Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T08:02:59.776Z Has data issue: false hasContentIssue false

The chromosomes of Picea sitchensis (Bong.) Carr. and its relatives

Published online by Cambridge University Press:  05 December 2011

D. P. Fox
Affiliation:
Department of Genetics and Microbiology, University of Aberdeen, 2 Tillydrone Avenue, Aberdeen AB9 2TN, Scotland, U.K.
Get access

Synopsis

Picea sitchensis has a haploid complement of twelve metacentric or submetacentric chromosomes which are similar to each other in size. Prominent secondary constrictions, which are probably the sites of nucleolus organisers, occur on five chromosomes (N.O.R.s). The DNA content of the haploid, unreplicated chromosome set is 9 × 109 nucleotide pairs and, in spite of earlier claims, probably does not vary significantly between different populations. B-chromosomes occur extensively in the southern half of the species range. They have little effect on growth rate but delay the time of ♂ and ♀ flowering. Meiosis starts and ends in spring, taking about twenty-two days to complete. The B-chromosomes do not pair at meiosis and appear to be distributed at random. There is marked accumulation of B-chromosomes when transmitted through the ♀ parent, possibly due to preferential segregation during meiosis. A balance between gain by accumulation and loss due to delay of flowering may account for the natural distribution of the B-chromosome.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barzan, Z. & Papes, D. 1978. Karyotype analysis in Pinus: a contribution to the standardisation of the karyotype analysis and review of some applied techniques. Silvae Genetica 27, 144150.Google Scholar
Burley, J. 1965. Karyotype analysis of Sitka spruce, Picea sitchensis (Bong.) Carr. Silvae Genetica 14, 127132.Google Scholar
Drewry, A. 1982. G-banded chromosomes in Pinus resinosa. Journal of Heredity 73, 305306.CrossRefGoogle Scholar
Flavell, R. B. 1980. The molecular characterisation and organisation of plant chromosomal DNA sequences. Annual Review of Plant Physiology 31, 569596.CrossRefGoogle Scholar
Grant, W. F. 1976. The evolution of karyotype and polyploidy in arboreal plants. Taxon 25, 7584.CrossRefGoogle Scholar
Hizume, M., Atsuo, O. & Tanaka, A. 1983. Chromosome banding in the genus Pinus. I. Identification of chromosomes in P. nigra by fluorescent banding method. Botanical Magazine (Tokyo) 96, 273276.CrossRefGoogle Scholar
Hotta, Y. & Miksche, J. P. 1974. Ribosomal RNA genes in four conifers. Cell Differentiation 2, 199205.CrossRefGoogle Scholar
Hunziker, J. H. 1961. Chromosome studies in Cupressus and Libocedrus. Revista de Investigaciones Agricolas 15, 169185.Google Scholar
Kean, V. M. 1981. Studies on the supernumerary B-chromosome in Sitka spruce. Ph.D. Thesis, Aberdeen University.Google Scholar
Kean, V. M., Fox, D. P. & Faulkner, R. 1982. The accumulation mechanism of the supernumerary (B-) chromosome in Picea sitchensis (Bong.) Carr. and the effect of this chromosome on male and female flowering. Silvae Genetica 31, 126131.Google Scholar
Kerr, D. P. 1951. The summer-dry climate of Georgia Basin, British Columbia. Transactions of the Royal Canadian Institute 29, 2331.Google Scholar
Kriebel, H. B. 1985. DNA sequence components of the Pinus strobus nuclear genome. Canadian Journal of Forest Research 15, 14.CrossRefGoogle Scholar
Kruklis, M. V. 1971. Supplementary chromosomes in gymnosperms (In Picea obovata LDB as an example). Doklady Akademii Nauk SSR. Seriya Biologiya 196, 4447.Google Scholar
McPherson, P. & Filion, W. G. 1981. Karyotype analysis and the distribution of constitutive heterochromatin in five species of Pinus. Journal of Heredity 72, 193198.CrossRefGoogle Scholar
Mergen, F. & Thielges, B. A. 1967. Intraspecific variation in nuclear volume in four conifers. Evolution 21, 720724.CrossRefGoogle ScholarPubMed
Miksche, J. P. 1967. Variation in DNA content of several conifers. Canadian Journal of Genetics & Cytology 9, 717722.CrossRefGoogle Scholar
Miksche, J. P. 1968. Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus Banksiana. Canadian Journal of Genetics & Cytology 10, 590600.CrossRefGoogle Scholar
Miksche, J. P. 1971. Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma 32, 343352.CrossRefGoogle ScholarPubMed
Miksche, J. P. & Hotta, Y. 1973. DNA base composition and repetitious DNA in several conifers. Chromosoma 41, 2936.CrossRefGoogle Scholar
Moir, R. B. 1975. A study of the Sitka spruce karyotype with special reference to B-chromosomes. Ph.D. Thesis, Aberdeen University.Google Scholar
Moir, R. B. & Fox, D. P. 1972. Supernumerary chromosomes in Picea sitchensis (Bong.) Carr. Silvae Genetica 21, 182186.Google Scholar
Moir, R. B. & Fox, D. P. 1975. Male meiosis in Sitka spruce, Picea sitchensis (Bong.) Carr. Silvae Genetica 24, 187192.Google Scholar
Moir, R. B. & Fox, D. P. 1976. Supernumerary chromosomes and growth rate in Picea sitchensis (Bong.) Carr. Silvae Genetica 25, 139141.Google Scholar
Moir, R. B. & Fox, D. P. 1977. Supernumerary chromosome distribution in provenances of Picea sitchensis (Bong.) Carr. Silvae Genetica 26, 2633.Google Scholar
Morgenstern, E. K. 1962. Note on chromosome morphology in Picea rubens Sarg. and Picea mariana (Mill.) B.S.P. Silvae Genetica 11, 163164.Google Scholar
Owens, J. N. & Molder, M. 1980. Sexual reproduction in Sitka spruce (Picea sitchensis). Canadian Journal of Botany 58, 886901.CrossRefGoogle Scholar
Pederick, L. A. 1970. Chromosome relationships between Pinus species. Silvae Genetica 19, 171180.Google Scholar
Rake, A. V., Miksche, J. P., Hall, R. B. & Hansen, K. M. 1980. DNA reassociation kinetics in four conifers. Canadian Journal of Genetics & Cytology 22, 6979.CrossRefGoogle Scholar
Randolph, L. F. 1928. Types of supernumerary chromosomes in maize. Anatomical Record 41, 102 (Abstr.).Google Scholar
Salazar, R. 1983. Karyotype analysis in Pinus caribaea var. hondurensis Barr. and Golf. Silvae Genetica 32, 184188.Google Scholar
Saylor, L. C. 1983. Karotype analysis of the genus Pinus—subgenus Strobus. Silvae Genetica 32, 119124.Google Scholar
Saylor, L. C. & Simmons, H. A. 1970. Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35, 294303.CrossRefGoogle Scholar
Schweitzer, D. 1976. Reverse chromosome banding with chromomycin and DAPI. Chromosoma 58, 307324.CrossRefGoogle Scholar
Sparrow, A. H., Price, H. F. & Underbrink, A. G. 1972. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symposia in Biology 23, 451494.Google ScholarPubMed
Stevens, N. M. 1908. The chromosomes in Diabrotica vittata, Diabrotica soror, and Diabrotica 12-punctata. Journal of Experimental Zoology 5, 453470.CrossRefGoogle Scholar
Tanake, R. & Hizume, M. 1980. C-banding treatment for the chromosomes of some gymnosperms. Botanical Magazine (Tokyo) 93, 167170.CrossRefGoogle Scholar
Teoh, S. B. & Rees, H. 1976. Nuclear DNA amounts in populations of Picea and Pinus species. Heredity 36, 123137.CrossRefGoogle Scholar
Teoh, S. B. & Rees, H. 1977. B-chromosomes in White Spruce. Proceedings of the Royal Society of London B198, 325344.Google Scholar
Terasmaa, T. 1975. On variation in the chromosome complement of Picea abies (L.) Karst. from different provenances. Cytologia 40, 377382.CrossRefGoogle Scholar
Wright, J. W. 1955. Species crossability in spruce in relation to distribution and taxonomy. Forest Science 1, 319349.Google Scholar