Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-26T17:20:55.979Z Has data issue: false hasContentIssue false

Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora)

Published online by Cambridge University Press:  11 May 2009

A. J. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
Eve C. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
T. Brattegard
Affiliation:
Institute of Marine Biology, University of Bergen, Blomsterdalen, N 5065, Norway
T. Bakke
Affiliation:
Institute of Marine Biology, University of Bergen, Blomsterdalen, N 5065, Norway

Extract

Adult and larval stages of Siboglinum fiordicum, collected from 32 to 35 m depth, accumulate measurable quantities of amino acids and glucose from low concentrations. The amino acids are absorbed against a considerable gradient. The glucose and the amino acids are metabolized in the tissues and substantial amounts are respired to give carbon dioxide or volatile organic acids. Under the experimental conditions almost all the metabolism follows aerobic pathways.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearn, G. A. & Gomme, J., 1975. Transport of exogenous D-glucose by the integument of a polychaete worm (Nereis diversicolor Müller). Journal of Experimental Biology, 62, 243264.CrossRefGoogle Scholar
Ahearn, G. A. & Townsley, S. J., 1975. Integumentary amino acid transport and metabolism in the apodous sea cucumber, Chiridota rigida. Journal of Experimental Biology, 62, 733752.CrossRefGoogle Scholar
Bailey, R. W., 1969. Detection of carbohydrates. In Data for Biochemical Research (ed. Dawson, R. M. C. et al.), pp. 539548. Oxford: Clarendon Press.Google Scholar
Bakke, T., 1974. Settling of the larvae of Siboglinum fiordicum Webb (Pogonophora) in the laboratory. Sarsia, 56, 5770.CrossRefGoogle Scholar
Bakke, T., 1976. The early embryos of Siboglinum fiordicum Webb (Pogonophora) reared in the laboratory. Sarsia, 60, 111.CrossRefGoogle Scholar
Bakke, T., 1977. Development of Siboglinum fiordicum Webb (Pogonophora) after metamorphosis. Sarsia, 63, 6573.CrossRefGoogle Scholar
Bamford, D. R. & Gingles, R., 1974. Absorption of sugars in the gill of the Japanese oyster, Crassostrea gigas. Comparative Biochemistry and Physiology, 49A, 637646.CrossRefGoogle Scholar
Bamford, D. R. & Mccrea, R., 1975. Active absorption of neutral and basic amino acids by the gill of the common cockle, Cerastoderma edule. Comparative Biochemistry and Physiology, 50A, 811817.CrossRefGoogle Scholar
Bohling, H., 1970. Untersuchungen Über freie gelöste Aminosaüren in Meereswasser. Marine Biology, 6, 213225.CrossRefGoogle Scholar
Clark, M. E., 1964. Biochemical studies on the coelomic fluid of Nephtys hombergi (Polychaeta; Nephtyidae), with observations on changes during different physiological states. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 127, 6384.CrossRefGoogle Scholar
Clark, M. E., 1968. Free amino-acid levels in the coelomic fluid and body wall of polychaetes. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 134, 3547.CrossRefGoogle Scholar
Clark, M. E., 1973. Amino acids and osmoregulation. In Experiments in Physiology and Bio-chemistry, vol. 6 (ed. Kerkut, G. A.), pp. 81114. London: Academic Press.Google Scholar
Clark, M. E., Jackson, G. A. & North, W. J., 1972. Dissolved free amino acids in Southern California coastal waters. Limnology and Oceanography, 17, 749758.CrossRefGoogle Scholar
Coles, G. C, 1967. Modified carbohydrate metabolism in the tropical shipworm Alma emini. Nature, London, 216, 685686.CrossRefGoogle Scholar
Crawford, C. C, Hobbie, J. E. & Webb, K. L., 1974. The utilization of dissolved free aminoacids by estuarine microorganisms. Ecology, 55, 551563.CrossRefGoogle Scholar
De Burgh, M. E., West, B. & Jeal, F., 1977. Absorption of L-alanine and other dissolved nutrients by the spines of Paracentrotus lividus (Echinoidea). Journal of the Marine Biological Association of the United Kingdom, 57, 10311045.CrossRefGoogle Scholar
Fevrier, A., Barbier, M. & Saliot, A., 1975. Molecules organiques dissoutés dans l'eau de mer: capture par les invertébrés marins (acide palmitique, alcool cetylique, dotriacontane). Compte rendu hebdomadaire des séances de l'Academie des sciences (ser. D), 281, 239241.Google Scholar
George, J. D., 1975. Observations on the pogonophore, Siboglinum fiordicum Webb from Fanafjorden, Norway. Underwater Association Report, 1, 1726.Google Scholar
Greenfield, L. J., Hamilton, R. D. & Weiner, C, 1970. Non destructive determination of protein, total amino acids and ammonia in marine sediments. Bulletin of Marine Science, 20, 281304.Google Scholar
Hochachka, P. W., 1975. An explanation of metabolic and enzyme mechanisms underlying animal life without oxygen. In Biochemical and Biophysical Perspectives in Marine Biology, vol. 2 (ed. Malins, D. C. and Sargent, J. R.), pp. 107137. London: Academic Press.Google Scholar
Hylleberg, J., 1975. Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia, 14, 113137.CrossRefGoogle Scholar
Isserhoff, H., Tunis, M. & Read, C. P., 1972. Changes in amino acids of bile in Fasciola hepaiica infections. Comparative Biochemistry and Physiology, 41B, 157163.Google Scholar
Ivanov, A. V., 1963. Pogonophora. 479 pp. London: Academic Press.CrossRefGoogle Scholar
Jägersten, G., 1956. Investigations on Siboglimim ekmani n.sp., encountered in Skagerak, with some general remarks on the group Pogonophora. Zoologiska bidrag frân Uppsala, 31, 211252.Google Scholar
Josefsson, B. O., 1970. Determination of soluble carbohydrates in sea water by partition chromatography after desalting by ion-exchange membrane electrodialysis. Analytica chimica acta, 52, 6573.CrossRefGoogle Scholar
Lawrence, A. L. & Lawrence, D. C, 1967. Sugar absorption in the intestine of Cryptochiton stelleri. Comparative Biochemistry and Physiology, 22, 341357.CrossRefGoogle Scholar
Little, C. & Gupta, B. L., 1968. Pogonophora: Uptake of dissolved nutrients. Nature, London, 281, 873874.CrossRefGoogle Scholar
Little, C. & Gupta, B. L., 1969. Studies on Pogonophora. III. Uptake of nutrients. Journal of Experimental Biology, 51, 759773.CrossRefGoogle Scholar
Mccammon, H. M. & Reynolds, W. A., 1976. Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Marine Biology, 34, 4151.CrossRefGoogle Scholar
Maguire, C. & Boaden, P. J. S., 1975. Energy and evolution in the thiobios: an extrapolation from the marine gastrotrich Thiodasys sterreri. Cahiers de biologie marine, 16, 635646.Google Scholar
Moore, S. & Stein, W. H., 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. Journal of Biochemistry, 211, 907913.Google ScholarPubMed
Neame, K. D. & Richards, T. G., 1972. Elementary Kinetics of Membrane Carrier Transport. 120 pp. Oxford: Blackwell Scientific Publications.Google Scholar
Neihof, R. & Loeb, G., 1974. Dissolved organic matter in seawater and the electric charge of immersed surfaces. Journal of Marine Research, 32, 511.Google Scholar
Pandian, T. J., 1975. Mechanisms of heterotrophy. In Marine Ecology, vol. 2, part 1 (ed. Kinne, O.), pp. 61249. London: Wiley-Interscience.Google Scholar
Reish, D. J. & Stephens, G. C, 1969. Uptake of organic material by aquatic invertebrates. V. The influence of age on the uptake of glycine-C14 by the polychaete Neanthes arenaceodentata. Marine Biology, 3, 352355.CrossRefGoogle Scholar
Schlichter, D., 1973. Ernährungsphysiologische und ökologische Aspekte der Aufnahme in Meerwasser gelöster Aminosäuren durch Anemonia sulcata (Coelenterata, Anthozoa). Oecologia, 11, 315–50.CrossRefGoogle ScholarPubMed
Schlichter, D., 1974. Der Einflus physikalischer und chemischer Faktoren auf die Aufnahme in Meereswasser gelöster Aminosäuren durch Aktinien. Marine Biology, 25, 279290.CrossRefGoogle Scholar
Schlichter, D., 1975 a. The importance of dissolved organic compounds in sea water for the nutrition of Anemonia sulcata Pennant (Coelenterata). In Proceedings of the Ninth European Marine Biology Symposium (ed. Barnes, H.), pp. 395405. Aberdeen: Aberdeen University Press.Google Scholar
Schlichter, D., 1975 b. Die Bedeutung in Meerwasser gelöster Glucose für die Ernährung von Anemonia sulcata (Coelenterata: Anthozoa). Marine Biology, 29, 283293.CrossRefGoogle Scholar
Schlichter, D., 1978. On the ability of Anemonia sulcata (Coelenterata: Anthozoa) to absorb charged and neutral amino acids simultaneously. Marine Biology, 45, 97104.CrossRefGoogle Scholar
Schöttler, U. & Schroff, G., 1976. Untersuchungen zum anaeroben Glykogenabbau bei Tubifex tubifex M. Journal of Comparative Physiology, 108(B), 243254.CrossRefGoogle Scholar
Sepers, A. B. J., 1977. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia, 52, 3954.CrossRefGoogle Scholar
Shick, J. M., 1973. Effects of salinity and starvation on the uptake and utilization of dissolved glycine by Amelia aurita polyps. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 144, 172179.CrossRefGoogle Scholar
Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Bio-logical Bulletin. Marine Biology Laboratory, Woods Hole, Mass., 148, 117140.CrossRefGoogle ScholarPubMed
Siebers, D., 1976. Absorption of neutral and basic amino acids across the body surface of two annelid species. Helgoländer wissenschaftliche Meeresuntersuchungen, 28, 456466.CrossRefGoogle Scholar
Siebers, D. & Bulnheim, H.-P., 1976. Salzgehaltsabhängigkeit der Aufnahme gelöster Amino-säuren bei dem Oligochaeten Enchytraeus albidus. Verhandlungen der Deutschen zoologischen Gesellschaft, 69, 212.Google Scholar
Southward, A. J. & Southward, E. C, 1963. Notes on the biology of some Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 43, 5764.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C. 1968. Uptake and incorporation of labelled glycine by pogonophores. Nature, London, 218, 875876.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C, 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora. Sarsia, 45, 6995.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C, 1972. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. III. Uptake in relation to the organic content of the habitat. Sarsia, 50, 2946.CrossRefGoogle Scholar
Southward, E. C, 1971. Recent researches on the Pogonophora. Oceanography and Marine Biology, an Annual Review, 9, 193220.Google Scholar
Stephens, G. C, 1963. Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worm Clymenella torquata. Comparative Biochemistry and Physiology, 10, 191202.CrossRefGoogle ScholarPubMed
Stepehens, G. C., 1972. Amino acid accumulation and assimilation in marine organisms. In Proceedings of the Symposium on Nitrogen Metabolism and the Environment (ed. Campbell, J. W. and Goldstein, L.), pp. 155184. New York: Academic Press.Google Scholar
Stepehens, G. C, 1975. Uptake of naturally occurring primary amines by marine annelids. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 149, 397407.CrossRefGoogle Scholar
Stewart, M. G. & Bamford, D. R., 1975. Kinetics of alanine uptake by the gills of the soft shelled clam Mya arenaria. Comparative Biochemistry and Physiology, 52A, 6774.CrossRefGoogle ScholarPubMed
Taylor, D. L., 1974. Nutrition of algal-invertebrate symbioses. I. Utilization of soluble organic nutrients by symbiont-free hosts. Proceedings of the Royal Society of London (B), 186, 357368.Google ScholarPubMed
Testerman, J. K., 1972. Accumulation of free fatty acids from sea water by marine invertebrates. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 142, 160177.CrossRefGoogle ScholarPubMed
Thorson, G., 1957. Bottom communities. In Treatise of Marine Ecology and Paleoecology, vol. 1 (ed. Hedgpeth, J. W.), pp. 461534. Geological Society of America, Memoir 67.Google Scholar
Webb, M., 1964. The larvae of Siboglinum fiordicum and a reconsideration of the adult body regions (Pogonophora). Sarsia, 15, 5768.CrossRefGoogle Scholar
Webb, M., 1965. Notes on the distribution of Pogonophora in Norwegian fjords. Sarsia, 18, 1115.CrossRefGoogle Scholar
Wells, R. M. G. & Dales, R. P., 1976. A preliminary investigation into the oxygen-combining properties of pogonophore haemoglobin. Comparative Biochemistry and Physiology, 54A, 395396.CrossRefGoogle ScholarPubMed
West, B., De Burgh, M. & Jeal, F., 1977. Dissolved organics in the nutrition of benthic in-vertebrates. In Biology of Benthic Organisms (ed. Keegan, B. F., Ceidigh, P. O. and Boaden, P. J. S.), pp. 587593. Oxford: Pergamon Press.CrossRefGoogle Scholar
West, B. & West, L., 1976. A note on the uptake of dissolved nutrients from sea water by the entoparasitic myzostome Pulvinomyzostomum pulvinar, in situ in its host Leptometra phalangium. Vie et milieu, 26, 4752.Google Scholar
White, H. H., 1968. Separation of amino acids in physiological fluids by two-dimensional thin-layer chromatography. Clinica chimica acta, 21, 297302.CrossRefGoogle ScholarPubMed
Williams, P. J. le B., 1973. The validity of the application of simple kinetic analysis to heterogeneous microbial populations. Limnology and Oceanography, 18, 159164.CrossRefGoogle Scholar
Wright, S. H., Johnson, T. L. & Crowe, J. H., 1975. Transport of amino acids by isolated gills of the mussel Mytilus californianus Conrad. Journal of Experimental Biology, 62, 313325.CrossRefGoogle ScholarPubMed
Wright, S. H. & Stephens, G. C, 1977. Characteristics of influx and net flux of amino acids in Mytilus calif ornianus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass.,152, 295310.CrossRefGoogle Scholar
Zeuthen, E., 1947. Body size and metabolic rate in the animal kingdom, with special regard to the marine microfauna. Compte rendu des travaux du Laboratoire Carlsberg (serie chimique), 26 (3), 17161.Google Scholar
Zwaan, A. DE, Bont, A. M. TH. De & Kluytmans, J. H. F. M., 1975. Metabolic adaptations on the aerobic-anaerobic transition in the sea mussel, Mytilus edulis L. In Proceedings of the Ninth European Marine Biology Symposium (ed. Barnes, H.), pp. 121138. Aberdeen: Aberdeen University Press.Google Scholar