on the particle resting against
an asperity with a circular crosssection. Contact forces can be considered to be absent at the
point of contact between the particle and the substrate at onset. (b) A schematic diagram
representing the forces as well as the torque To that act about the center of the particle. The
contact forces acting at the pivot point are not drawn for clarity (see text).

We also found that using a longer wait time did not lead to a systematic change in the
measured threshold. But, decreasing the wait time increased the threshold somewhat.
Because we are interested in the long time behavior, we have used a wait time of 100 s
for consistency.
We observe that γ̇c decreases systematically because the drag can be expected to

increase with µ. Further, γ̇c is observed to be systematically higher for PTFE because it
has a higher density compared with Delrin. To further probe the trends with respect to
the density of the particle, we plot γ̇c as a function of ρs/ρf−1 in Fig. 5(b) corresponding
to µ = 5.2mPa s, and where the data corresponds to Rep > 10. From the log-log plot
in the corresponding inset, we observe that γ̇c increases consistent with a square root
function. We have also plotted data corresponding to a barrier with a circular pocket,
and we observe similar trends. Finally, we have plotted γ̇c in Fig. 5(c) for various φ and
find higher γ̇c for higher φ. Thus, γ̇c increases systematically with greater barrier height.

5. Conditions to dislodge particle

To explain these observations, we next discuss the gravitational and hydrodynamic
forces and torques acting on the particle which are used to determine the condition for
stability. The gravitational force acting on the particle including the effect of buoyancy
is given by Fg = 1

6
π(ρs − ρf )gd

3, where g is the acceleration due to gravity, and the
corresponding torque due to gravity about the pivot point on the barrier is given by
Tg = Fg

d
2
sinφ. The net drag force acting on a sphere can be written as Fd = 1

8
Cdρfv

2πd2,
where Cd is the drag coefficient which depends on Rep. The torque due to drag about the
center of the particle can be written as To = 1

16
Coρfv

2πd3, where Co is a drag coefficient
which also depends on Rep. Then, the torque due to drag Td about the pivot point can be
written as the sum of the torque about the center and the net force times the projected
distance from the center to the pivot point, i.e. Td = To + Fd

d
2
cosφ. The lift due to

the difference of flow velocity above and below the particle center, can be written as
Fl =

1

8
Clρfv

2πd2, where Cl is the lift coefficient, and the corresponding torque due to

the lift Tl = Fl
d
2
sinφ. Because of the fore/aft asymmetry that develops in the flow as

shown in Fig. 3, one can further expect the effective point where the lift and drag act to
shift from the vertical axis of symmetry. However, we are unaware of any previous work
which discusses this effect, and we assume that the lift acts at the center for simplicity.
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Figure 5. (a) The critical shear rate γ̇c is observed to decrease with viscosity (φ = 44o). The
fluid viscosity is obtained by using water glycerol mixture ratios reported by Cheng (2008). The
error bars are of the order of the symbol size. (b) γ̇c increases nonlinearly, irrespective of the
shape of the asperity. Inset: Same plot in log-log scale with a slope 1/2 line to guide the eye. γ̇c
increases consistent with

√

ρs/ρf − 1 for both kinds of barriers. (c) γ̇c is systematically greater
for higher φ. The dashed lines in the plots correspond to γ̇c calculated using Eq. 5.3 and Eq. 5.5
with α0 = 0.45 and αd = 0.65.

Further, the particle also experiences normal reaction force and tangential friction forces
at contact points with the substrate and the barrier. One may expect these contact forces
to approach zero at the point of contact between the particle and the bottom substrate,
just when the particle is about to be dislodged. However, reaction force N and friction
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force Fµ can be expected to be present at the point of contact between the particle and
the barrier even as the particle is dislodged.

5.1. Sliding Contact

We first consider the force components perpendicular to the line joining the particle
center and the contact point between the particle and the barrier as shown in Fig. 4(a)
assuming that the particle is dislodged by sliding over the barrier in the direction opposite
to Fµ. Then, the force equation for equlibrium gives Fd cosφ + Fl sinφ− Fµ = Fg sinφ,
where, Fµ is the friction force at the point of contact. By rearranging terms, one sees that
(Fd cosφ+ Fl sinφ)/Fg sinφ = 1+ Fµ/Fg sinφ. Because of the presence of the fluid, and
because it is difficult to determine the degree to which the particle rolls versus slides at
the point of contact, Fµ is difficult to estimate with certainty. Nonetheless, the second
term on the right hand side can be assumed to be positive if not zero in the case where
Fµ goes to zero. Thus,

(Fd cosφ+ Fl sinφ)/Fg sinφ > 1. (5.1)

5.2. Rolling Contact

However, from the movies shown in the supplemetary documentation, one notes that
the particle appears to roll rather than slide when it is dislodged by the flow. Therefore,
it appears that the sliding friction leads the particle to pivot about the point of contact.
Then, the condition for torque balance about the pivot point is given by

Td + Tl = Tg, (5.2)

where, both Td and Tl can be seen to act clockwise in the inset to Fig. 4(b) to dislodge
the particle, while Tg acts in the counterclockwise direction and keeps the particle from
being dislodged. Because the contact forces act at the pivot point, they do not appear
in Eq. 5.2. We substitute Td, Tl, and Tg with their expressions in terms of Cd, Co, Cl, ρs
and ρf in Eq. 5.2 for torque balance. Then, introducing a net hydrodynamic coefficient
Ch = Co + Cd cosφ + Cl sinφ and recalling that v = γ̇cd/2, we obtain the shear rate
required to dislodge a particle as

γ̇c =

√

16(ρs − ρf )g sinφ

3ρfChd
. (5.3)

Thus, for a given particle, fluid and surface roughness, γ̇c can be evaluated provided Ch

is known for that Rep. Alternately, Ch can be determined by rewriting Eq. 5.3 as

Ch =
16(ρs − ρf )g sinφ

3ρf γ̇2
cd

, (5.4)

where, all the quantities on the right hand side can be measured in our experiments.
The measured Ch using Eq. 5.4 is plotted in Fig. 6 as a function of Rep also over a wide

combination of particle densities and viscosities for a fixed roughness. We find that the
measured Ch decreases linearly for low Rep before rapidly approaching a constant value
at the highest Rep studied. We have further plotted Ch for Rep ∼ 1000 for the three
different φ studied in the inset to Fig. 6. It can be observed that Ch becomes relatively
independent of Rep, while systematically decreasing with φ.
In the viscous limit, the total drag force and torque acting on a particle attached to

a wall in a linear shear flow has been calculated by O’Neill (1968). Assuming drag to
be linear with velocity, he found Cd and Co to be C0

d = 24fw
Rep

, and C0
o = 16bw

Rep
, where,
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Figure 6. The net hydrodynamic coefficient Ch obtained from the experiment as a function
of Rep for φ = 43.5o compared with various models. Here, the curve labeled as the quadratic
model includes the quadratic drag contribution in calculating Ch (see Eq. 5.5). The curves
corresponding to linear drag use O’Neill’s form for Cd, and the lift is obtained using Leighton
and Acrivos’s form for Cl (see text). Ch is observed to approach a constant at the highest Rep
(α0 = 0.45 and αd = 0.65). The coefficients used to generate the curve by Zheng, et al. (2009)
are predicted up to Rep ∼ 200. However, systematic deviations are observed above Rep ∼ 10.
Inset: Ch decrease somewhat for higher φ (Rep ∼ 1000). The line corresponds to Eq. 5.4 with
Rep = 1000.

fw = 1.7005 and bw = 0.944 are constants which arise due to the no-slip boundary
condition at the substrate. Further, a lift coefficient C0

l = 6.888fw has been calculated
corresponding to viscous shear lift for low Rep by Leighton and Acrivos (1985). We
compare Ch using these hydrodynamic coefficients in Fig. 6 with those obtained directly
from our experimental measurements. We find good agreement for Rep < 1 whether or
not we include lift in the calculations.
Extrapolating the curves into the inertial regime, the two curves deviate systematically

above or below the data, depending on whether we consider lift or not. In fact, Zeng, et
al. (2009) have found Cd = 24fw

Rep
(1 + 0.104Re0.753p ) based on numerical simulations for a

fixed sphere on an infinite plane which is linearly sheared by a fluid flow when Rep 6 250.
They also found that C0

o can be extended up to Rep = 200. Further, they postulated
that the lift coefficient can be interpolated between the low and high Rep limits as
Cl = 3.663(Re2p + 0.1173)−0.22 for Rep < 200, although it may be noted that higher
lift has been also measured over the same regime by Mollinger & Nieuwstadt (1996).
Accordingly, we have calculated Ch and plotted the result in Fig. 6. The corresponding
curve appears to capture the overall trend in the data to Rep ∼ 10 within experimental
error. However, systematic deviations can be observed above this value over the range
of validity of those simulations.
In order to describe the data over the entire Rep measured, we consider Cd and Co

as a superposition of analytically calculated coefficients in the low Rep limit and a term
corresponding to quadratic drag which is independent of Rep, i.e. Cd = C0

d + αd, and,
Co = C0

o +αo, where, αd and αo depend further on the flow geometry. The lift acting on a
particle attached to a wall at high Rep has been measured to be 0.242 (see Okamoto 1979)
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Figure 7. (a) The ratio of the torques associated with hydrodynamic forces and gravity
calculated from the measured γ̇c and using the linear drag model, and the quadratic drag model
in Eq. 5.5. The horizontal dashed line corresponds to the torque balance condition given by
Eq. 5.2. Good agreement is observed with analytical calculations in the Rep < 1 regime. Overall
good agreement is also observed with the torque balance condition by using a quadratic model
over the entire range of Rep. (b) The ratio of the force components given by the left hand side
of Eq. 5.1 plotted versus Rep. The drag and lift are obtained using the measured shear rate
required to dislodge the particle. The measured ratio is clearly below the horizontal dashed line
showing that the torque about the particle needs to be taken into account to describe onset of
motion.

which we round up to be αl = 0.25. We then interpolate Cl between the viscous shear lift
at low Rep and the lift at high Rep using the function Cl = (C0

l − αl) exp (−Rep) + αl.
Accordingly, we postulate that

Ch =
[16bw
Rep

+ αo

]

+
[24fw
Rep

+ αd

]

cosφ+
[

(6.888fw − αl) exp (−Rep) + αl

]

sinφ , (5.5)

where, the first, second, and third term in brackets on the right hand side correspond to
the interpolated moment, drag, and lift acting relative to the particle center. Then, we
obtain αo = 0.5±0.1 and αd = 0.7±0.1 by fitting Eq. 5.4 to the data shown in the inset to
Fig. 6. The fitted value of αd is much greater than for a sphere in uniform unbounded flow,
but consistent with measurements of drag coefficent of Cd ≈ 0.627 reported for a sphere
attached to a surface at high Rep obtained by measuring the surface-pressure distribution
on a sphere by Okamoto (1979). It may be noted that Ch is not very sensitive to φ at high
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Rep. This occurs because the decrease in drag contribution to torque is compensated by
an increase in the lift contribution as φ is increased.
We have plotted γ̇c obtained using Eq. 5.3 and Eq. 5.5 in all three plots in Fig. 5.

We find that by including the quadratic drag in the inertial regime and combining it
with the analytical results in the viscous regime, we are able to capture the observed
γ̇c dependence as a function of fluid viscosity, particle density, and surface roughness
characterized by φ. We further tested to see if assuming the forces alone can describe
the data. This corresponds to forcing Co to be zero in our fits, and we are simply not
able to obtain an accurate description of these trends.
In order to summarize the results, we have plotted the ratio of the torques due to

hydrodynamic forces and gravity in Fig. 7(a) and the ratio of the hydrodynamic forces
and gravity in Fig. 7(b) as a function of Rep. We find that the threshold condition is
well described by the analytically calculated torques in the viscous limit for Rep < 0.5
before inertial effects grow, leading to systematic deviations. The form of drag given by
the viscosity and inertia components captures the data relatively well over the entire
range of Rep investigated. By contrast, the data shown in Fig. 7(b) falls systematically
below one, which is the lower bound given by Eq. 5.1 even if one assumes Fµ = 0. Thus,
the critical shear rate remains distinct and well below the threshold condition obtained
by considering the forces alone to dislodge the particle. Based on this observation, we
conclude that the condition when the particle gets dislodged clearly corresponds to the
torque balance condition. This is further in agreement with the observation that the
particle rolls over the barrier when the corresponding critical shear rate is reached as
illustrated by the movies in the Supplementary Documentation.
In performing this analysis, we have assumed that the shear rate required to dislodge

the particle is given by the critical rotation frequency of the top plate. It is possible that
this method can lead to a systematic overestimation of the hydrodynamic coefficients
when the flow becomes time-dependent at higher Rep. However, this systematic error
is offset by the corresponding lower estimate of shear rates used in the calculation of
torques and forces. Thus, we expect the hydrodynamic forces and torques used in Fig. 7
to be robust even at high Rep.

6. Conclusions

In summary, we have shown with experiments that the shear rate at onset of erosion is
determined by the torque balance condition. Further, systematic deviations are observed
if forces alone are considered in determining the instability of the particle. The main
reason for this discrepancy is because the net hydrodynamic force does not act at the
center of the particle but rather some distance above the particle center because of the
fact that the mean flow speed increases with distance from the bottom substrate. In the
torque balance condition, this is taken into account by considering the additional torque
about the center of the particle. Building on this condition, we have then quantitatively
described the observed critical shear rate γ̇c on the particle density, the fluid viscosity,
and the surface roughness over a wide range of particle Reynolds Numbers Rep. We
find that a linear combination of the hydrodynamic coefficients obtained in the viscous
and inertial limits can describe the observed γ̇c as a function of the particle and fluid
properties from laminar to turbulent flow conditions.
Further, we show that the data at low Rep < 0.5 is in good agreement with analytical

calculations of the drag and lift coefficients in the Rep → 0 limit, but differ from
numerical results at moderate Rep reported by Zeng, et al. (2009) for flow past a sphere
resting on a smooth surface. At higher Rep, where analytical results are unavailable,
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the hydrodynamic coefficients are found to approach a constant for Rep > 1000. It is
possible that the differences from the numerical results at moderate Rep arise because
of the presence of the physical barriers near the base of the particle in the experiments
which can modify the flow. Further research is required to fully understand the effect of
surface roughness and particle exposure to extend the implications of our study to the
erosion of a granular bed as in rivers and streams.
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