Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T21:01:47.155Z Has data issue: false hasContentIssue false

Morphological and molecular analyses of larval taeniid species in small mammals from contrasting habitats in Denmark

Published online by Cambridge University Press:  28 October 2013

M.N.S. Al-Sabi*
Affiliation:
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871Frederiksberg C, Denmark National Veterinary Institute, Technical University of Denmark, DK-1870Frederiksberg C, Denmark
P.M. Jensen
Affiliation:
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871Frederiksberg C, Denmark
M.U. Christensen
Affiliation:
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871Frederiksberg C, Denmark
C.M.O. Kapel
Affiliation:
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871Frederiksberg C, Denmark
*

Abstract

Taeniid infections in intermediate hosts manifest themselves as extraintestinal larval stages which, in early development, lack species-specific characteristics. The inability to distinguish infections of zoonotic importance such as Echinococcus multilocularis from other taeniid infections that have mainly veterinary significance stimulated the development of species-specific molecular diagnostics. In this study, the prevalence of taeniid infections in potential intermediate hosts was evaluated using both morphological diagnosis and a newly described multiplex polymerase chain reaction (PCR) for species determination. Small mammals (N= 719) were trapped in three different types of habitats in north-east Zealand, Denmark. The sensitivity of the multiplex PCR (90.5%) exceeded that of morphological examination (57.9%) for identifying 95 taeniid infections. The use of the multiplex PCR resulted in higher prevalence rates due to improved detection of immature liver infections with Hydatigera taeniaeformis and Versteria mustelae, but did not affect the observed prevalence rates of peritoneal metacestodes of Taenia polyacantha. The prevalence of taeniid infections showed a significant difference according to habitat type, potentially identifying a ‘sylvatic’ transmission and an ‘urban’ transmission, with marked variation among different taeniid species. Versteria mustelae and T. polyacantha were more prevalent in rural forests, while infections with H. taeniaeformis were dominant in urban parks/forests and in residential and farm gardens. The multiplex PCR facilitated a better utilization of wildlife samples by yielding a higher number of definitive diagnoses of ambiguous taeniid infections in liver lesions, allowing for more accurate epidemiological data and, hence, a more accurate risk assessment.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Madi, M.A., Behnke, J.M., Prabhaker, K.S., Al-Ibrahim, R. & Lewis, J.W. (2010) Intestinal helminths of feral cat populations from urban and suburban districts of Qatar. Veterinary Parasitology 25, 284292.Google Scholar
Al-Sabi, M.N.S. & Kapel, C.M.O. (2011) Multiplex PCR identification of Taenia spp. in rodents and carnivores. Parasitology Research 109, 12931298.Google Scholar
Al-Sabi, M.N.S., Chriél, M., Jensen, T.H. & Enemark, H.L. (2013) Endoparasites of the raccoon dog (Nyctereutes procyonoides) and the red fox (Vulpes vulpes) in Denmark 2009 to 2012 – a comparative study. International Journal for Parasitology: Parasites and Wildlife 2, 144151.Google Scholar
Armua-Fernandez, M.T., Nonaka, N., Sakurai, T., Nakamura, S., Gottstein, B., Deplazes, P., Phiri, I.G.K., Katakura, K. & Aku, Y. (2011) Development of PCR/dot blot assay for specific detection and differentiation of taeniid cestode eggs in canids. Parasitology International 60, 8489.Google Scholar
Baagøe, H. & Ujvári, M. (2007) Raccoon dog, Nyctereutes procyonoides (Gray, 1834). pp. 182183in Baagøe, H.J. & Jensen, T.S (Eds) Danish mammal atlas [original text (in Danish): Mårhund, Nyctereutes procyonoides (Gray, 1834) in Baagøe, H.J. & Jensen, T.S. (Eds) Dansk Pattedyratlas]. Copenhagen, Gyldendal.Google Scholar
Bowles, J., Blair, D. & McManus, D.P. (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165174.Google Scholar
Bruzinskaite-Schmidhalter, R., Sarkunas, M., Malakauskas, A., Mathis, A., Torgerson, P.R. & Deplazes, P. (2012) Helminths of red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in Lithuania. Parasitology 139, 120127.CrossRefGoogle Scholar
Burlet, P., Deplazes, P. & Hegglin, D. (2011) Age, season and spatio-temporal factors affecting the prevalence of Echinococcus multilocularis and Taenia taeniaeformis in Arvicola terrestris. Parasites and Vectors 4, 6.Google Scholar
Deplazes, P., Dinkel, A. & Mathis, A. (2003) Molecular tools for studies on the transmission biology of Echinococcus multilocularis. Parasitology 127, S53S61.CrossRefGoogle ScholarPubMed
Deplazes, P., Hegglin, D., Gloor, S. & Romig, T. (2004) Wilderness in the city: the urbanization of Echinococcus multilocularis. Trends in Parasitology 20, 7784.Google Scholar
Engbaek, K., Madsen, H. & Larsen, S.O. (1984) A survey of helminths in stray cats from Copenhagen with ecological aspects. Zeitschrift für Parasitenkunde 70, 8794.CrossRefGoogle ScholarPubMed
Feliu, C., Renaud, F., Catzeflis, F., Hugot, J., Durand, P. & Morand, S. (1997) A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453466.Google Scholar
Fujita, O., Oku, Y., Okamoto, M., Sato, H., Ooi, H.K., Kamiya, M. & Rausch, R.L. (1991) Early development of larval Taenia polyacantha in experimental intermediate hosts. Journal of the Helminthological Society of Washington 58, 100109.Google Scholar
Haukisalmi, V. & Henttonen, H. (1993) Population dynamics of Taenia polyacantha metacestodes in the bank vole, Clethrionomys glareolus. Annals of Zoology Fennici 30, 8184.Google Scholar
Hofer, S., Gloor, S., Muller, U., Mathis, A., Hegglin, D. & Deplazes, P. (2000) High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology 120, 135142.Google Scholar
Iwaki, T., Abe, N., Shibahara, T., Oku, Y. & Kamiya, M. (1996) Developmental study of Taenia mustelae in the intermediate and definitive hosts, with a note on the life cycle of T. mustelae in Hokkaido, Japan. Journal of Parasitology 82, 840842.Google Scholar
Jensen, B. & Sequeira, D.M. (1978) The diet of the red fox (Vulpes vulpes) in Denmark. Danish Review of Game Biology 10, 216.Google Scholar
Jensen, T.S. (1993) Mice, rats and shrews [original text (in Danish): Mus, rotter og spidsmus]. Natur og Museum 32, 32.Google Scholar
Kapel, C.M.O., Torgerson, P.R., Thompson, R.C.A. & Deplazes, P. (2006) Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. International Journal for Parasitology 36, 7986.CrossRefGoogle ScholarPubMed
Loos-Frank, B. (2000) An up-date of Verster's (1969) ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Systematic Parasitology 45, 155183.Google Scholar
Millan, J. & Casanova, J.C. (2009) High prevalence of helminth parasites in feral cats in Majorca Island (Spain). Parasitology Research 106, 183188.Google Scholar
Nakao, M., Lavikainen, A., Iwaki, T., Haukisalmi, V., Konyaev, S., Oku, Y., Okamoto, M. & Ito, A. (2013) Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): Proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. International Journal for Parasitology 43, 427437.Google Scholar
Rausch, R.L. & Fay, F.H. (1988) Postoncospheral development and cycle of Taenia polyacantha Leuckart, 1856 (Cestoda: Taeniidae). First part. Annales de Parasitologie Humaine et Comparée 63, 263277.Google Scholar
Reperant, L.A., Hegglin, D., Tanner, I., Fescher, C. & Deplazes, P. (2009) Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329337.Google Scholar
Saeed, I., Maddox-Hyttel, C., Monrad, J. & Kapel, C.M.O. (2006) Helminths of red foxes (Vulpes vulpes) in Denmark. Veterinary Parasitology 139, 168179.Google Scholar
Schuster, R.K., Thomas, K., Sivakumar, S. & O'Donovan, D. (2009) The parasite fauna of stray domestic cats (Felis catus) in Dubai, United Arab Emirates. Parasitology Research 105, 125134.Google Scholar
Soveri, T., Henttonen, H., Rudbäck, E., Schildt, R., Tanskanen, R., Husu-Kallio, J., Haukisalmi, V., Sukura, A. & Laakkonen, J. (2000) Disease patterns in field and bank vole populations during a cyclic decline in central Finland. Comparative Immunology, Microbiology and Infectious Diseases 23, 7389.Google Scholar
Stieger, C., Hegglin, D., Schwarzenbach, G., Mathis, A. & Deplazes, P. (2002) Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitology 124, 631640.Google Scholar
Stien, A., Voutilainen, L., Haukisalmi, V., Fuglei, E., Mork, T., Yoccoz, N., Ims, R.A. & Henttonen, H. (2010) Intestinal parasites of the Arctic fox in relation to the abundance and distribution of intermediate hosts. Parasitology 137, 149157.Google Scholar
Tenora, F., Wiger, R. & Baruš, V. (1979) Seasonal and annual variations in the prevalence of helminths in a cyclic population of Clethrionomys glareolus. Holarctic Ecology 2, 176181.Google Scholar
Tenora, F., Henttonen, H. & Haukisalmi, V. (1983) On helminths of rodents in Finland. Annals Zoologica Fennici 20, 3745.Google Scholar
Tenora, F., Anderson, J., Hindsbo, O. & Lodal, J. (1991) Helminths of small rodents in Denmark. Helminthologia 28, 151154.Google Scholar
Torgerson, P.R. & Deplazes, P. (2009) Echinococcosis: diagnosis and diagnostic interpretation in population studies. Trends in Parasitology 25, 164170.Google Scholar
Trachsel, D., Deplazes, P. & Mathis, A. (2007) Identification of taeniid eggs in the faeces from carnivores based on multiplex PCR using targets in mitochondrial DNA. Parasitology 134, 911920.Google Scholar
Viera, A.J. & Garrett, J.M. (2005) Understanding interobserver agreement: the kappa statistic. Family Medicine 37, 360363.Google Scholar