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Abstract: In this article, we demonstrate the application of a new compressed sensing three-dimensional
reconstruction algorithm for electron tomography that increases the accuracy of morphological characteriza-
tion of nanostructured materials such as nanocrystalline iron oxide particles. A powerful feature of the
algorithm is an anisotropic total variation norm for the L1 minimization during algebraic reconstruction that
effectively reduces the elongation artifacts caused by limited angle sampling during electron tomography. The
algorithm provides faithful morphologies that have not been feasible with existing techniques.
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INTRODUCTION

In electron tomography (ET), it is widely accepted that the
quality of the final three-dimensional (3D) reconstructed
image is directly related to the number of projections ac-
quired and their angular range (Midgley & Weyland, 2003;
Kawase et al., 2007). This is especially true for the widely
used commercial reconstruction algorithms, i.e., back pro-
jection (BP), weighted back projection (WBP), and sim-
ultaneous iterative reconstruction technique (SIRT); these
algorithms are well suited for ideal applications where there
are a large number of projection images and a 360° range of
projections (or from —90° to 90° viewing angles). Several
studies have shown two major problems in a practical ET:
(1) the reconstruction resolution decreases as the number of
projections decreases, and (2) the limited angular range pro-
duces a missing wedge of information that blurs and elon-
gates the reconstructed object parallel to the optical axis of
the instrument (Weyland, 2002; Midgley & Weyland, 2003).
In this article, we demonstrate a compressed sensing
(CS) 3D reconstruction algorithm that works well with
reduced datasets and substantially reduces missing wedge
artifacts. These features make it a useful approach for mini-
mizing beam damage, minimizing contamination, and for
obtaining reliable spatial measurements from tomograms.
CS aims to reconstruct signals and images from fewer
measurements than were traditionally thought necessary
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(Candes et al., 2006; Donoho, 2006). A successful applica-
tion of CS requires three criteria to be met: (1) transform
sparsity, which means the desired image should have a
sparse representation in a known transform domain, i.e., it
must be compressible by transform coding; (2) incoherence
of undersampling artifacts, which means the artifacts in
linear reconstruction caused by undersampled data acquisi-
tion should be incoherent (noise-like) in the sparsifying
transform domain; and (3) nonlinear reconstruction, which
means the image should be constructed by a nonlinear
method that enforces both sparsity of the image representa-
tion and consistency of the reconstruction with the ac-
quired samples (Lustig et al., 2007).

In algebraic reconstruction algorithms such as SIRT,
algebraic reconstruction technique (ART), and simulta-
neous algebraic reconstruction technique (SART), an object
may be reconstructed from its projections by solving a
system of linear equations as illustrated in Figure 1. This
system of linear equations may be simply expressed as:

AX =P (1)

As illustrated in Figure 1, an object may be separated
into discrete areas using a square grid and lines passing
through this square grid are defined as rays. The compo-
nents of A, (a;;) are the weighted contribution of the line
segment of the i’th ray with respect to j’th square, X(x;).
The projection, P(p;, P2, P3»-- ., p;), is then the ray summa-
tion of the contributions from X and A. Because the P and
A quantities in equation (1) are known, the task of algebraic
reconstruction techniques is to solve the inverse problem
associated with equation (1); i.e., to use A~'P to find the
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Figure 1. An illustration of the ray diagram used for creating
a system of linear equations used in algebraic reconstruction
techniques.

object, X. If a projected image P is sparseless and undersam-
pled (as in the case of tomography), then X contains several
components (unknowns) and the system of linear equations
contains an infinite number of solutions. However, through
CS the projected image is given a sparse representation
thereby reducing the number of components in P; this
improves the algebraic reconstruction algorithm’s calcula-
tion of a best solution for the system of linear equations.
Therefore, CS allows algebraic reconstruction algorithms to
converge faster and more accurately to values of the true
object. It should be noted that the result of CS is a piecewise
constant. For that reason, if an object to be reconstructed
can be described as a piecewise constant, as in many inor-
ganic and organic materials in electron microscopy, then
the CS algorithm will be effective. For ET, the theoretical
basis and simulated application of CS to ET has been
demonstrated by Binev et al. (2011). Binev’s work examined
CS’s potential in both image collection and image recovery
with particular attention to scanning transmission electron
microscopy (STEM) imaging. Recently, Saghi et al. (2011)
and Goris et al. (2012) have shown that the experimental
application of CS to ET is indeed possible. Furthermore,
Saghi’s work also shows that CS is effective at reconstruct-
ing 3D maps with as few as nine tilt images.

The total variation method (TV) is derived from sparse
signal recovery as seen in CS. Candes et al. (2006) indicated
that medical computed tomography (CT) images could be
approximately sparse by taking the magnitude of the gradi-
ent of these images. Based on this assumption, a total varia-
tion regularization reconstruction method was proposed that
recovers CT images using incomplete samples in two-
dimensional (2D) Fourier space. Recently it was proposed
that an anisotropic total variation norm for the L1 minimi-
zation during algebraic reconstruction technique iterations
may be more efficient than the standard total variation norm
(Xin et al., 2010). The common approach to image CS
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through TV is achieved by performing L1 normalization on
a gradient image as shown by equations (2) and (3):

Vi | = (Do fe,)? + (D, fi )2, )
Vf = (D, £, D, f), (3)

where f, , is the image function, and D, and D, are discrete
differential operators. In equation (2), the image gradient is
used for edge preservation and the L1 normalization trans-
form is used to create image sparsity. In this form, TV is
isotropic in nature because both x and y directions have
equal contributions in transforming the image. However, in
limited angle reconstructions, artifacts and blurring occur
due to the missing wedge of information. An improved
method for dealing with limited angle reconstruction arti-
facts is to reduce the contributions to the L1 norm from the
missing wedge direction while maintaining the contribu-
tions from other directions. This is done by modifying the
calculation of the gradient image as shown by:

Vasfe,l = VAD.f. ,)> + B(D,f.,)?, (4)

where A and B are weighted parameters that are positive
real numbers. When A and B are unequal, the TV method
becomes anisotropic and we refer to this as anisotropic total
variation (ATV). Based on this modification, a new ART +
ATV reconstruction method for limited-angle problems was
developed (Wang & Yu, 2010; Xin et al., 2010). The main
principle of this method is to limit edge detection from
radial directions that are blurred because of the missing
angular range of projection views. As a result, edges from
other radial directions can be better preserved.

In this work, we demonstrate that using a compressed
sensing anisotropic total variation algebraic reconstruction
technique (CSATV—application of the ART + ATV algo-
rithm to ET) on reduced datasets of iron oxide nanoparticle
images can maintain excellent overall 3D reconstruction
quality while reducing missing wedge artifacts. A compari-
son of CSATV to BP, WBP, and SIRT examines the algo-
rithm’s performance when using images that contain a
relatively low signal-to-noise ratio and a reduced number of
projections. The factors governing each algorithm’s perfor-
mance are the sample’s reconstruction geometry and sur-
face characteristics. Furthermore, a quantitative comparison
will be made between CSATV and SIRT with respect to the
reconstructed object’s length, surface area, and volume.

MATERIALS AND METHODS

Iron oxide nanoparticles examined in this study were syn-
thesized by forced hydrolysis of an acidic ferric nitrate
solution (Fischer & Schwertmann, 1975; Schwertmann &
Murad, 1983). Electron tomography was performed with a
FEI Titan 80-300 (FEI Company, Hillsboro, OR, USA) trans-
mission electron microscopy (TEM) operated at 200 kV.
Iron oxide nanoparticles were held on a double film (ultra-
thin continuous carbon film reinforced by lacey carbon
layer) coated copper grid (Cu-200HD, Pacific Grid-Tech,
San Francisco, CA, USA). Tilt series were acquired in the
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Figure 2. Micrographs of iron oxide nanoparticles displaying nanopores and nanopipes by (I) HRTEM, (II) STEM, and
(III) isosurface rendering of SIRT reconstruction (the inset shows the distribution of nanopipes and nanopores within

the iron oxide crystals).

high-angle annular dark-field (HAADF)-STEM mode using
a Fischione Model 3000 (E.A. Fischione Instruments, Inc.,
Export, PA, USA) annular dark-field (ADF) detector with a
beam convergence angle (semiangle) of 10.5 mrad and an
ADF inner collection angle of 14.3 mrad. A Fischione 2020
ultrahigh-tilt single-axis tomography holder was used. Im-
ages were recorded every 1° in the tilt range of —65° to
+65°. Following the acquisition of a tilt series, images were
spatially aligned by a cross-correlation algorithm using the
FEI Inspect 3D Xpress software package. B, WBP, and SIRT
reconstructions were also performed using FEI Inspect 3D
Xpress. Dataset reduction was done by removing the appro-
priate projection angle images of the originally acquired tilt
series, thus creating to a dataset consisting of 43 projection
images from —63° to +63° with 3° increments. CSATV
reconstruction was performed using code developed for
MATLAB. Three-dimensional visualization, surface area, and
volume measurements were performed using FEI Resolve
RT (Amira 5.2.2). For surface area and volume measure-
ments, reconstructed data were the first threshold using the
Otsu thresholding algorithm implemented in FEI Resolve
RT. The Otsu thresholding algorithm automatically selects
an optimal threshold value based on discriminant analysis
of an image’s gray level histogram (Otsu, 1979); thus in this
work, Otsu thresholding was performed after each recon-
struction (BP, WBP, SIRT, and CSATV) to obtain an objec-
tive threshold value for comparing reconstruction techniques.

RESULTS

A typical high-resolution TEM (HRTEM) image of an iron
oxide nanoparticle synthesized by forced hydrolysis is shown
in Figure 2(I). Facets of this particle are seen to create a
rhombohedra shape, which is consistent for particles synthe-
sized by this method (Rodriguez et al., 2007). Circular
features approximately 5 nm in size appear at the center of
these particles. Additionally, several lines appear to extend
radially from the center of this particle. To obtain additional
information on the internal features seen in the iron oxide
nanoparticles, STEM-HAADF was used to determine if the
features observed in the HRTEM image were due to a

fluctuation of local bulk density. Figure 2(II) shows circular
and linear features of the same dimensions as those seen in
HRTEM. A halo of contamination over the field of view is
also visible; the impact of this contamination will be dis-
cussed later. Since no other phase formation is likely due to
the synthesis method used here, it is reasonable to conclude
that these features are nanoscale cavities and channels.
However, with 2D images it is difficult to interpret the
morphology and exact geometrical location of these fea-
tures in nanoparticles.

ET in the STEM-HAADF mode was performed on iron
oxide nanoparticles to map in 3D both the surface morphol-
ogy and the observed features seen in HRTEM and STEM-
HAADF images. By examining slices of this 3D map and
selecting features based on contrast, a network of internal
features was generated. Figure 2(III) shows an isosurface
rendering of a SIRT reconstruction of an iron oxide nano-
particle containing nanoscale pipes and cavities (internal
light shading). Figure 2(III) inset shows the nanoscale pipes
and cavities excluding the isosurface rendering of the iron
oxide nanoparticle. From the inset image it is clear that a
network is formed between the nanoscale pipes and cavities.
A paper discussing the formation of these features has been
accepted recently (Echigo et al., forthcoming).

It must be noted that selection of these internal fea-
tures by automated thresholding proved unreliable due to
the quality of the SIRT reconstruction as a result of image
blurring caused by the contamination build up during the
tomography tilt series acquisition.

Figures 3(I)-3(IV) are a comparison of orthoslice views
in the y-z plane (the z axis is parallel to the electron beam)
of BP, WBP, SIRT, and CSATV reconstructions using a
reduced dataset of 43 images. In both BP (I) and WBP (II),
substantial degradation in reconstruction quality is ob-
served. The reconstructed surfaces of these nanoparticles
appear coarse, and an overall elongation is observed parallel
to the z axis. Additionally, there are significant noise-like
artifacts present in the surroundings of the reconstructed
object. Figure 3(II) is a SIRT reconstruction of the iron
oxide nanoparticles. Here significant improvement is made
to the overall geometry and surface reconstruction of the
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Figure 3. Orthogonal slices in the y-z plane of iron oxide nanoparticles by (I) BP, (II) WBP, (III) SIRT, and (IV) CSATV
reconstructions. These images use Otsu’s thresholding on the reconstructed data thereby creating an objective
comparison.

iron oxide nanoparticle, and at the same time noise-like
artifacts surrounding the nanoparticles have been removed.
Surfaces in the SIRT reconstruction appear smooth and well
defined compared to those of BP and WBP reconstructions;
however, significant rounding has been produced in the
iron oxide nanoparticle’s facets. A CSATV reconstruction of
the iron oxide nanoparticles is shown in Figure 3(IV).
Compared to the SIRT reconstruction, the rhombohedra
facets appear straight as opposed to the rounded appear-
ance in the previous techniques. Unlike BP, WBP, and SIRT,
the overall length of the CSATV reconstruction of the iron
oxide nanoparticles in the z direction does not appear
significantly elongated. Furthermore, cavity cross sections
are now clearly observed intersecting the rhombohedra
facet surface in the CSATV reconstruction. A complete 3D
side-by-side isosurface rendering comparison of CSATV
(green) and SIRT (yellow) iron oxide reconstructions is
shown in Supplementary Movie 1.

Supplementary Movie 1

Supplementary Movie 1, which shows a tomogram of
iron oxide nanoparticles, can be found online. Please
visit journals.cambridge.org/jid MAM.

To quantify the distortion in the z direction observed in
the SIRT reconstruction and verify the overall accuracy of
CSATYV reconstruction, SIRT and CSATV iron oxide nano-
particles reconstructed from the reduced dataset were com-
pared to the STEM-HAADF images of the original tilt
series. Figure 4(I) shows a STEM-HAADF image of the iron
oxide nanoparticles at 0° tilt. For clarity, Otsu thresholding
has been performed on the STEM-HAADF images to re-
move background effects [Fig. 4(I1)]. The corresponding
SIRT and CSATV reconstruction images are shown in Fig-
ures 4(IIT) and 4(IV), respectively. Quantification of each
reconstruction algorithm’s accuracy was done by plotting
the pixel values across the line A-B then comparing this plot
to the corresponding STEM-HAADF with Otsu threshold-
ing image [Fig. 4(V)]. Figures 5(I)-5(IV) show a rotation of
65° tilt in the iron oxide nanoparticles and the respective
rotations in SIRT and CSATV images.

Table 1 is a summary of the measurements obtained
from Figures 4 and 5. For 0° tilt, both the STEM-HAADF

and CSATV images are 42 nm in length while the SIRT
reconstructed image is 46 nm. At 65° tilt, the STEM-
HAADF and CSATV reconstruction lengths are 44 and
46 nm, respectively. In contrast, the length measured for the
SIRT reconstructed image is 65 nm. Differences in surface
area and volume were also compared between CSATV and
SIRT reconstructed iron oxide nanoparticles; however, these
measurements were not compared to the corresponding
STEM-HAADF image because this measurement requires a
full 360° of projections to calculate surface area and volume
accurately. A volume increase of approximately 100% is
observed in iron oxide nanoparticles reconstructed by SIRT
compared to that of the CSATV reconstruction. At the same
time, the surface areas of SIRT and CSATV reconstructed
iron oxide nanoparticles are approximately the same. This
similarity in surface area is the due to the missing internal
features (cavities and nanopipes) in the SIRT reconstruc-
tion. Figures 6(I) and 6(IT) show a comparison of SIRT and
CSATYV reconstructions using the same orthoslice position
in each iron oxide nanoparticle. In the CSATV reconstruc-
tion a cavity is observed while there is no cavity in the SIRT
reconstruction.

DiscussioN

It is useful when analyzing the performance of CSATV to
begin by examining the dataset used for the current compar-
ison. As shown in Figure 2(II), a buildup of carbon contam-
ination occurs during the tilt series acquisition. As a result,
image quality has been greatly reduced. In addition, the
automated focusing system, which relies on image contrast
to calculate an appropriate defocus, suffered inconsistencies

Table 1. A Comparison of Iron Oxide Nanoparticle Dimension
(Figs. 3 and 4, line A-B) for STEM and Otsu Thresholding, CSATV,
and SIRT at 0° and 65° Tilts.*

Length at 0°  Length at 65°  Surface Area  Volume
(nm) (nm) (nm?) (nm?)

STEM 42 44 — —
CSATV 42 46 13,237 34,648
SIRT 46 65 13,268 69,767

*Surface area and volume comparisons were made for CSATV and SIRT
only.
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Figure 4. Comparison of iron oxide nanoparticle images by (I) STEM, (II) STEM and Otsu thresholding, (III) CSATYV,
and (IV) SIRT at 0° tilt. The line A-B is the location where a pixel intensity line profile plot was measured in each image

and shown in the respective plot (V).
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Figure 5. Comparison of iron oxide nanoparticle images by (I) STEM, (II) STEM and Otsu thresholding, (III) CSATV,
and (IV) SIRT at 65° tilt. The line A-B is the location where a pixel intensity line profile plot was measured in each image

and shown in the respective plot (V).

due to the reduced contrast caused by carbon contamina-
tion; hence, focus quality was poor for some tilt angle
images. The combination of these issues would explain the
very low reconstruction quality of BP and WBP, as well as
the bloated, rounded appearance of iron oxide nanoparti-
cles reconstructed by SIRT. Despite the presence of contam-
ination and poor focus quality in some of the tilt series
images, CSATV has reconstructed iron oxide nanoparticles
to a significantly improved accuracy compared to SIRT.
Another area of improvement has been the reduction of the
missing wedge artifact. In this comparison it is clear that
CSATV has greatly reduced the elongation caused by the

missing wedge of information. With respect to surface area
and volume, the large increase in volume by SIRT reconstruc-
tion is attributed to the elongation from the missing wedge
effect; however, this volume increase may also be attributed
to the missing cavities and nanopipes in the SIRT reconstruc-
tion. This suggests that reconstruction accuracy has been
reduced due to both the reduction in the tomography
dataset and the missing wedge artifact. In contrast, the
CSATYV algorithm is less prone to dataset reduction and the
missing wedge artifact.

The advantages provided by CSATV are particularly
useful for systems where high tilt angles and high electron



Figure 6. A comparison between (I) SIRT and (II) CSATV show-
ing identical orthoslice positions. In the SIRT reconstructed ortho-
slice, no internal feature (cavity) is present. By comparison, an
internal feature is observed in the CSATV reconstruction. These

missing features in the SIRT reconstruction explain the reduced
surface area measurement observed.

doses may not be feasible, yet a reasonably accurate tomo-
gram is needed. Also, the study of various material morphol-
ogies such as catalyst particles, nanoscale pipes, and cavities
will be greatly improved by the elongation error reduction
offered by CSATV; the same is true for biological samples
where structure analysis is key to understanding cell trans-
formation and propagation (Kelly et al., 2007). Accurately
quantifying the physical dimension of these features is an
attractive application of ET. As is confirmed by the work of
Saghi et al. (2011), the application of CS to ET is capable of
more accurately representing object volumes with far fewer
projection images compared to SIRT. A future strategy for
electron tomography may very well include reduced data-
sets for the purposes of reduced electron dose thereby
preserving samples while maintaining image quality.

CONCLUSION

In this article, we have demonstrated that CSATV recon-
struction can greatly improve the quality and accuracy of
tomograms using reduced datasets when compared to the
common reconstruction techniques of BP, WBP, and SIRT.
Object geometry and a reduction in the missing wedge
artifact are all seen to improve with CSATV.
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