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Abstract

Data on the Internet is sent by packets that go through a network of routers. A router drops

packets either when its buffer is full or when it uses the Active Queue Management. Up to the

present time, the majority of the Internet routers use a simple DropTail strategy. The rate at

which a user injects the data into the network is determined by Transmission Control Protocol

(TCP). However, most connections in the Internet consist only of few packets, and TCP does

not really have an opportunity to adjust the sending rate. Thus, the data flow generated by

short TCP connections appears to be some uncontrolled stochastic process. In the present

work we try to describe the interaction of the data flow generated by short TCP connections

with a network of finite buffers. The framework of retrial queues and networks seems to be an

adequate approach for this problem. The effect of packet retransmission becomes essential when

the network congestion level is high. We consider several benchmark retrial network models.

In some particular cases explicit analytic solution is possible. If the analytic solution is not

available or too entangled, we suggest to use a fixed point approximation scheme. In particular,

we consider a network of one or two tandem M/M/1/K type queues with blocking, and with

M/M/1/∞ type retrial (orbit) queue. We explicitly solve the models with particular choices of

K, derive stability conditions for K ≥ 1, and present several graphs based on numerical results.
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1 Introduction

Data on the Internet is sent by packets that go through a network of routers. A router drops

packets either when its buffer is full or when the router uses the Active Queue Management (AQM)

[13]. When the AQM is used, an incoming packet is dropped by the router with probability

which is a function of the average queue size. Up to the present time, the majority of Internet

routers only drop packets when their buffers are full (Drop Tail policy). The dropped packets are

then retransmitted by the sender. The rate at which a user injects the data into the network is

determined by Transmission Control Protocol (TCP) [1, 14]. However, most connections in the

Internet consist only of few packets, and TCP does not get an opportunity to adjust the sending

rate. Thus, the data flow generated by short TCP connections appears to be a stochastic noise

that cannot be correctly represented by the utility function optimization approach [15, 17, 18]. In

the present work we try to describe the data flow generated by short TCP connections with the

help of retrial networks. We note that up to the present time most of the work on retrial models

has been done on a single retrial queue (see [2, 6, 9, 10] and references there). Networks of queues

with retrials are considered also in, for example, [5, 19, 22, 24], but the models there are different

from the model we shall describe below.

Let us model the data network as a set of links L. Let I be a set of major data flows that traverse

the network. These major flows can be interpreted for instance as the aggregation of flows that go

from some Internet Service Provider (ISP) to some major Web site or portal. We assume that each

data flow i ∈ I follows a fixed path πi = {li1, ..., lin(i)}. We also define πi(u) = {li1, ..., u}, that is,

πi(u) corresponds to the part of the path πi from the source link li1 up to link u. There is a buffer

of size Kl associated with each link l ∈ L, where, if needed, the packets wait for transmission. We

denote the transmission capacity of link l by µl. We assume that the packet transmission time is

exponentially distributed. Of course, we are aware of the fact that the routing in the Internet is

dynamic and that packets from the same TCP connection may follow different routes if some links

in the network go down. We suppose that these deficiencies are not frequent and that the routing

tables in the Internet routers do not change during long periods of time so that our assumptions

can hold. This has been shown to be the case in the Internet [21] where more than 2/3 of the

routes persist for days or even weeks. If a packet from flow i is lost in some router either because

of the buffer overflow or because of the preventive drop by AQM, it is retransmitted by the source
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after some random time. This random time can be modelled either by ·/M/1/∞ or by ·/M/∞
queue with retransmission rate µ0i. The ·/M/1/∞ queueing model is more appropriate for the

present application, since the packets wait in the Media Access Control (MAC) FIFO queue of the

sender before being retransmitted. We note that the known results on retrial queues with constant

retrial rate are much more limited than the available results on retrial queues with the retrial rate

proportional to the number of jobs in orbit. In [4] the authors consider a retrial queue with constant

retrial rate. However, the primary queue of [4] is a queue with several servers and no waiting place.

We denote the nominal aggregated sending rate of flow i ∈ I by λi. By the nominal aggregated

sending rate we mean the rate of flow i not counting retransmitted packets. Of course, the actual

sending rate, including the rate of retransmitted packets, is higher than the nominal rate.

The exact analysis of the above network model does not seem to be feasible for the general case.

Therefore, we propose and study particular cases and approximation schemes. For instance, we

can assume that packets are lost in buffers with some fixed probabilities. These probabilities can

in particular be functions of the buffer length, the average load or the average queue length as is

the case in the AQM routers. We call this approach a fixed point approximation. In the present

work we consider the following two particular cases: (i) a single M/M/1/K type retrial queue

with M/M/1/∞ type orbit queue, and (ii) two tandem M/M/1/1 type queues with M/M/1/∞
type orbit queue. Even for these two basic network examples the exact calculations of system

characteristics are involved. Having in hand the exact solutions for the basic network schemes

helps us to determine the cases when the fixed point approximation works well. We note that

M/M/· type queues mentioned above are not strictly speaking queues with Poisson input but we

still keep this notation.

In section 2 we study the case with a single M/M/1/K primary queue and a M/M/1/∞ orbit

queue. We derive explicit expressions for various key probabilities in the cases where K=1 and K=2,

and derive the stability condition for an arbitrary value of K. We further consider a fixed point

approximation scheme where we assume that the drop probabilities are fixed (yet, depending on

system parameters). We exhibit various graphs showing the regions where the approximation works

well. In section 3 we consider a network with two M/M/1/1 queues in tandem and a M/M/1/∞
orbit queue. We obtain explicit solutions for certain probabilities, and derive the (involved) stability

condition. We then analyze our fixed point approximation (which coincides with the exact solution

for the single node case with K=1). Finally, we calculate mean queue sizes and present graphs
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depicting the dependence of those sizes on system parameters.

2 M/M/1/K primary queue with M/M/1/∞ orbit queue

Let us consider a basic single node example of retrial networks. Namely, we consider the case of

one M/M/1/K primary queue with M/M/1/∞ orbit queue. Customers arriving to a full buffer

in the primary queue are blocked and go to the orbit queue. Contrary to other retrial models, we

consider the orbit (retrial) queue as an M/M/1/∞-type queue that dispatches customers to the

primary queue. This models the process of packet retransmissions by the source after they are lost

in the Internet routers. The transition rate diagram of the associated Markov chain is depicted

in Figure 1, where the horizontal axis depicts the primary queue occupancy and the vertical axis

depicts the number of jobs in orbit. The present model is a particular case of the more general

retrial queue BMAP/PH/N/N + R analyzed in [16]. The authors of [16] use the matrix analytic

technique [20]. In order to obtain explicit analytical results we have decided to perform a more

detailed analysis of the simpler model.
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Figure 1: Transition rate diagram

We denote the steady state probabilities for this system by Pi(n), i = 0, 1, ...,K, n = 0, 1, ..., where

the index i corresponds to the number of jobs in the primary queue and the index n corresponds

to the number of jobs in the orbit queue. Also, we denote the input rate to the system by λ, the

service rate of the primary queue by µ and the service rate of the orbit queue by µ0. We can write

the following sets of balance equations.
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• For i = 0:

λP0(0) = µP1(0),

(λ + µ0)P0(n) = µP1(n), n ≥ 1,

• For 0 < i < K:

(λ + µ)Pi(0) = λPi−1(0) + µPi+1(0) + µ0Pi−1(1),

(λ + µ + µ0)Pi(n) = λPi−1(n) + µPi+1(n) + µ0Pi−1(n + 1), n ≥ 1,

• For i = K:

(λ + µ)PK(0) = λPK−1(0) + µ0PK−1(1),

(λ + µ)PK(n) = λPK−1(n) + µ0PK−1(n + 1) + λPK(n − 1), n ≥ 1,

• The set of balance equations for the transitions of the number of jobs in the orbit queue

between levels n and n + 1 is given by

λPK(n) = µ0

K−1
∑

i=0

Pi(n + 1), n ≥ 0.

Using the above sets of balance equations, we derive a system of equations for the generating

functions Gi(z) =
∑∞

n=0 znPi(n), i = 0, 1, ...,K,

(λ + µ0)G0(z) − µ0P0(0) = µG1(z),

(λ + µ + µ0)Gi(z) − µ0Pi(0) = λGi−1(z) + µGi+1(z) +
µ0

z
(Gi−1(z) − Pi−1(0)), 0 < i < K,

(λ + µ)GK(z) = λGK−1(z) +
µ0

z
(GK−1(z) − PK−1(0)) + λzGK(z),

λGK(z) =
µ0

z

K−1
∑

i=0

(Gi(z) − Pi(0)).

In fact, one of the last two equations is redundant.

Next, consider the particular cases of K = 1 and K = 2. The case K = 1 was analyzed in

[3, 11, 12] and the case K = 2 was analyzed in [23]. Let us provide here relevant results for the

sake of completeness.

Consider first K = 1. If we set z = 1 in the first and the last of the above equations for the generating

functions, denote Pi(·) = Gi(1) and add the normalization condition, we get the following system

of equations

(λ + µ0)P0(·) − µP1(·) = µ0P0(0),
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−µ0P0(·) + λP1(·) = −µ0P0(0),

P0(·) + P1(·) = 1,

which results in

P0(·) = 1 − λ

µ
,

P1(·) =
λ

µ
,

P0(0) = 1 − λ

µ
− λ

µ0

λ

µ
= 1 − λ

µ
(1 +

λ

µ0
).

Furthermore, given P0(0), G0(z) and G1(z) are easily calculated from the above set of equations for

the generating functions. Since the empty system is a regeneration point, P0(0) > 0 is a necessary

and sufficient condition for the system stability. Note that the primary queue is always stable. The

stability issue is with regard to the orbit queue. The condition P0(0) > 0 is equivalent to

ρ <
1

1 + ρ0
, (1)

with ρ = λ/µ and ρ0 = λ/µ0. That is, λ < (
√

µ0(µ0 + 4µ) − µ0)/2. One can see that the stability

condition for the system composed of M/M/1/1 retrial queue and M/M/1/∞ orbit queue is more

restrictive than the stability condition for the classical queue with infinite buffer. We also note that

as µ0 → ∞, ρ0 → 0, and the above stability condition becomes the standard condition ρ < 1.

Next, let us analyze the case K = 2 (treated before in [23]). Using again the equations for the gener-

ating functions and setting z = 1, we obtain a system of linear equations for P0(·), P1(·), P2(·), P0(0)

and P1(0). Then, the solution of the system gives:

P0(·) = 1 − λ

µ
,

P1(·) =
λµ(µ + µ0) − λ2(µ0 − µ) − λ3

µ2(2λ + µ + µ0)
,

P2(·) =
λ2(λ + µ + µ0)

µ2(2λ + µ + µ0)
,

P0(0) =
µµ0(µ + µ0) − λµ0(µ0 − µ) − 2λ2µ0 − λ3

µµ0(2λ + µ + µ0)
,

P1(0) =
λµµ0(µ + µ0) − λ2µ0(µ0 − µ) − 2λ3µ0 − λ4

µ2µ0(2λ + µ + µ0)
.

As in the case K = 1, the stability condition is given by

P0(0) > 0,
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which is equivalent to

µµ0(µ + µ0) − λµ0(µ0 − µ) − 2λ2µ0 − λ3 > 0.

Substituting into the above inequality µ = λ/ρ and µ0 = λ/ρ0, we obtain the stability condition in

terms of ρ and ρ0 as follows:

−(1 + ρ0)
2ρ2 + (1 + ρ0)ρ + ρ0 > 0. (2)

Solving the above quadratic inequality, we get

ρ <
1 +

√
1 + 4ρ0

2(1 + ρ0)
. (3)

Since 1 +
√

1 + 4ρ0 > 2, the above condition (3) gives a larger region of stability than the one in

condition (1). As one could expect, the increase of the buffer space in the primary queue improves

the stability of the system. In the case of fast retransmissions (ρ0 → 0), condition (1) can be

approximated as

ρ < 1 − ρ0 + o(ρ0),

and condition (3) can be approximated as

ρ < 1 − ρ2
0 + o(ρ2

0).

Next, let us derive the stability condition for arbitrary K. Let us enumerate the system states (n, i)

in lexicographic order. Then, the Markov chain generator for the system has the block structure

Q = {Qij}i,j≥0 where

Qi,i−1 =































0 µ0 0 · · · 0 0

0 0 µ0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 µ0

0 0 0 · · · 0 0































, i ≥ 1,

Qi,i =





























−λ − (1 − δi,0)µ0 λ 0 · · · 0 0

µ −λ − µ − (1 − δi,0)µ0 λ · · · 0 0

0 µ −λ − µ − (1 − δi,0)µ0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −λ − µ − (1 − δi,0)µ0 λ

0 0 0 · · · µ −λ − µ





























,
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i ≥ 0,

Qi,i+1 =































0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 0 λ































, i ≥ 0,

and the other blocks are zeros. All blocks are of dimension (K + 1) × (K + 1). Let us denote

Q0 = Qi,i−1, Q1 = Qi,i, and Q2 = Qi,i+1 for i ≥ 1. Then, the necessary and sufficient condition for

the system stability is given by the following inequality [7, 20]

xQ2e < xQ0e, (4)

where x is an 1 × (K + 1) vector which is the unique solution to the system






x(Q0 + Q1 + Q2) = 0,

xe = 1,
(5)

and where e is the vector of ones and its dimension is (K + 1) × 1. The system (5) has an explicit

solution

xr = x0

(

λ + µ0

µ

)r

= x0ρ
r

(

1 + ρ0

ρ0

)r

, r = 0, ...,K, (6)

with

x0 =

(

K
∑

r=0

(

λ + µ0

µ

)r
)−1

.

Substituting (6) into (4), we obtain the following stability condition in terms of ρ and ρ0.

Proposition 1 The M/M/1/K retrial queue with M/M/1/∞ orbit queue is stable if and only if

1 +

K−1
∑

r=1

ρr

(

1 + ρ0

ρ0

)r

− ρ0ρ
K

(

1 + ρ0

ρ0

)K

> 0. (7)

First, we note that the conditions (1) and (2) are indeed particular cases of the above general

condition (7). Then, let us study the limiting case K → ∞. Denote ξ = ρ1+ρ0

ρ0
. Using this new

notation, the condition (7) can be rewritten as follows:

1 +

K−1
∑

r=1

ξr − ρ0ξ
K > 0,
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or, equivalently,
ξK − 1

ξ − 1
− ρ0ξ

K > 0. (8)

Next, consider two cases 0 < ξ < 1 and ξ > 1. We note that the conditions 0 < ξ < 1 and ξ > 1 are

equivalent to the conditions ρ < ρ0

1+ρ0
and ρ > ρ0

1+ρ0
, respectively. When 0 < ξ < 1, the condition

(8) is equivalent to

ξK − 1 − ρ0ξ
K(ξ − 1) < 0.

Since 0 < ξ < 1, one can always find a sufficiently large K such that the above condition is satisfied.

Thus, the system is always stable in the case ρ < ρ0

1+ρ0
. In the second case ξ > 1, the condition (8)

is equivalent to

ξK − 1 − ρ0ξ
K(ξ − 1) > 0.

We can rewrite the above condition as follows:

(1 + ρ0) − ρ0ξ −
1

ξK
> 0.

For the limiting case K → ∞, the above condition reduces to

ξ <
1 + ρ0

ρ0
.

or, equivalently,

ρ < 1.

Since ρ0

1+ρ0
< 1, we can combine the two separate cases 0 < ξ < 1 and ξ > 1 to produce a single

stability condition: ρ < 1. This condition is expected as in the system with large buffer size K the

retrials are seldom and the system behaves similarly to the standard M/M/1 queue.

Now let us consider an approximate model where we assume that packets are dropped with a fixed

probability P . It was shown in [6] that the approximate model with fixed probabilities approximates

well the exact retrial model when the nominal load is small.

Taking into account retransmissions, the actual load on the primary queue is given by the following

formula

ρ̂ =
ρ

1 − P
, (9)

where ρ = λ/µ is the nominal load.
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Assuming that the packets arrive to the primary queue according to a Poisson process, one can

use for the approximation the classical M/M/1/K queueing model. Thus, the drop probability is

given by

P =
ρ̂K(1 − ρ̂)

(1 − ρ̂K+1)
, (10)

where K is the total buffer size in packets.

Proposition 2 If ρ < 1, the system of equations (9) and (10) has a unique solution. This solution

can be found by fixed point iterations

ρ̂(n+1) = ρ
1 − (ρ̂(n))K+1

1 − (ρ̂(n))K
(11)

which converge for any initial value ρ̂(0) ∈ [0,∞).

Proof: We substitute the expression for the packet loss probability (10) into (9) to get

ρ̂ =
ρ(1 − ρ̂K+1)

1 − ρ̂K
.

We can rewrite it as follows:

ρ̂(1 − ρ̂K)

1 − ρ̂K+1
= ρ,

ρ̂ + ρ̂2 + ... + ρ̂K

1 + ρ̂ + ρ̂2 + ... + ρ̂K
= ρ, 1 − 1

1 + ρ̂ + ρ̂2 + ... + ρ̂K
= ρ.

Now let us consider the left hand side of the above equation. Clearly this function of ρ̂ is strictly

increasing on the interval [0,∞). Moreover, it has a horizontal asymptote y = 1. Hence, if ρ ≥ 1,

there is no solution and if ρ < 1 there is a unique solution.

Next we show that the fixed point iterations (11) converge to the solution of (9) and (10). Since

the above considerations demonstrate that there is a unique fixed point (of course, we are now

interested only in the case ρ < 1), we only need to prove that the fixed point iterations converge.

To prove this, it is enough to show that the derivative of the right hand side of (11) is less than

one (see e.g., Theorem 1.12 in [8]).

d

dρ̂

[

ρ
1 − ρ̂K+1

1 − ρ̂K

]

=
d

dρ̂

[

ρ

(

1 +
ρ̂K

1 + ρ̂ + ... + ρ̂K−1

)]

=

ρ
Kρ̂K−1 + (K − 1)ρ̂K + ... + 2ρ̂2K−3 + ρ̂2K−2

(1 + ρ̂ + ... + ρ̂K−1)2
=

ρ
Kρ̂K−1 + (K − 1)ρ̂K + ... + 2ρ̂2K−3 + ρ̂2K−2

1 + 2ρ̂ + ... + Kρ̂K−1 + (K − 1)ρ̂K + ... + 2ρ̂2K−3 + ρ̂2K−2
< ρ < 1

This completes the proof.

2
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3 Two M/M/1/1 queues in tandem with M/M/1/∞ orbit queue

As another particular case of the network of finite queues with retrials, let us consider two M/M/1/1

queues in tandem with M/M/1/∞ orbit queue. We denote the steady state probabilities for this

system by Pij(n), i, j = 0, 1 and n = 0, 1, ... , where the indices i and j correspond to the number

of jobs in the first and the second queues, respectively, and n corresponds to the number of jobs in

the orbit queue. We denote the input rate to the system by λ, the service rate of queue k by µk,

k = 1, 2, and the service rate of the orbit queue by µ0. The transition rate diagram is depicted in

Figure 2. We can write the following five sets of balance equations:

• For the (0, 0) column:

λP00(0) = µ2P01(0), (12)

(λ + µ0)P00(n) = µ2P01(n), n ≥ 1,

• For the (1, 0) column:

(λ + µ1)P10(0) = λP00(0) + µ0P00(1) + µ2P11(0),

(λ + µ1)P10(n) = λP00(n) + µ0P00(n + 1) + λP10(n − 1) + µ2P11(n), n ≥ 1,

• For the (0, 1) column:

(λ + µ2)P01(0) = µ1P10(0),

(λ + µ2 + µ0)P01(n) = µ1P10(n) + µ1P11(n − 1), n ≥ 1,

• For the (1, 1) column:

(λ + µ1 + µ2)P11(0) = λP01(0) + µ0P01(1),

(λ + µ1 + µ2)P11(n) = λP01(n) + µ0P01(n + 1) + λP11(n − 1), n ≥ 1,

• Taking a “cut” between levels n and n + 1 of the number of jobs in orbit yields:

λP10(n) + (λ + µ1)P11(n) = µ0P00(n + 1) + µ0P01(n + 1), n ≥ 0.

Using the above sets of balance equations, we derive a system of equations for the generating

functions Gij(z) =
∑∞

n=0 znPij(n), i, j = 0, 1.

(λ + µ0)G00(z) − µ2G01(z) = µ0P00(0), (13)
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Figure 2: Transition rate diagram

(λz + µ0)G00(z) − z(λ(1 − z) + µ1)G10(z) + µ2zG11(z) = µ0P00(0), (14)

−µ1G10(z) + (λ + µ2 + µ0)G01(z) − µ1zG11(z) = µ0P01(0), (15)

(λz + µ0)G01(z) − z(λ(1 − z) + µ1 + µ2)G11(z) = µ0P01(0), (16)

µ0G00(z) − λzG10(z) + µ0G01(z) − (λ + µ1)zG11(z) = µ0P00(0) + µ0P01(0). (17)

Next, we denote Pij(·) = Gij(1) for i, j = 0, 1, and set z = 1 in equations (13),(14),(15),(17), add

equation (12) and the normalization equation P00(·) + P10(·) + P01(·) + P11(·) = 1. This results in

a system of linear independent equations:

(λ + µ0)P00(·) − µ2P01(·) = µ0P00(0),

(λ + µ0)P00(·) − µ1P10(·) + µ2P11(·) = µ0P00(0),

−µ1P10(·) + (λ + µ2 + µ0)P01(·) − µ1P11(·) = µ0P01(0),

µ0P00(·) − λP10(·) + µ0P01(·) − (λ + µ1)P11(·) = µ0P00(0) + µ0P01(0),

λP00(0) = µ2P01(0),

P00(·) + P10(·) + P01(·) + P11(·) = 1.

The solution of the above system of linear equations leads to the following result

12



Proposition 3 The probabilities Pij(·) and Pij(0) for i, j = 0, 1 are given by

P00(·) = 1 − λ

µ1
− λ

µ2
,

P10(·) =
λ

µ1
,

in particular, implying that

P01(·) + P11(·) =
λ

µ2
,

P01(·) =
λ(µ1µ2(µ1 + µ2 + µ0) − λ(µ0(µ1 + µ2) − µ1µ2) − λ2(µ1 + µ2))

µ1µ2
2(2λ + µ1 + µ2 + µ0)

,

P11(·) =
λ2(λ(µ1 + µ2) + µ0(µ1 + µ2) + µ1µ2)

µ1µ
2
2(2λ + µ1 + µ2 + µ0)

,

P00(0) =
1

µ0µ1µ2(2λ + µ1 + µ2 + µ0)

(

µ0µ1µ2(µ1 + µ2 + µ0) − λ[µ2
0(µ1 + µ2) + µ0(µ

2
1 + µ2

2)]

−λ2[µ2
1 + µ2

2 + µ1µ2 + 2µ0(µ1 + µ2)] − λ3[µ1 + µ2]
)

,

P01(0) =
λ

µ2
P00(0),

P10(0) =
λ(λ + µ2)

µ1µ2
P00(0),

P11(0) =
λ2(λ2 + λ(µ1 + µ2 + µ0) + µ0(µ1 + µ2) + µ1µ2)

µ1µ2
2(2λ + µ1 + µ2 + µ0)

P00(0).

Again, as in the case of a single M/M/1/1 retrial queue, once P00(0) and P01(0) are determined, the

generating functions Gij(z) are uniquely determined by the system of linear equations (13)-(16).

Let us now investigate the stability of the system. We argue that the empty system is a regeneration

point, and hence P00(0) > 0 is a necessary and sufficient condition for the system stability. The

condition P00(0) > 0 is equivalent to

µ0µ1µ2(µ1 + µ2 + µ0) − λ[µ2
0(µ1 + µ2) + µ0(µ

2
1 + µ2

2)]

−λ2[µ2
1 + µ2

2 + µ1µ2 + 2µ0(µ1 + µ2)] − λ3[µ1 + µ2] > 0. (18)

As the above expression seems to be too complex to analyze in the general case, we consider two

important particular cases: the case of large µ0 and the case of µ1 = µ2.

We note that for large values of µ0 the probability P00(0) has a simple asymptotics. Namely, we

have

P00(0) → 1 − λ

µ1
− λ

µ2
,
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as µ0 → ∞. Thus, if
λ

µ1
+

λ

µ2
< 1, (19)

then there always exists a large enough value of µ0 that ensures the stability of the system.

Next, let us consider the case µ1 = µ2 =: µ. Without loss of generality, we can take λ = 1. The

stability condition (18) becomes

(µ − 2)µ2
0 + 2[µ(µ − 1) − 2]µ0 − 3µ − 2 > 0. (20)

We first note that if µ < 2, then µ − 2 < 0 and µ(µ − 1) − 2 < 0, and consequently, the stability

condition cannot be satisfied by any choice of µ0. Thus, a necessary condition for stability in this

particular case is µ > 2. Once this condition is guaranteed, the parameter µ0 has to be chosen

greater than the positive root of the left hand side of (20). Namely,

µ0 >

√

µ3(µ − 2) − [µ(µ − 1) − 2]

µ − 2
.

We note that the right hand side of the above inequality has the asymptotics 3/(2µ) as µ → ∞.

Indeed, when µ becomes very large, (almost) every job passes through queues 1 and 2 without

blocking. If there are a few jobs that get blocked, a (very) small value of µ0 > 3/(2µ) will ensure

stability.

Next, let us analyze the fixed point approximation model which is described by the following set

of equations

ρ̂1 =
ρ1

(1 − P1)(1 − P2)
, (21)

ρ̂2 =
ρ2

(1 − P2)
, (22)

P1 =
ρ̂1

1 + ρ̂1
, (23)

P2 =
ρ̂2

1 + ρ̂2
. (24)

Note that equations (22) and (24) correspond exactly to the single node case with K = 1. Hence,

we have

P2 = ρ2,

and

ρ̂2 =
ρ2

1 − ρ2
.

14



Then, to get P1 and ρ̂1, we substitute P2 = ρ2 and P1 from equation (23) into equation (21),

ρ̂1 =
ρ1

(1 − P1)(1 − ρ2)
, (25)

which results in

ρ̂1 =
ρ1

1 − ρ1 − ρ2
,

and, consequently, we have

P1 =
ρ1

1 − ρ2
.

Note that the system of equations (21)-(24) has a unique and positive solution if and only if

ρ1 + ρ2 < 1. It is interesting that this condition coincides with the stability condition (19) for the

limiting case when µ0 → ∞.

Let us now study the average number of jobs in the system. Differentiating equations (13),(14),(15),

and (17), then setting z = 1 and denoting Lij := G′
ij(1), i, j = 0, 1, we obtain a system of linear

equations

(λ + µ0)L00 − µ2L01 = 0, (26)

(λ + µ0)L00 − µ1L10 + µ2L11 = −λP00(·) − (λ − µ1)P10(·) − µ2P11(·), (27)

−µ1L10 + (λ + µ2 + µ0)L01 − µ1L11 = µ1P11(·), (28)

µ0L00 − λL10 + µ0L01 − (λ + µ1)L11 = λP10(·) + (λ + µ1)P11(·). (29)

Proposition 4 The average number of jobs in orbit is given by

Lorbit = L00 + L10 + L01 + L11, (30)

the average number of jobs in the system is given by

Lsystem = Lorbit + P10(·) + P01(·) + 2P11(·), (31)

and the average time spent by a job in the system is given by

Tsystem = Lsystem/λ, (32)

where Lij , i, j = 0, 1 are provided by the solution of the system of equations (26)-(29), and the

probabilities Pij(·) are given in Proposition 3. Moreover, denoting by L1 and L2 the mean queue

size in the first and the second M/M/1/1 queues, respectively, we have

L1 = P10(·) + P11(·),
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L2 = P01(·) + P11(·),

and

Lsystem = Lorbit + L1 + L2.

Let us consider a numerical example. We fix λ = 1 and the total network capacity µ1 + µ2 = 5.

In Figure 3, we plot the average number of jobs in the system Lsystem as a function of the first

node capacity µ1. We study two cases: µ0 = 4 and µ0 = 7. First, we observe that in the middle

of the capacity value range, the value of Lsystem becomes less sensitive when µ0 increases. Second,

it seems that the minimal value of Lsystem is achieved when µ1 = µ2. This observation is further

confirmed by the more detailed Figure 4.
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Figure 3: Lsystem as a function of µ1 given µ1 + µ2 = 5

4 Conclusions and Future Research

We have proposed a model for networks of finite-buffer queues with retrials. The construction of

the present model is motivated by the need to describe the behavior of the Internet traffic generated

by short TCP connections. The traffic generated by short TCP connections cannot be described

adequately by the utility optimization based approach. We have provided analytical solutions for
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Figure 4: Lsystem as a function of µ1 given µ1 + µ2 = 5 (detailed plot for µ0 = 4.0).

some particular examples of networks with one node, and with two nodes in tandem, where the

retrial queue is an M/M/1/∞ system. For the networks with more complex topologies, we propose

to use a fixed point approximation. It is shown that the fixed point iterations converge in the

case of a single node. A future research topic is to investigate the convergence of the fixed point

iterations for any network topology. For the two-node tandem network (with retrials) we have

shown numerically that equal allocation of transmission capacity between the two nodes minimizes

the expected number of customers in the system. The optimal capacity allocation in the case of

more complex networks is another future research direction.
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