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A weakly nonlinear analysis is presented of the small oscillations of nearly inviscid . 
liquid bridges subjected to almost resonant axial vibrations of the disks. An amplitude 
equation is derived for the evolution of the complex amplitude of the oscillations that 
exhibits hysteresis and period doublings. We also analyse the steady streaming in the 
bulk forced by the oscillatory boundary layers near the disks; the boundary layer 
near the free surface produces no forcing terms. In particular some experimentally 
observed patterns are explained, and some new, non-observed ones are predicted. 
We conclude that the structure of this steady flow is not the appropriate one to 
counterbalance steady thermocapillary convection, but our results indícate how to get 
the desired counterbalancing eífect. 

1. Introduction 
The stability and dynamics of liquid columns and jets were considered in the 

pioneering work by Plateau (1849, 1863) and Rayleigh (1879, 1892), after the earlier 
basic analyses on capillary interfaces by Young (1805) and Laplace (1805). In the last 
twenty years the interest in these configurations has increased due to their applications 
in some industrial processes and natural phenomena. In particular, liquid bridges are 
of interest in materiaís processing (Preiser, Schwabe & Sharman 1983; Kamotani, 
Ostrach & Vargas 1984; Brown 1988) and have been observed in flow through 
porous media (Melrose 1966; Zasadzinski et al. 1987) and particulates agglomeration 
(Chen, Tsamopoulos & Good 1992); other applications include the experimental 
measurement of viscosity and surface tensión (Tsamopoulos, Chen & Borkar 1992), 
and their use as accelerometers. 

Resonance frequencies were determined experimentally by Fowle, Wang & Strong 
(1979) and Mollot et al. (1993) for isolated liquid bridges and by Meseguer (1983) and 
Sanz (1985) for a liquid bridge immersed in a bath of another liquid of nearly equal 
density. On the theoretical side, most results in the literature were concerned with 
one-dimensional approximations (Meseguer 1983; Rivas & Meseguer Í984; Zhang & 
Alexander 1990; Meseguer & Perales 1991; Perales & Meseguer 1992) that became 
very popular for liquid bridges and jets ten years ago; in addition to other limitations 
(Schulkes 1993a, £>), the validity of one-dimensional models is restricted to slender 
bridges. Among the exceptions to this rule concerning linear approximations, let us 
mention some analyses ofthe inviscid case (Sanz 1985; Sanz & Diez 1989), of the limits 
of large and small capillary Reynolds number (Borkar & Tsamopoulos 1991; Nicolás 
1992), and the (fairly expensive) numerical calculations for finite Reynolds numbers 
by Tsamopoulos et al. (1992) . In particular, a boundary layer approximation was 



used by Borkar & Tsamopoulos (1991) to calcúlate a first correction to the natural 
frequencies and a first approximatíon of the damping rates, that only accounted 
for viscous dissipation in the Stokes boundary layers near the disks supporting the 
bridge. Unfortunately, although these results are asymptotically correct, they provide 
a poor approximatíon to the damping rate, except for unrealistically large valúes of 
the capillary Reynolds number, as shown by Higuera, Nicolás & Vega (1994), who 
calculated a second approximatíon (accounting for viscous dissipation both in the 
Stokes boundary layers and in the bulk) to obtain quite good results for moderately 
large Reynolds numbers; see also Nicolás & Vega (1996) for a comparison with almost 
exact results obtained by a semi-analytical method that allows cheap computations 
for arbitrary valúes of the capillary Reynolds number. 

The only theoretical work in the literature concerning nonlinear mechanicaí oscií-
lations of non-inviscid liquíd bridges, not using one-dimensional approximations, is 
a recent paper by Chen & Tsamopoulos (1993), who analysed fully nonlinear oscií-
lations by direct numerical simulation. They considered only moderately large valúes 
of the capillary Reynolds number, C1 ^ 50; their computations are seemingly too 
expensive for larger valúes of C~l. They showed in particular how nonlinear terms 
affect quantitatively the natural frequencies and damping rates. 

In this paper we consider the weakly nonlinear response of an axisyrnmetric, nearly 
inviscid liquid bridge to forced vibrations of the disks, of appropriately smaíl ampli-
tude and nearly resonant frequency (i.e. cióse to a natural frequency of the bridge). We 
shall obtain the coefficients of a well-known cubic canonical amplitucte equation (that 
applies here and in related almost-conservative problems) in terms of the slenderness 
of the bridge and the inviscid mode being excíted. This will be done in §3 where, ac-
cording to the results by Higuera et ai. (1994), we shall use a two-terms approximatíon 
of the damping rate; this will make our perturbation scheme somewhat non-standard. 
The amplitude equation will be analysed in §4 to show that it exhibits hysteresis (as 
is well-known) and also relaxation oscillations and period doublings when both disks 
are vibrated with slightly dífferent frequencies. Section 5 will be devoted to the 
analysis of the streaming flow in the bulk induced by the oscillatory viscous boundary 
layers, intending to see whether this flow could annihilate stationary thermocapillary 
flows, as in the recent experiment by Anilkumar et al. (1993). The result couíd be of 
great interest in, e.g., materials processing in niicrogravity, for thermocapillary flows 
are always present in the melt when applying the float-zone technique for unidirec-
tional semiconductor crystal growth, and are currently assumed to be responsible 
for the forniation of undesirable non-uniformities in dopant distribution and crystaí 
striatíons (see, e.g., Jurish & Loser 1990). We shall not get a completely satisfactory 
answer to that question, but our analysis will show how to get the appropriate coun-
terbalancing eífect, namely the disks should be vibrated with either higher frequencies 
(as in the experiment by Anilkumar et al. 1993, and in Nicolás, Rivas & Vega 1996Z?) 
or non-resonant frequencies (as in Nicolás, Rivas & Vega 1996ÍÍ). AS a by-product 
we shall explain in §5 some steady streaming flow patterns observed by Mollot et al. 
(1993), and predict some new ones. In order to ilhistrate our results, two examples 
will be briefly considered in §6, in the space of laboratory dimensional parameters. 
Finally, some concluding remarks will be drawn in §7. 

2. Formulation 
In order to analyse mechanicaí vibrations and the resulting streaming flow we 

consider a liquid bridge of length L, held by surface tensión forces between two 



parallel, circular, coaxial disks of equal radii R. The volume of the liquid equals that 
of the space in the cylinder bounded by the disks. In addition, we neglect gravity 
and assume that the density p and kinematic viscosity v of the liquid and the surface 
tensión a are uniform and constant, and such that the capillary Reynolds number, 
C_1 = (<jR/pv2)1/2, is large, and that p and pv are large compared to the density and 
viscosity of the surrounding gas (then the gas does not añect the dynamics of the 
liquid bridge). Finally, the free surface of the liquid is anchored at the borders of the 
disks, and the disks are vibrating independently in the axial direction. 

Under the assumptions above we use R and the capillary time (pR^/(r)1/2 as 
characteristic length and time for non-dimensionalization to write the governing 
equations (continuity and momentum conservation) and boundary conditions (non-
slipping at the disks, smoothness of the pressure and velocity fields at the axis of 
symmetry, kinematic compatibility and tangential and normal stress balances at the 
free surface) as 

ur + r~lu + wz = 0, (2.1) 
ut-hw(uz — wr) — ~qr + C(urr + r^Ur — r~2u + uzz), (2.2) 

wt + u(wr — us) — —qz + C(wrr + r~lwr + wzs), (2.3) 
u = 0, w = tí±{t) at z = ±A + h+{t), (2,4) 

u = wr = qr = 0 at r = 0, (2.5) 

u = ft+fzW at r = / , (2.6) 
(w, + u,)(l - fl) + 2(ur - wz)fz = 0 at r = / , (2.7) 

/ = 1 at z = ±A + h+{t), (2.9) 

with appropriate initial conditions. Here a cylindrical coordínate system (r, (p,z) is 
used with the origin midway between the disks, the axis of symmetry as the z-axis and 
associated unit vectors er, e9 and ez. The velocity field is uer + wes and for convenience 
the problem is writtenin terms of the stagnation pressure, q — pressure+ (u2+w2)/2; 
the shape of the interface is given by r = f(z, t) and A = L/2R is the slenderness of 
the bridge. Notice that the total volume of the liquid is conserved (as a consequence 
of (2.1), (2.4)-(2.6)) and, according to the assumption above, equals 2nA, i.e. 

f{z,tfáz = 2A. (2.10) 
Á+h-. 

Finally the functions h± are assumed to be given by 

h+(t) = ///?±exp[i(fl + a>±d)t] +c .c , (2.11) 

where c.c. stands for the complex conjúgate, Q > 0 is a given natural frequeney of 
the bridge in the inviscid limit, co„ and CÜ+ are real constants, ^_ and /í+ are complex 
constants and p and 5 are real, positive parameters. We shall consider (2.1)-(2.9) in 
the limit 

C < 1 , p<l and ¿ < 1 , (2.12) 
without making at thís stage further assumptions concerning the relative orders of 
magnitude of C, p and 5. 

The formulation above deals with the purely mechanical problem, which is the 
main object of the paper. But in order to analyse the combined effect of vibrations 
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FIGURE 1. Sketch of the four regions in the liquid bridge. 

and thermocapülary stress in non-isothermal conditions, in §5.1 we shall add (i) 
a thermocapülary stress to the tangential stress balance (2.7), and (ii) the energy 
equation with appropriate boundary conditions. 

3. Derivation of the amplitude equationf 
The weakly nonlinear analysis of (2.1)-(2.9) in the limit (2.12) involves oníy Solutions 

that are cióse to the static steady state « = w s g - l s O , / = l. Since the capillary 
Reynolds number C_ í is large, we are led to consider four distinguished regions in 
the liquid bridge (see figure 1): (a) two Stokes boundary layers near the disks; (b) 
an interface boundary ¡ayer near the free surface; (c) two comer tori near the border 
of the disks; and (d) the bulk, that is the remaining part of the liquid brídge. The 
characteristic size of regions (a), (b) and (c) (where inertia and viscous terms in 
momentum conservation equations are comparable) is readily seen to be of order 
Cx¡\ 

f In order to emphasize the main ideas in the derivation below, some invoíved expressions have 
been relegated to an Appendix, and for the sake of brevity some other intermedíate expressions 
have been omitted. A more detaíled derivation may be obtained from the JFM editorial office or 
from the authors. 



The solution in the bulk is written as 

u = s{AUQciQt + c.c.) + eC^Uí + e2u2 + s2C1/2u3 + BCU4 + s3u5 + fiu6 + HOT, 1 
w = - - , g - 1 = ••', / - l = •••, j 

(3.1) 
where the expansions for w, q — 1 and / — 1 are similar to that for u and hereafter 
HOT and c.c. stand for higher-order terms than those displayed and the complex 
conjúgate respectively. (U0, WQ,QO, F0) is a non-trivial eigenmode of the inviscid linear 
problem, Q i= 0 is the associated eigenfrequeney, A is the complex amplitude, which 
depends weakly on time (i.e. |d/l/dí| *C \A\), and the real parameter e satisfies 

0 < s < 1. (3.2a) 

In order to define the complex amplitude A we must impose an additional condition 
at each asymptotic order. If we impose 

/ / / {U0uk + IfoW,£)e-ií3Vdrdzdí = 0 for all k ^ 1, (3.2b) 
Ja J-A Jo 

then A is defined as sA - ü j J /(C70u+ WQw)Q-[atrárázát [2n ¡¡{U¡ + W$)rárdz] ~\ 
The main goal in this section is to derive the following evolution equation for the 

complex amplitude: 

adA/dt = - [(1 + i)aiC1/2 + a2C] eA+ms3A\A\2+ii¿ (oi¡p+é°>+St - ¡ x ^ e ^ - ^ + H O T , 
(3.3a) 

where ai, a2, «3 and a^ are real constants that will be calculated below (ai and a2 

have already been calculated by Higuera et al 1994). 
The well-known cubic amplitude equation (3.3a) is a balance between inertia, damp-

ing, nonlinearity and forcing. Its specific feature here is that we are using a two-terms 
approximation for the damping rate, aiC1/2 + a2C, because ai is about 10-2 times a2 

{see figures 2 and 4 below). That approximation of the damping rate is quite good 
for moderately small valúes of C (roughly, C ^ 0.01), while if the second term were 
ignored, then the resulting approximation would be useful only for extremely small 
valúes of C (roughly, C < 10~6, see Higuera et al. 1994). Notice that we are not 
introducing particular scalings relating the small parameters C, u, ó and e, and the 
characteristic size of the slower time scale for the evolution of the complex amplitude 
A. This point will be discussed in §4, when analysing (3.3a). 

In order to obtain the amplitude equation (3.3a) we could proceed in a straight-
forward manner, as follows. We would substitute (3.1) into (2.1)-(2.3) to obtain a 
recursive system of equations for («i,w>i,aj,/i), ..., in the bulk; the boundary condi-
tions to be applied to those equations would be obtained by means of the appropriate 
matching conditions with the solutions in the boundary layers. Finally, the evolution 
equation for A would be obtained by applying the appropriate solvabüity conditions 
(i.e. by eliminating secular terms in the time scale í ~ 1) to the equations in the 
bulk at each asymptotic order. But then we would encounter two main difnculties. 
First, we would need to derive equations and boundary conditions for the seven 
terms displayed in (3.1). This would make calculations quite tedious (the solutions 
in the interface boundary layer and the associated matching conditions are especially 
involved). Secondly, the solution in the bulk exhibits a singularity, near the border of 
the disks, that is more and more important as one proceeds with higher-order terms 
in the expansions (3.1); the singularity must be handled carefully at order EC (and 
perhaps at orders e2Cí/2 and £3) to avoid wrong results when applying solvabüity 



conditíons. This difficulty, first encountered by Ursell (1952), is always present at 
the interaction of interfaces and solid boundaries. We shall avoid both difficulties 
by deriving in. §3.4 an appropriate integral solvability condition for (2.1)-(2.9) that is 
equivalent to the set of solvability conditíons (at orders sCL/2, s2,...) mentioned above, 
but depends only on the first three terms in (3.1), that are first considered below. 

The amplitude equation is assumed to be of the type 

SedA/ÚT - H^C112 + H2e
2 + H3sC + H4s

2C1/2 + H5s
3 + H6¡i + HOT, (3.3b) 

where the complex coefficients Hi,. . . ,H6 are to be calculated and the slow time 
variable T is defined as 

x = St. (3.4) 
Thus we are considering two time scales: t ~ 1 that is a capülary time scale and 
T ~ 1 that (when appropriately selecting the small parameters) will be the time scale 
associated with both damping of capillary oscillations (in §4) and the streaming flow 
(in §5). 

3.1. The solution in the bulk 
As mentioned above, we shall only need to calcúlate the first three terms in the 
expansions (3.1). The (linear) inviscid eigenmode (UQ, WO,QO,F0) is given by 

Uor + r'1 U0 + Wte =iOC70 + Qor = ifí WQ + Q0z = 0, (3.5) 
WQ = 0 at z - ±A, U0 = Wor = 0 at r = 0, (3.6) 
U0-iQFQ = QQ + Fo + FS=:0 at r = U (3-7) 

Fo{±A) = f FQ{z)dz = 0. 
J-A 

(3.8) 

The terms of orders eC1/3 and e2 in (3.1) are given by 

ukr + r~luk + Wkz = 0, (3-9) 
Ufa + 4b- + nUQéüt + ce.) - wkt + qkz + (HkW0e

iüt + ce.) - 0, (3.10) 
wk = Gj at z = ±A, Uk = Wfc = qkr = 0 at r — 0, (3.11) 

«fc = </>*, qk~Wk at r = 1, (3.12) 

/ f c = 0 at z = ± ¿ , /" /Adí + yjt = 0) 

for & — 1 and 2, where 

(3.13) 

Vi - 0, y2 = j (A2F¡eQí + c e + 21AF0¡
2)dz/2. (3.14) 

Equations (3.9), (3.10) and (3.13) and the boundary conditíons at r = 0 are obtained 
upon substitution of (3.1) and {3.3b) into (2.1)-(2.3), (2.5) and (2.10), when taking into 
account that U0z = W&- The remaining boundary conditíons (and the functions G*, 
<pk and y>k) will be obtained below by applying matching conditíons with the Stokes 
and the interface boundary layers. 

3.2. The solution in the Stokes boundary layers 
For the sake of brevity we shall give (only some) details for the boundary layer near 
z = A, where we use the stretched coordínate 

Z = [z-A-h+(t)]/C1/2, 



with h+ as given in (2.11). We seek the expansions 

u = sAÜQeiQt + ce. + eC^üi + &2u2 + HOT, \ 

w=h'+ + Cx¡2 (sAW0e
[Qt + ce. + H O T ) , \ (3.15) 

q~\= sAQ0é
Qt + c e + zC^qx + s% + HOT + 0{p). J 

Substitution of (3.15) and (3.3í>) into (2.1)-(2.4) provides a system of recursive equa-
tions and boundary conditions, whose solution yields 

U0=K¿(r)(l-r), 

W0 = - {áK¿/ár + r-'KÍ) [£ + (1 - i)(l -r)/(2Q)í'2], (3.16) 

Sj = [x+(i - r ) - (1 - iWiK+^r /2(2Q)Í/2] AéQT + ce , (3.17) 

ü2 = \A\2K+(dK+/dr + r-1K+) 

x [ i ( j r | 2 - l ) + 2 ( l - 2 i ) ( f - l ) + ( l + i ) ( 2 Q ) ! ^ f ] / 2 í 2 

+|^|2K0
+(dK+/dr) [\r¡2 - 1 +2 i ( r - f )]/2fí + c c + ROT, (3.18) 

where overbars and ce. stand for the complex conjúgate, ROT stand for rapidly 
oscillatory terms, depending on the fast time variable as exp(imí2t), with m = non-zero 
integer, K£ and Kf are arbitrary functions of r (that are to be calculated) and 
r ^ r ( ^ ) is given by 

r (¿ ) = exp[(l+i)(í2/2)V2 í] . (3.19) 

Now, the functions K¿, K* and the functions Gj" and Gj appearing in the boundary 
conditions (3.11) are obtained by applyíng matching conditions between the solutions 
in the bulk (3.1) and in this boundary layer (3.15). After applying a similar procedure 
to the boundary layer near z — —A we obtain 

K*{r) = U0(r, ±A), ui(r, ±A) = AKf(r)éQt + ce , (3.20) 

G± = ± [(i - i)AWQz(r, ±A)éüt + ce] /(2Q)l/2, G± = 0, (3.21) 

u2 = -\A\2 [3(l~i)t/0t/o. + c.c + 4r-1 |[/o|2]/2í3+ ROT, at z = ±A, (3.22) 

where the first continuity equation (3.5) has been taken into account and u2 has been 
also obtained for convenience. 

3.3. The solution in the interface boundary layer 

Here we use the following stretched coordinate and seek the following expansions: 

i/ = [r- / (z ,£,T)]/C1^ (3.23) 

« = /* + 5/t + / > + C1/2 (sAU*QéQt + ce. + £C1/2u¡ + HOT), 1 

w - &AW;éQt + ce. + sCí/2w¡ + s2w¡ + £2Cl/2w¡ + HOT, l 

q - 1 = {u2 + w2)/2 + (BAP;^1 + ce.) + eC1/2p¡ + iv\ + g2C1/2p; + HOT. 

(3.24) 
Substitution of (3.23)-(3.24), the last expansión (3.1) and (3.36) into (2.1)-(2.3) and 
(2.6)-(2.8) provides a system of recursive equations and boundary conditions whose 



solution yields 

p; = -(F0 + F¡¡), w; = -i(f¿ + Fü'yo, u; = Í(F¡ + *y - flVoto/fí, 
w* = —(2£2)1/3 [(1 + \)AF'Qr {r\)éQl + ce] + (iÜAF'0e

iQt + ce.) r¡ + POL, 

Pl - - / i - / i « + a2(AF0eifí' + CC.)Í7, «; = 2[AF'¿r{n)éQt + c.c] + POL, 

P2 ^ ~ / 2 - /&* + (¿Foei0í + ce) 2 - {AF'QéQt + cc.)2/2, w^ = 0, p\= POL 

w3; = i¡A|2 [(2F^ + 2F¡¡~Q2F0)FU3-2r(n)) + (F^F'í))FS(l~2r(ri))]/Q 

- (1 -i)(2/£3y/2SA|2 (F¿v +FJ - Q2F0) íforfo) + c.e + ROT, 
(3.25) 

where the function T is as defined in (3.19), POL stands for a polynomial in the r¡ 
variable (whose coefficients may depend on the remaining variables) and, as above, 
ROT stands for rapidly oscillatory terms. Now, in order to apply rnatching conditions 
between the solution in the bulk (3.1) and the solution in this boundary layer (3.24), 
we take into account that the solution in the bulk satisfies 

q(f,z;t,T) = q{lz;t,T) + {f-i)qr(l,z;Ui;) +0(6*1 

u(f,z;t,x) = ..., •wr(/
,,2;í,T) = ..., 

to obtain, at r = 1, 

<f>\ = «i = fu + {HiF0é
at + ce) , Wi s qí = - / , - / i „ , (3.26) 

<h = «2 - / a + ( i W e ^ + c c . ) - (^F0e
ií3í + cc.)(^t/0(-e

ií3' + c.c) 
+ <AF¿eifi'+cc.){¿W'oeií3t + c.c.), (3.27) 

V2 = «2 = ~h ~ fizz - (AFQéQí + c.c.)(AQQré
Qt + ce.) + (AF0e

ifíf + ce.)2 

-~-(AF¿eio' + c.c)2/2 + [AW0é
úí + cc.)2/2 + {iQAF0é

Ql + c.c.)2/2, (3.28) 
w2, - i¡A|2 [3(2Pj + 2fJ - fi2F0)F¿ + (*?' + F0)í?] / Q 

-\A\2 WorrFo + ce. + ROT. (3.29) 

• 3.4. Solvability conditions 
Here we shall calcúlate the coefScients in the amplitude equation (3.3b) by eliminating 
secular terms in the short time scale, t ~ 1, that is, by requiring the solution oí (2.1)-
(2.8) to be bounded as í —> co (for each fixed valué of T). To this end, we first 
obtain an integral solvability condition as follows. First, introduce into (2.1)-(2.8) and 
(2.11) the time scales í ~ 1 and x = St by replacing in (2.2)-(2.4) and (2.6) the time 
derivative by d/dt + ód/dr, and in (2.11), i(Q + a>+S)t by i(Qt + CO±T). Then multiply 
(2.2) by rUoe~lQt, (2.3) by rW0e~lQt, the second and third equations (3.5) by — rue~lQt 

and —rwe~lí3í respectively, add, intégrate in 0 < r < f, —A + h- < z < A + h+, 
intégrate by parts and take into account the boundary conditions (2.4) and (2.6)-(2.9) 
to obtain 

° (e-i0í/!) + e ^ / 2 = e-ií2í(/3 +1 4 + /+ - Jf), (3.30) 
dt 

where 

/ (uUQ + wWG)rdrdz- / Qo(f,z)f(f-l)dz, 
-A+h- JO J-A+h-. 

/

A+h+ i-f pA+h+ 

/ Sfa Í70 + wx W^rdrdz - / <5/T J W > z)dz, 
vf+/i_ ./O J-A+h-



/

A+h+ ff 
/ (UWQ — wUQ)(uz — wr)ráráz 

A+h- Jo 

/

A+h+ rf 
/ [{UorUr + UQzuz + WorWr + WQewz)r + UQu/r]drdz, 

A+h- Jo 
pA+h+ 

U = I [(uüo + wW0)f - f(f - l))Qor - (f - l)Qol-=f ftdz 
l-A+h-

rA+h-i 

+ '-A+h- . 
iQ(f-l)QoHUo-fzWo)[l + / / » - ! - / ? u2 + w' 

/ ( l + / 2 ) 3 / 2 2 

A+h. 

+ CU0(Ur -fzllz) fáz-C 
ir=f J-A+h- L 

WoK + í>*+2/ i 
Uy ~ WZ 

if = 
i r 

+ 2 ( 1 / 0 - / ^ 0 ) 
w , - ( w , . + WZ)/Z + WZ/J 

wi+a, ^ + 5 f i 0 

/dz, 

rdr. 
. z=+A+h+ 

Now, secular terms are eliminated by integrating (3.30) in the short time variable t, 
dividing by t, letting í —> oo and requiring I\ to be boimded as t —> oo. Then we 
obtain the following integral solvability condition: 

limí - i ,-ií2t e-I1¿f (/2 -h-U- It + /5")dí = 0 (3.31a) 

or 
resonant part of (72 - 1 3 -14 -1+ + / f ) = 0, (3.316) 

where by resonant part we mean that part depending on the short time variable 
precisely as exp(i£2í), and we have taken into account that the remaining, non-
resonant part of (J2 ~-I3- ••) (that is, those terms depending on í as exp(imí2t), with 
m T¿ 1 being an integer) does not contribute to the limit in (3.31a). 

Before proceeding further, let us briefly discuss the integral solvability condition 
(3.316), which exhibits two advantages (that are related to each other): the coefficients 
of the amplitude equation (3.36) will be obtained below (i) without the need ofexplicitly 
considering the terms oforders sC, s2C^2 and e3 in the expansions (3.1) and (ii) without 
the need of analysing the comer región (c) (see figure 1) to avoid wrong results (as 
usually done, see, e.g., Mei & Liu 1973). This will be so because (3.316) may be 
considered (but only to some extent) to be the result of adding up the solvability 
conditions for the problems giving the five last terms in the expansions (3.1). As 
mentioned above, these five terms exhibit singularities near the comer región (that 
become stronger and stronger as one proceeds in the perturbation process) that make 
an integration by parts step fail (at least ar order sC) in the process of deriving 
the associated solvability condition. But all manipulations leading to (3.316) were 
done with the exact solution of (2.1)~(2.8) in the exact fluid domain 0 < r < f, 
—A + /i_ < 2 < A + h+; since the exact solution exhibits only a very weak singularity 
at the borders of the disks, r = 1, z = ±A + h±> all manipulations above (including 
integration by parts) leading to (3.30) were correct, and the danger of wrong results 
was avoided. Condition (3.316) may be also seen as an alternative to the integral 
equation (obtained from the mechanical energy conservation equation) that was used 
by Ursell (1952) to obtain (without surprises) the damping rate (i.e. the real part 



of the coefficient of —A in the right-hand side of (3.36)) in a related problem; our 
integral equation also provides the imaginary part of the coefficietit of A and the 
remaining coefficients in (3.36). 

In order to apply the solvability conditions (3.316) it is first convenient to take 
into accotint (2.6), (2.11) and (3.5)-(3.7), and the structure of the soíution in the bulk 
and in the Stokes and the interface boundary layers to re-write the expressions for 
l2,...jf above as gíven in (A1)-(A4) in the Appendix. Now, the coefficients Hu H2 

and Hf, of the amplitude equation (3.36) are readily calculated upon substitution of 
(3.1) and (3.36) into (3.316) and setting to zero the coefficients of sCí/2, a2 and /t, to 
obtain 

HÍ = - (1 + i)fl¡i4 H2 = 0, ff6 = i («tP+J0** - a^-é03-') , (3.32) 

where 

« i = / Qo,-(r,A)2rdr[(2Q3)V2 f f0(z)fib(l,z)dz]~\ (3.33) 
JO J-A 

af = - f l / Q0(r,A)rdr[2 í F0(z)QQ(l,z)dz]-\ (3.34) 
JO J-A 

and we have taken into account the equation 

/ / {V¡ + W2)rárdz = - í FQ(z)Q0(l,z)dz, (3.35) 
J-A JO J-A 

that is readily obtained when multiplying the second and third equations of (3.5) by 
rV0 and rWo respectively, adding, integrating, integrating by parts and taking into 
account (3.5)-(3.7). 

The constants ai and aj are readily calculated when using the expressions for Q0 

and FQ in (A9a) or (A96) (in the Appendix). Notice that these constants are real and 
that 

0:4 = — oc¡ for odd modes, and a¡~ = <x\ for even modes. (3.36) 

The constants OÍ\ and ccj are plotted in terms of A in figures 2 and 3; for the first 
capillary mode, <xj" diverges at the capíllary instability limit, A = %, where our analysis 
breaks down, as will be remarked in §3.5. 

The coefficients £í3, íf4 and fí5 in the amplitude equation (3.36) will depend on the 
terms of orders sCl/2 and e2 in the expansions (3.1), which are considered now. When 
taking into account (3.14), (3.21), (3.26)-(3.28) and (3.32), the solutions of (3.26), 
(3.5)—(3.13) for k = 1 and 2 are seen to be as given by 

«i = AUiéQt + c.c, wi = A W ^ 1 + ce , 
qx - AQ,éQt + c e , /i = AF^' + ce , (3.37) 

u2 = A2U22e
2iat + c e + «20, w2 - A2W22e

2iQí + ce. + w20, (3.38) 
qt = A2Q22t

2iQt + c e + \A\2Q20, f2 = A2F22e
mt + c.c. + \A\2F20> (3.39) 

where the non-oscillatory (in the short time scale) components of the velocity field, 
i/20 and w20> will be considered in §5, while (UuWuQuFi), {U22,W22,Q22,F22) and 
(620,^20) are as given by (A10)-(A19), in the Appendix. Notice that the problem 
(3.5)—(3.13) for k = 1 is solvable precisely because Hi is as given in (3.32), and that 
the problem (3.5)—(3.13) has a soíution for k = 2 only if neither Q\ = 2Q ñor £2} = 0 
is an inviscíd eigenfrequeney associated with an even mode (i.e. satisfies the second 
equation of (A6)). 
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FIGURE 2. The coefficient «i in the leading term of the damping rate for the first four modes. 

Q2 

RGURE 3. The coefficient ctf/Q2 in the forcing term of the amplitude equation (3.3a) for the first 
four modes. The sign of a j is indicated. 

Now H3, i/4 and H5 are calculated upon substitution of (3.1) and (3.36) into 
(3.316) (witñ/2,---,^f as given in (A2)-(A4), in the Appendix) and setting to zero the 
coefficients of eC, s2Cí/2 and s3, to obtain (after some tedious algebraic manipulations) 

H3 = -a2A, H4 = 0, H5 = ia3Á\Á\2, (3.40) 

where the real constants a2 and a3 are given by 

(a2~2~2a¡/Q) í F0(z)Q0(l,z)áz = (1 +i) f QQÁr,A)Qlr{r,A)rár/{2üY2 

J-A JO 

+ / [2e 0 ( l ,z) 2 - f i 2 fo(2) 2 - ( l + i)a1F1(z)2o(l,2)]dz-4fíU)FÍ(yí), (3.41) 
J-A 



FIGURE 4. The coefficient «2 in the first correction to the damping rate for the first four modes. 

2(a3/G) í F0(z)Qo(l íZ)dz- f [(2 - 3Í22)F0F22 - F^ + (2 - Í22)F0F20 - í j F ^ 

- 2 ^ 0 ( í , z ) ^ 2 2 ( l , z ) - ( F 2 2 + F20)Q0(l,2)]Fodz+ í (F22 - F2o)W0(l,z)2d2 

+ 
-A 

?»\T7>1 

'-A .h 

(11F0 + \W¿)F^ + 4(F0 + F»)FÜF0 - (6 + Í22)F0
3 

-F0^o(l,z)2]F0dz/2. (3.42) 

In order to obtain (3.41)—(3.42) we have taken into account that it/o, iWo» 60 and 
F0 are real (see (3.5), (A9o) and (A.9b)); we have also used (3.32), (3.35) and the 
equations 

/ f (UoUi + WoWfr&dz** f [-adl-mQoiUVQ-FiQoiUzHáz, (3.43) 
J-A JO J-A 

[iV¡r + Vi + W¿ + W¿)r + U¡/r] áráz 

=^4F,
0(A)F,¿{A)+ f [£32F2 + 2FÍQ0{l,z)]dz, (3.44) 

J-A 

which are obtained after some manipulations of the problems giving {Uo, WO,QO,FQ) 
¡máiVitWuQuFi). 

A plot of the constants a2 and a3 in terms of A is given in figures 4 and 5 for the 
first four inviscid modes. Notice that for m = 1,0C3 diverges at the capillary instability 
limit, A — n, and at A ~ 0.249 (where 2Ü is also an inviscid frequency); there are 
other divergences of «3 that either correspond to higher-order modes or to valúes of 
A that are greater than %. 

3.5. Validity limits of our weakly nonlinear description 
The analysis above breaks down if parametric resonances of second or third order 
are present, and also if either Q is too large or ,4171 —A\ is too small (we only consider 
the range 0 < A < n to avoid the capillary instability), as we discuss now. 
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FIGURE 5. The coefficient a3 in the cubic term of the amplítude equation (3.3a) for the first four 
modes. a3 Ís always negative except for the part of the plot corresponding to the first mode that is 
indicated with the sign (+). 

(a) If either 2Q or fí/2 is also an inviscid eigenfrequency, or more generally, if there 
are two additional inviscid eigenfrequencies, QÍ and Q2, such that Q+Q\ ±Ü2 = 0, then 
our analysis is not valid because it ignores the coupled effect of other inviscid modes 
that may also be excited. In this case, two or three coupled amplitude equations, 
with quadratic nonlinearities, must be considered that exhibit chaotic behaviour 
(Mancebo, Nicolás & Vega 1996). Similarly, if there are three additional inviscid 
eigenfrequencies, Qu Q2 and ¡Q3 such that Q + Ü\ + Q% ± Q3 = 0, then we should 
consider two, three or four coupled amplitude equations, with cubic nonlinearities. 
Higher-order parametric resonances do not affect the validity of our analysis in the 
time scales we are considering. 

(b) Our analysis also breaks down if there is a second inviscid eigenfrequency 
such that either |í^i - Q\ ~ 5 oí \Qi - Q\ < $ (with 3 = a.\Cl¡2 + a2C, see §4) 
because then the inviscid mode associated with Q\ is also excited and its coupled 
effect cannot be ignored. This may in fact occur for high-order inviscid modes as we 
see now. The frequency of the mth inviscid mode, Üm, is such that Q^/imn/lA)3, -» 1 
as m —> co (see (A6)); then Üm+\ — Qm ~ m^2 as m —> oo. On the other hand, it 
may be seen that ai ~ Ql/2 and a2 ~ Í34/3 as Ü —»• oo. Then our analysis is valid 
only if we are exciting the mth inviscid eigenmode with m3C2 <C 1 (for £3„1+i — Qm 

to be large as compared with <S), i.e. with QmC < 1. Otherwise we must take into 
account the coupled effect of infinitely many inviscid eigenmodes (with frequencies 
•••, Qm-2, Í2m_i, Qm+u Qm+2> "X that add up to a pair of counterpropagating, 
modulated capillary wavetrains that interact nonlinearly and exhibit dispersión and 
refíection at the disks. Any further discussion on these wavetrains is of course beyond 
the scope of this paper. 

(c) The characteristic size of the Stokes boundary layers is of the order of {C¡Q)X¡1 

(see §3.2) and must be small compared to A (the size of the liquid bridge) for the 
analysis above to make sense. That condition fails (in the interval 0 < A < %) in 
two limits: as A ~ C2 or A <C C2 (because Q ~ A"2^2 as A —* 0 for a fixed inviscid 
eigenmode, see (A6)); and as \n — A\ ~ C2 or |TC — A\ < C2 if we are exciting the 



first inviscid eigenmode, whose associated eigenfrequency is of the order of (n —A)1/2 

as A —»• n. We shall not pursue these limits any further because they are somewhat 
distant from the main object of the paper. 

4. The amplitude equation 
The amplitude equation (3.3b), with Ht, * • •, H¿ as given by (3.32) and (3.40) may 

be written as 

E5^ =, - f i [(l+i)alC
l/2+a2C] A+icc38

3A\A{2+ifiocÍ f^+e
1£ü+t - (-l)'7_e i (ü-T]+ HOT, 

(4-1) 
where we are using (3.36), m is the order of the mode being excited and 

HOT = O {eC^1 + e5 + fi{s2 + CL/2)) , 

as found after a somewhat carefuJ analysís. The real constants <xu a2, c¿3 and a j are 
as gíven by (3.33)-(3.34) and (3.41)-(3.42) and plotted in figures 2-5 for the first four 
modes. Notice that «i and cc2 are aJways positive, while «3 and aj may be either 
positive or negative, depending on the mode being excited and the slenderness. 

Notice that the forcing term vanishes if co+ = a>_ (i.e. the forcing frequencies of the 
disks are equal) and either (i) m is even and /f+ = /L (i.e. an even mode is excited 
and the disks are vibrated in phase, with the same amplitude) or (ii) m is odd and 
j8+ — — /í_ (i.e. an odd mode is excited and the disks are vibrated in antiphase, with 
the same amplitude). In both cases, higher-order terms should be considered in (4.1) 
to calcúlate the forcing term, and the complex amplitude evolves on a still larger time 
scale. 

We now define the small parameters S, s and \i as 

5 - aiCV!1+a2C, £ - (¿/|«3|) l /2, /* = ^> í4-2) 

and re-scale the complex amplitude A as 

A = i{jS+B/ÍjM)eÍG)+T if a3 > 0, A = -i(j5+B/¡j5+¡)eiíü^ if a3 < 0, (4.3) 

to rewríte (4.1) as 

dB/dx = - (1 +ia>t)B + iB\B{2 + Af(l + iVei(ü3T), (4.4) 

where we are ignoring HOT, we are assuming that /í+ ^ 0 and 

a>i = (t»+ + a1C
l/2/5)a3/\ct3\, ™i = (aj_-fl)+)a3/|«3l, M - a+|0+|, (4.5) 

JV = ( - l)m+l^/p+ if cc3 > 0, N = ( - l)m + 1/L/0+ if a3 < 0. (4.6) 

Notice that the real parameters M, a>\ and to2 and the complex parameter N may be 
seíected itidependently by appropriately choosing the forcing frequencies, amplitudes 
and phases. Two cases must be distinguished. 

4.1. Periodic osciüations: /L. = 0 or co+ = co_-
If either N = 0 (i.e. only one disk is vibrated) or oj2 — 0 (i.e. the vibrating frequencies 
of the disks are equal) then (4.4) may be written as 

dB/dt = - ( 1 + ÍCO0B +iB|S|2 + AÍ!, (4.7) 

where 

M i = M ifN^O, M i = M ( l + i V ) if 02 = 0. (4.8) 



We now briefly justify a well-known property of (4.7), namely that its solutions 
converge to a steady state as x —• co. To see that we first multiply (4.7) by B and add 
to the resulting equation its complex conjúgate to obtain 

d|B|2/dT - ~2\B\2 + MiB + MXB. (4.9) 

This equation readily iraplies that 

\B\ ^ \M\\ as T -» co, 

i.e. the orbits of (4.7) are bounded. Then, according to Poincaré-Bendixon theorem 
(Perko 1991), every orbit of (4.7) aproaches either a steady state or a closed curve 
of the phase plañe as T —• oo; but the latter cannot occur, according to Bendixon 
criterium (Perko 1991) (because if (4.7) is rewritten as a second-order system of real 
equations, áx/át = f{x), then the divergence of the vector field f is div / = —2 < 0 
for all vectors x). 

The steady states of (4.7) are readily calculated by means of the following pair of 
real equations: 

|£|[cos<p + (¡B|2-<üi)sin<?>] - |Mi|, (4.10) 

(|fí|2-coi) eos <p - sin q> = 0, (4.11) 

where <p is the phase of B/M\. The variable q> may be eliminated from (4.10)-(4.11) 
to obtain the following cubic equation in \B\2: 

|B|2tl + (|B|2-©1)2l = |Af1l
2. (4.12) 

The bifurcation diagram of that equation is plotted in figure 6. The equation possesses 
exactly three solutions in the multiplicity región, two solutions in the boundary of 
that región, vvhich is given by 

|M1 |2-2[co1(co2+9) + (co2-3)3/2]/27, with coi > yfi, (4.13) 

and a unique solution in the remaining part of the (tí)t, \M\ |2)-plane. Also, it is readily 
seen that when (4.12) has three solutions, 0 < |B(i < \B\2 < ]B|3, the steady state of 
(4.7) corresponding to |B|2 is unstable, and the other two are asymptotically stable; 
when only one solution exists, it corresponds to an asymptotically stable steady state 
of (4.7). If |Mi|2 (resp. tuj) is kept fixed, the solutions of (4.12) may be plotted in 
terms of a>í (resp. |M¡j2) by means of a curve that is monotonic if (MJ2 < (4/3)3/2 

(resp. o), < yj3) or S-shaped if |Mi|2 > (4/3)3/2 (resp. a>i > ^3), as shown in figures 7 
and 8. For a fixed valué of ¡M(¡

2, the máximum valué of \B\ equals \Mi\ and it is 
attained at a\ — \Mi\2. 

Finally, notice that the asymptotically stable steady states of (4.7) correspond to 
orbitally asymptotically stable periodic solutions, of period 2n¡{Q + Sa>+), of (2.1)-
(2.9) (with the velocity and pressure fields in the bulk and the shape of the free 
boundary being given by (3.1)). 

4.2. Quasi-periodic oscillations: /í_ =£ 0 and m+ =f= o)~ 
Now N ^ 0 and co2 =£ 0 in (4.4) (see (4.5) and (4.6)) and this equation must be 
numerically integrated in order to obtain the large-time behaviour of its solutions. 
Analytical methods can be used only for some limíting valúes of the parameters. 
For example, if Icô l < 1, M and coi are such that (4.7) exhibits three steady states 
when Mi = M, and \N\ is sufficiently large for (4.7) to possess a unique steady 
state when Mi = M(l + \N\), then (4.4) exhibits relaxation oscillations; for example, 
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FIGURE 6. Bifurcaüon diagram of (4.12). 
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FIGURE 7. Solutions of (4.12) in íerms of a)i for \M\\ íixed. Asymptotically stable and unstable 
steady states are indicated with solid and dashed lines respectively. 

if \o)2\ < 1, coi = 3.3, M = 2 and N = 1/2 then that parí of the S-shaped 
curve in figure 8 between Mv = 1 and Mi = 3 is slowly followed (in the time 
scale x ~ l/|co2¡) in the manner indicated by the arrows. These osciUations may 
be approximately described by means of matched asymptotic expansions (Grasman 
1987). For the sake of brevity we do not pursue this (fairly standard) matter any 
further. 

In order to obtain the attractors (as T —• oo) of (4.4) for generic valúes of the 
parameters we have used a numerical continuation technique (Keller 1987) that 
allows us to follow continuous branches of periodic solutions when three of the four 
parameters (cou «>2» M and N) are kept íixed and the fourth one is varied. For the 
sake of brevity we only give a rough description of one of the bifurcaüon diagrams 
obtained in this way. 

Uniqueness 
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FIGURE 8. Solutions of (4.12) in terms of \M\\2 for ÍÜI fixed. The arrows indícate the path followed 
by relaxation oscülations of (4.4) when jro2| <.l,cot= 3.3, M = 2 and N ~ 1/2. 

That bifurcation diagram corresponds to tO] = 3.3, M — 2 and a>2 — —1, for 
varying real valúes of the parameter N (that raay be assumed to be real without 
loss of generality because its phase may be annihilated by means of an appropriate 
translation in the time variable). If N = 0 then (4.4) lias two exponentially stable 
steady states, B = 0.217 - 0.622Í and B = 1.811 + 0.585Í (and a third unstable 
steady state). If 0 < N < Ni ~ 0.217 then (4.4) possesses two asymptotically 
stable periodic solutions of period 2n; those corresponding to N = 0.21 are plotted 
in figure 9. At N — JVj that stable periodic solution exhibiting larger valúes of 
\B\ loses stability through a supercritical period-doubling bifurcation, and a new 
branch of asymptotically stable 47r-periodic solutions appears; the asymptotically 
stable solutions at N = 0.22 are plotted in figure 10. At N = N2 ^ 0.224 the 
47c-periodic solution exhibits a new supercritical period-doubling bifurcation and 
if N2 < N < N3 — 0.227 then (4.4) possesses two asymptotically stable periodic 
solutions, of periods 2n and Hn; those corresponding to N = 0.225 are plotted 
in figure 11. At N = iV3 the bifurcated 87ü-periodic solution disappears through 
a reversed supeicritical period-doubling bifurcation and the branch of 47i-periodic 
solutions becomes asymptotically stable again. In the interval N3 < N < N4 ~ 0.271 
several bifurcations of various types take place, which are not considered for the 
sake of brevity. If N > N4 then (4.4) has only one asymptotically periodic solution, 
of period 2n, The bifurcation diagram is invariant under the symmetry N —> — N 
(because (4.4) is also invariant under the transformation N —* ~N, z —» T + 71/012)-
Notice that all periodic solutions of (4.4) considered here generically correspond to 
quasi-periodic oscülations in the liquid bridge. 

5. Streaming flow in the bulk 
The terms of order e2 in the expansions (3.1) of the velocity field in the bulk, u2 and 

w2, were not completely calculated in §3 (see (3.38)) for their slowly varying parís, 
W20 a n d W20, did not affect the amplitude equation. We now calcúlate W20 &ftd W20, 



FIGURE 9. Asymptotically stable 2jr-periodic orbits of (4.4) (plotted with solid and dashed lines), 
for ioi = 3.3, M = 2, co2 = - 1 and N = 0.21. 

whích are independent of the short (capilíary) time variable, and may be seen as the 
leading-order terms of the components of the time-averaged (in the short time scale) 
velocity field in the bulk; they are given by 

«20r + ^1120 -f" W20z = 0, 

|*3|«2>i + W2o(tÍ20Z— W2Qr) = ~«70f + V(«2Qrr + «20zz + r~1«20r ~ r 2 « 2 o ) » 

1CÍ3|W20T +W20(W20r-U20z) = "«70* + 7Í^20rr +^20zz +Í""1 W20.), 

W20 - i-B|2gf (r), W 2 0 - O at z - ± ¿ , 

W20 = w ^ = ^702 = 0 at r = 0, 

W2Ü = |Sl2g2(z), w20i- = !-B12g3(z) at r = 1, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

where z, a3 and 5 are as given in (3.4), (3.42) and (4.2)~(4.3), q^ is that parí of the 
term of order e4 in the expansión (3.1) of the stagnation pressure field in the bulle, #7» 
that is independent of the short time scale (q7 = qTO + £) ¿rifc^0') and the constant y, 



FIGURE 10. Asymptotically stable periodic orbits of (4.4), of periods 2% and 4n (plotted with 
dashed and solid lines respectively), for co\ — 3.3, M — 2, (x¡i = —1 and JV = 0.22. 

and the functions gf, gi and g3 are given by 

y = \a2\C/(alC^2 + a2C), 

gfOO = - [3(1 -iWoüor + c.c. + 4r-1\U0\
2]^±A/2Q, (5.7) 

g2(z) - [F^WQ -F0Üor + c.c.]r=], (5.8) 

g3(z) - i [3(2íjv + 2f? - Q2F0)F¿ + ( ^ ' + F¡>) K] fü ~ [^brr^o]^ + ce. (5.9) 

Notice that, according to the usual valúes of ctít a2 and tx3 (see figures 2, 4 and 5), 
the constant y may be considered as an 0(1) quantity for realistically small valúes of 
C, e.g. C £ 10"5 (even though y -> 0 as C -y 0). Equations (5.1)-(5.3) and (5.5) are 
obtained upon substitution of (3.1) into (2.1)—(2.3) and (2.5), setting to zero that part 
of the terms of order s2 in the resulting equations that is independent of the short 
time variable, and taking into account the definitions (4.2). The boundary conditions 
(5.4) and (5.6) are readily obtained when taking into account (3.21), (3.22), (3.27) and 
(3.29). 



T '—f !—~—~~T~ ~—i "—T '——r 

FIGURE 11. As in figure 10 but now the periods are 2TC and 8n, and N = 0.225. 

In order to obtain (5.2) and (5.3) we have taken into account that 

Í£2~' \A\2Ü0Wo [r~l(W20r - U20z) - (W20(- - t*2Qz)í-] + c.c. = 0, 

~{iQ-i\A\2U0W0lw20r-u20z)z+ C.C.] £ 0 , 

as readily seen when taking into account that, according to (3.5), (A7)~(A9ÍZ) and 
(A9b), UQ and WQ are purely imaginary. If the left-hand sides of these two equations 
were non-zero (as happens to be the case for non-resonant oscíllations, see Nicolás 
et al, 1996a) then they should be added to the left-hand sides of (5.2) and (5.3) 
respectively; these two additional terms are obtained as the short-time averages 
of (AW$Q>Qt + c.c.)(usz — vv5r) and (AUQG1^ + c.c.)(w5z — wsr) respectively, where 
us =iÜ'lAW0&

Ql(u2üZ-W2Qr)+ cc. + q5r + NRT and w5 = ií2_1¿4£/0e
iQí(u20r-W2<k) + 

cc. + q¡z + NRT are the components of the velocity field at order e3 (and NRT 
stands for non-resonant terms, as in the Appendix). 

Since Uo is either symmetric or antisymetric in the z-variable, FQ is real and UQ 
and WQ are purely imaginary (see (3.5), (A9a) and (A9f?)), we have 

8t(r) - Si»> gi(z) = g3(z) = 0. (5.10) 



FTGURE 12. The funcíion gj1" = g, associated with the first natural mode, giving the forcing radial 
velocity in the boundary condition (5.4), for severa! valúes of the slenderness. 

In adition, the net tangential radial flux at the disks is seen to satisfy 

\B\2 f rg±{r)dr =-~\B\2 / |£/0(r,/l)|2dr/2fl < 0. (5.11) 
Jo Jo 

A plot of the forcing term gf = gj~ associated with the first natural mode is given in 
figure 12 for several valúes of the slenderness. 

The model (5.1)—(5.6) provides the (Eulerian) short-time-averaged velocity that, for 
kinematical reasons, needs not coincide with the drift (or mass-transport) velocity, that 
is, the (Lagrangian mean) velocity associated with the short-time-averaged trajectories 
of material elements; notice that the drift velocity must be used for comparison with 
experiments. But, since our osciílating field is standing (that is, its phase is independent 
of position) in first approximation, both velocities do coincide (Batchelor 1967) and 
(5.1)—(5.6) also provides the drift velocity field. 

Now, if either (i) only one disk is vibrated or (ii) both disks are vibrated with 
the same frequency then, as seen in §4.1, |B| evolves to a steady state as % —>> oo. If 
the initial transient is ignored, then \B\2 may be considered as a constant in (5.4) 
(that may be calculated, as a steady state of (4.7), in terms of the non-dimensional 
frequency detuning tüi and forcing amplitude ¡Mj|; recall that (4.7) may exhibit up 
to three steady states). If, in addition, \B\2 is not too large (to avoid flow instabilities) 
then the solution of (5.1)—(5.6) evolves to a steady state as T —> oo. If the eigenmode 
being excited and the slenderness are kept fixed, then the forcing function gf remains 
constant and that steady state depends only on the parameter 

k = \B\2/y, (5.12) 

as readily seen when dividing u2o and w2o by y, and g70 by y2 in (5.1)—(5.6). 
The steady state has been numerically calculated for five valúes of the constant 

k (which may be seen as an ejfective Reynolds number associated with the steady 
streaming flow), k = 2, 20, 200, 1000 and 2000, and for A — 1; in all cases we have 
considered the forcing term gf associated with the first natural mode (see figure 12). 
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The resulting axial velocity at the interface, w2o{{,z)/\B\2, and the streamlines are 
plotted in figures 13 and 14. Several remarks concerning these results are in order. 

(a) Both the axial velocity at the interface and the streamlines in figures 13 and 14 
are quite representative of other numerical results obtained for higher-order natural 
modes and for other valúes of the slenderness. 

(b) The flow pattern is always symmetric on the plañe z ~ 0; thus only one half 
of the liquid bridge is plotted in figure 14, even though numerical calculations were 
made in the whole domain, 0 < r < 1, — 1 < z < 1, to ensure that no symmetry 
breakíng appears in the range of k considered. 

(c) The quantity w2o/|S|2 = w2o/yk and the streamlines are almost equal for fe = 2 
and 20 (see figures 13 and 14a). This means that «20/7 and qio/y2 depend linearly 
on k if 0 < k ^ 20 and thus satisfy the (Stokes) linear problem resulting from 
neglecting convective terms. This was to be expected because, in two-dimensional 
incompressible flows in finite containers resulting from steady forcing at the boundary, 
the zero-Reynolds-number limit frequently appíies up to fairly large valúes of the 
Reynolds number. 

(á) For k = 2, 20 and 200 the flow pattern exhibits two small toroidal eddies near 
the corners, r — 1, z = +1, that push the liquid away from the disks along the 
interface, and two larger counter-rotating (toroidal) eddies in the bulk (that push the 
liquid towards the disks along the interface). Again, this was to be expected; the 
small eddies are due to the fact that the forcing radial velocity at the disks is positive 
in a small región near the corners (see figure 12), and the large eddies are due to the 
fact that the net forcing radial flux is negative (see (5.11)). These flow patterns are 
in rough qualitative agreement with the experimental observations by Mollot et al. 
(1993, figure 12). 

(e) For larger valúes of k the small eddies near the corners enlarge (see figure 14c), 
due to convective eífects, to cover the whole interface (as in figure 14d). These two 
flow patterns were not observed by Mollot et al. (1993). 
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FIGURE 14. Streamlines for the five cases ín figure 13. Flow patterns are always symmetríc and only 
one half of the capillary bridge is plotted. 

5.1. The combined effect of vibration and thermocapillary stress 
Let us now consider the combined effect of the steady forcing terms due to vibration 
and the thermocapillary stress in non-isothermal conditions. We shall consider a 
distinguished limit when (a) the temperature is independent of the fast (capillary) 
time í in first approximation, and (b) thermocapillary stress produces a velocity field 
in the bulk that is of the same order as that associated with the streaming flow 
considered above (that is, of the order of s2). As a consequence (c) the oscillating 
flow considered in §§3 and 4 (that is governed by the amplitude equation (4.1)} will be 
independent of thermocapillary effects (as it was independent of the streaming flow); 
and (d) convection and thermal diffusion will be of the same order in the energy 
equation if the Prandtl number is of order unity and the basic thermal state will 
depend on the slowly varying flow even to the leading order. In this limit we shall 
derive an asymptotic model that gives both the slowly varying temperature field and 
the slowly-varying flow (resulting from both thermocapillary effects and streaming 
effects due to vibration). The steady states of this model will be analysed in order 
to inquire into whether vibration can counter balance thermocapillary effects. For 
the sake of compíeteness we shall maintain below the dependence on the slow time 
variable T; then our asymptotic model may be used also to analyse the stability of 
the steady fíows considered below and some more complex dynamics that will not be 



considered. But the derivation below could be more easily followed íf the dependence 
on the slow time variable is ignored. For the sake of brevity, the derivation below is 
not given in full. See Nicolás et al. (1996a) for a more detailed derivation of a related 
asymptotic model that exhibits the same features as that below and applies to the 
non-resonant case. 

In order to model thermocapillary effects, the tangential stress balance at the 
interface (2.7) must be replaced by 

{Wr±uz){l-fl) + 2{ur~Wz)fz = -{CRe){\+fl)lí\ez+fzer) at r = / , (5.13) 

where Re is the effective (or thermocapillary) Reynolds number, defined as Re — 
ff7(AT)R/pv2 (with AT a typical temperature increment in the íiquid bridge, crT = 
da/dT the thermal gradient of surface tensión, p the density, v the kinematic viscosity 
and R the radius of the disks, as defined in §2), and 0 is a non-dimensional temperature 
(Q = (T - T0)/(Ti - T0), where T0 is the temperature of the disks and T± is a 
characterístic temperature in the Íiquid bridge), that satísfies the energy conservation 
equation 

ot + uer + wOz = {c/p){err + rler + ezz) (5.14) 
and boundary conditions 

0 = 0 at z = ±A, (),. - / A = (1 + jl)1'1 g(z) at r - / . (5.15) 

Here P — pvcp/ko (cp is specific heat, &0 is thermal conductivity) is the Prandtl number 
and g = g(z) is the non-dimensional normal heat flux through the interface, that is 
assumed to be given and symmetric, i.e. g(—-z) = g(z). As is usual in the literature, 
we are assuming all properties of the Íiquid to be independent of temperature except 
for surface tensión, which depends linearly on temperature in first approximation. 
That dependence is taken into account only in the tangential stress balance boundary 
condition at the interface (where that dependence appears at leading order, in the 
right-hand side of (5.13), and not as a correction to somethíng larger). The thermal 
boundary conditions (5.15) are the simplest ones giving symmetric thermocapillary 
flows, which are of interest in materials processing as indicated in §1. 

We shall consider the distinguished limit 

Re ~ P - 1, (5.16) 

but our asymptotic model below may be seen to apply to larger valúes of the Reynolds 
number, namely whenever 

Re < C~l. 
Notíce that if thís condition holds then the velocity and pressure fields associated 

with the thermocapillary stress are such that u, w and q are small (even though the 
thermocapillary Reynolds number may be large) and the thermocapillary flow can 
be considered as a perturbation of the quiescent state when analysing the oscillatory 
flow (with the non-dimensionalízation based on the capillary characterístic time we 
are using in this paper); thus the analysis in §3 remains valíd (except for the boundary 
condition (5.20) below). 

Now, the temperature in the bulk is expanded as 

6 = OQ(r>z,T) + s[A01é
at+ ce] + HOT (5.17) 

where the basic thermal state OQ is to be calculated and varíes only in the slow time 
scale T ~ 1 (where % is given by (3.4) and (4.2)), that is the time scale associated 
with both the damping of the oscillating flow (see (4.4)) and the streaming flow (see 



(5.2)-(5.3)). Notice that (even though we are interested only in the leading-order 
term OQ) we aíso need to consider a first correction of order e, that oscülates in the 
fast (capillary) time scale, t ~ 1. If (3.1) and (5.17) are inserted into (5.14) and the 
coefficient of e is set to zero, then ©\ is seen to be as given by 

0i = UiUodor + WQBQz)¡Q. (5.18) 

Notice that temperature oscillations in the bulk are driven only by the oscillating 
velocity field through convective eífects; heat conduction comes into play to calcúlate 
temperature oscillation only in the oscillatory boundary layers (Le. in regions (a) and 
(b), see figure 1). Similarly if the non-oscillatory part (i.e. that part that is independent 
of the fast time variable t) of the coefficient of e2 is set to zero, and the defmition 
(4.2) of g is used, then we obtain 

0OT + W2ü£W + w20e0z = (y/P)(90rr + r-l90r + <W, (5.19) 

where y is as defined in (5.7) (recall that y may be considered as a 0(1) quantity in 
practice); thus, in the limit (5.16) y/P may be considered as an 0(1) quantity and, 
according to (5.19), the time scale x ~ 1 coincides with the thermal time scale. In 
order to obtain (5.19), we have taken into account that Á(UQ0h. + WQ0ÍZ) + c.c. = O, 
as readily seen when using (5.18) and the fact that UQ and WQ are purely imaginary 
(see (3.4), (A9a) and (A9b)) and 90 is real. If this additional term were not zero 
(as happens when the oscillations are non-resonant, see Nicolás et al, 1996a) then it 
should be added to the left-hand side of (5.19); notice that this term is obtained as 
the short-time average of (^[/oe

ií3í + c.c.)(É>1(.e
ií3t + c.c.) + (J4Woe

ií3' + c.c.){0Ise
i£3t + c.c.). 

Finally, when using the new boundary conditions (5.13) and (5.15) in the analysis of 
the Stokes and the interface boundary layers (see §§3.2 and 3.3), and applying the 
appropriate matching conditions with the solution in the bulk, then we obtain the 
new boundary conditions 

w2o = 0, w ^ = -yRedÜ2 at r = 1, (5.20) 

0Q - 0 at z - ±A, 0o, = g(z) at r = 1, (5.21) 
where we have used the defmition of e (in (4.2)) and (5.10). 

Now, the model posed by (4.7), (5.1)-(5.5.) and (5.19)-(5.21), with cou Mu y and gf 
as given by (4.5), (4.8) and (5.7), gives the combined effect of the slowly varying forcing 
terms due to vibration and thermocapillary stress. For the numerical applications 
below we assume the non-dimensional heat flux through the boundary to be given by 
a Gaussian, Le. 

g(z) = exp(-az2/2), (5.22) 
as usually done in the literature to model the heat flux through the interface when 
considering applications to the float zone technique. 

As above, we shall consider only steady flow patterns. Then we may consider B as 
a parameter (that may be calculated as a steady state of (4.7)). Also, the steady states 
depend only on the parameters k (see (5.12)) P and Re, and on the forcing functions 
gf (see (5.7) and figure 12) and g (see (5.22)). 

In the absence of vibration (namely if k = 0) the temperature attains its máximum 
at the centre of the liquid bridge z = 0 (where the heat flux is largest, see (5.22)) and 
the thermocapillary tangential stress (see (5.20)) pushes the liquid along the interface 
from the centre of the capillary bridge to the disks. The resulting flow pattern is 
qualitatively similar to that in figure 14(a, b), except for the two small eddies near the 
corners that are now absent. Thus, the thermocapillary flow is reinforced by vibrations 
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FIGURE 15. Axial velocity and temperature at the interface for the steady fiow in the buik at A = 1 
due to vibration of the first mode with k — 2000 and thermocapillary effects with P — 0.02: (ÍI) 
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(except near the corners, but this is a localized eíFect) if k < 200. That prediction 
is confirmed by some numericaí calcuíations that are not presented for the sake of 
brevity. 

For larger valúes of k (e.g. k = 2000), counterbalancing is (a priori) possible 
because the streaming fiow due to vibration and the purely thermocapillary fiow 
exhibit essentially opposite structures near the interface. In order to elíucidate 
whether effective counterbalancing is feasible, the problem (5.1)—(5.5), (5.19)-(5.22) 
has been numerically integrated for A — 1, P = 0.02, k ~ 2000, a = 2 and three valúes 
of the thermocapillary Reynolds number, Re = 100, 500 and 2000. The axial velocity 
and the temperature at the interface and the streamlines are plotted in figures 15 and 
16. Two remarks concerning these results are in order: 

(a) As in figures 13 and 14, these ñow patterns are representative of counterbalanc­
ing results for other (non-limiting) valúes of the parameters. Also, the fiow pattern 
is always symmetric in figúrelo, where only one half of the liquid bridge has been 
plotted. 

(b) For small thermocapillary eífects the fiow pattern remains quahtatively un-
changed (compare figures 14d and 16a). As the capillary Reynolds number increases 
the fluid is pushed more and more towards the disks along the interface by thermo-
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FIGURE 16. Streamlines for the three cases in figure 15. Flow patterns are always symmetric and 
only one half of the capillary bridge is plotted. 

capülary stress untü the eddies near the córner become quite localized (see figure 16c). 
Nevertheless the máximum valué of the velocity at the interface remains unaffected 
(see figure 15). This is due to the fact that the boundary condition at the disks, (5.4), is 
independent of thermocapiUary effects, and illustrates the main diificulty that makes 
these streaming flows inconvenient to counterbalance thermocapiUary convection in 
the whole liquid bridge. Nameiy, the price for any possible counterbalancmg effect in 
the bulk is the introduction of large velocities near the corners. 

Therefore nearly inviscid, almost-resonant, low-frequency vibration is not effective 
to counterbalance thermocapiUary flows in liquid bridges. In order to get effective 
counterbalancing, the forcing tangential stress at the interface coming from vibration, 
W20r(l>z) — \B\2g3{z) (see (5.6)) plays an essential role; it vanishes here (see (5.10)) 
because the oscillating flow is standing in first approximation and the phase of 
the complex eigenfunctions ib and WQ is independent of the axial coordinate, and 
this is an exclusive property of almost-resonant, low-frequency vibration. Non-
resonant oscillations produce vibrating velocity fields whose phase varíes with the 
axial coordinate when both disks are vibrated with appropriately different phases; 
these progressive oscillations are quite effective in counterbalancing thermocapiUary 
convection in model-half-zone liquid bridges (whose disks are held at two different 
temperatures, with the interface thermally insulated), as shown in Nicolás et al. 
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TABLE 1. Vibrating parameters and steady streaming results for A = 1, R = 1 mm, if the first 
eigenmode is excited by vibration of one disk. 

(1996a). Also, if the vibrating frequency is large enough to excite a large number 
of capillary eigenmodes (i.e. Q ~ C~v > 1) then these modes add up to a pair 
of progressive counterpropagating wavetrains along the interface, which have been 
analysed by Nicolás et al. (1996b), who have shown that the associated streaming flow 
is quite effective in counterbalancing symmetric and non-symmetric thermocapillary 
flows. In both cases the steady tangential stress at the boundary is non-zero and 
may be selected to have the right shape (by appropriately choosing the vibrating 
parameters) to counterbalance thermocapillary stress. 

6. An application in laboratory dimensional parameters 
For illustration, let us consider two capillary bridges, of water and mercury (p = 1 

and 13.63 gm cm~3, a = 72 and 484dynescm-1 and v = 0.89 x 10~2 and 0.113 x 
10~2 cm2 s_1 respectively, at 25°C). If the radius of the disks is R = 1 mm (a typical 

* valué for mülimetric liquid bridges) then the small parameter C — {pv2/aR)^2 is as 
given in table 1. If, in addition, the slenderness is A ~ 1 and the first eigenmode 
is excited then Q ~ 3.3 (obtained from the first equation of (A6), in the Appendix), 
the coefficients in the amplitude equations are ai ~ 0.09, a2 ^ 7, a3 — —2.5 and 
a\/Q2 cu 0.25 (see figures 2-5)), and the small parameters <5, e and ft are as given 
in table 1 (and obtained from (4.2)). Now, for our analysis to be valid, e\A\ <C 1. 
Then we take coi = \Mi\2 = 16 and 64 respectively in equation (4.12), whose upper 
solution (there is also a lower, stable solution at these valúes of co¡ and |Mi|) is 
\B\2 = )Mi|2 = 16 and 64 respectively. If only the upper disk is vibrated then 
M = |Afi| and \A\ = \B\ (see (4.3) and (4.8)), and /í+ and h are readily calculated 
from (4.5), (5.7) and (5.12), to be as given in table 1. Now, the dimensional vibrating 
amplitude, a = 2¡x\fi+\R (see (2.11)), the characteristic time tc — {pR3/<r)1/2 and the 
dimensional vibrating frequency, Q — (Q + 5(ú+)/27ttc (with co+ as given by (4.5)), are 
readily calculated. Similarly, since the máximum of the eigenfunction F0 {given by 
(A7) in the Appendix) equals 0.235, the máximum deflection of the interface in one 
oscillation is ¿1/J, — 2£\A\\Fo\maxR, Finally, with these small valúes of the parameter 
h (59 and 280) the streamlmes of the associated streaming flow are qualitatively 
similar to those in figure 14{a, b), and the velocities in the small and large eddies in 
dimensional terms are vs = £2\B\2w\QR/tc and v¡ = E2\B\2w2

QR/tc respectively, with 
w¿ c¿ 0.2 and w|0 ~ 0.03 (see figure 13). 

Notice that we are obtaining fairly large streaming velocities with very small 
oscillatory deflection of the interface. Our results suggest that only the first two 
patterns in figure 14 are obtained in millimetric liquid bridges if we maintain the 
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condition of small oscillatory defíection of the interface (that requires e\A\ to be 
appropriately small), excite the first mode and take A ~ \ (the physical properties 
of other liquids or liquid metáis are not different enough to those considered above 
to allow significantly smaller valúes of e). This might explain why only the first two 
patterns in figure 14 were obtained by MoUot et al. (1993) for low-viscosity liquids. 
The situation is different if we excite high-order modes (Nicolás et al. 1996a, b), 
significantly lower the slenderness A or increase the radius of the disks. In space 
platforms, R may be as large as 5cm; if, for example, mercury is used and \A\ = 17, 
then C — 8.5 x 10"5, s = 0.024 and k may be as large as 2000; then the last two 
patterns in figure 14 can be also obtained. 

7. Concluding remarks 
We have considered the weakly nonlinear axisymmetric, nearly inviscid oscillations 

in a liquid bridge resulting from almost-resonant, axial vibrations of the disks. A cubic 
amplitude equation has been derived for the complex amplitude of the oscillating 
pressure and velocity fields and of the oscillating shape of the interface. That equation 
is a balance between inertia, damping, detuning from resonance, nonlinearity and 
forcing, and includes a second approximation in the damping term (in order to ensure 
a quantitatively good approximation for realistically large valúes of the capillary 
Reynolds number) and a first approximation of the remaining effects. 

The coefficients of the amplitude equation have been calculated in terms of the 
slenderness and the inviscid mode being excited, and the large-time behaviour of the 
solutions have been discussed. In particular, we predict the liquid bridge to exhibit 
periodic oscillations when either only one disk is vibrated or both disks are vibrated 
with the same frequency. Typical response diagrams in terms of the forcing frequency 
exhibit hysteresis when the forcing amplitude is not too small; this hysteresis has 
not been detected experimentally (perhaps because most experiments in the literature 
seem to have been designed to confirm linear theories that do not predict that effect), 
but some recent experiments with pendant drops (De Paoli et al. 1995) showed the 
effect. If both disks are vibrated with different (but appropriately cióse) frequencies 
then we predict that generically the capillary bridge exhibits quasi-periodic oscillations 
with two frequencies, one of them aímost equal to the forcing frequencies and the 
other one of the order of the difference between them. Typical response diagrams 
now exhibit multiplicity and period doubüngs that, again, have not been detected 
experimentally. 

The Stokes boundary layers near the disks produce a steady (or slowly varying) 
forcing radial velocity that has been also calculated. The resulting slowly varying 
flow have been considered in §5, where some experimental observations by Mollot 
et al. (1993) have been explained and other non-observed flow patterns have been 
predicted. Also, the combined effect of the steady forcing terms due to vibration and 
thermocapillary stress have been analysed in §5.1, to conclude that this streaming 
flow is not effective in counterbalancing thermocapillary convection. But our results 
suggested how to get the required effect (see Nicolás et al. 1996a, b). 

A remarkable feature is that the amplitude equation giving the leading-order 
oscillating flow is decoupled from the streaming flow. This is an exclusive property 
of the axisymmetric case. The extensión of the results in this paper to the non-
axisymmetric case leads to a more complex model that includes the coupled effect of 
two counter-rotating waves and a slowly varying flow (Higuera 1996). 



Finally, let us recall that our analysis requires several limitations that were discused 
in §3.5. 

Numerícal calculations in Sections 4.2 and 5 were performed by Mr. Marcos 
Vera and Dr. Damián Rivas respectiveiy. We are also indebted to Dr. Rivas for 
helpful discussions, and to the three anonimous referees for several criticisms and 
suggestions on an earlier versión of the paper that led to a significant improvement in 
the presentation. This research was supported by DGICYT and by the EEC Program 
on Human Capital and Mobility, under Grants PB-93-0046 and CHRX-CT-93-0413. 

Appendix. 
In this Appendix we give several groups of algebraic expressions that were omitted 

in §3 to facilítate the reading of this section. The first group deals with the integral 
expressions appearing in the solvability conditions (3.31b), which may be written as 

h = S f f (Uouz + W0wx)rdrdz 
J-A JO 

- 8 / [fJQo + (f - D / r O o r ~ ( / - l ) (ü"0«r + W0WT)]^áz 
J-A 

+ 2ecÍH{e
iat f í UQ(r,A)[ÜQ(r^) - Uo(r,¿)]rdrd£ + c.c. j + HOT, (Al) 

13 = - CzAéat í f [{Ul + üi + Wl + Wl)r + Vl¡r] drdz + NRT + HOT, (A 2) 

J-A Jo 
U= ( {s{fW0(l,z) + {f ~\)WoAUz))(AWZ{0,z)éQt+c.c.) +iQ(l-f/2)F0ft 

J-A 
+ (f-l)[ft{UUhz) + Uo(Uz))-fQQl.(l,z) + FQ-hF'¿} 

- / i ( / - l ) 2 ( ^ + ^ ) } / ( d Z - i í 3 ^ | ( / " l ) 2 ( l - f i 2 / ) + ( /- l ) /2 Z + | /z
2(l+AJ 

+ ^ V W ( 0 , z ) e i m + c . c . ) ^ 

- i [ft+&\AWZ{G,z)éQt + z.c)2]Xáz + ~ J ( / - l ) 3 C^( l , 2 )dz 

+ Í [ C / o r r ( / - l ) 2 / 2 - W o , / ^ ( / - l ) ] r = 1 ( / - l + / „ ) d z - c / , f[zWo{U)áz 
J-A J-A 

+ C / [ / r + e ( ^ (0 , z ) e l Q Í +c .c . ) ] U0(l,z)áz + HOT, (A3) 

J5
± = (ifí/^±e i íQf_U±T) + c.c.') í rQ0(r,±A)ár 

±Cl/2s í Uo(r,A)\AUod^O)éat + c.c. + Cl/2üH(r,0)^eü2í(r,0))rár+íiOT, (A4) 
Jo *- • 1 

where u and w (the veíocity components in the bulk) and / are as given in (3.1), 
U0> W0, «i, u2 and WQ are as given in (3.16H3.18) and (3.25), NRT stands for 
non-resonant terms (depending on the fast time variable as exp(imí), with m =£ 1 



being an integer), and 

HOT = OÍJÍ + BC + E2C1 / 2 + £3). (A 5) 

Also, in order to obtain (A1)-(A3) we have used the solution in the Stokes boundary 
layer near z = — A (not given in §3.2), the facts that U^r.A) = W0r(r,A) = 0, that 
the ñinctions £/¿ and UQWQZ are even in the z-variable and that W¿(Qtz) = Wa(ítz) 
is purely imagmary and F0 is real (see (3.5), (A9a) and (A9b); also, in order to obtain 
(A 3) we have used the equation 

if - l)/Qo(l, 2)dz = -ifí / [/•(/ - 1) + 2/ 2 + (2/ - l)/zz]F0dz + ofou), 

which is obtained upon substitution of (2.9), (2.11), (3.7) and (3.8), and integration by 
parts. 

The linear eigenvalue problem (3.5)—(3.8), may be solved in a semi-analytical form, 
as first shown by Sanz (1985). The eigenfrequencies are the real Solutions of one of 
the following equations: 

A tan A = ~S~] anrn or A cot A-\- J ^ anr„ — 0, (A 6) 
ji odd fi even 

where 

a0 = 1, a„ = 2Q2/(Q2qu - sa) if n ^ 1, (A 7) 

q» = HLl rn = q»/(l2
n - í), s» =/«(/J - l)/i(/B), /„ = nn(!A if n > 0, (A8) 

and J0 and ii are the first two modified Bessel functions. If the first equation of (A 6) 
holds (odd modes), Qo and F0 are given (up to a common constant factor) by 

Qo = ^2 aMLr)cos[ln(z + A)], FQ = Asinz/cosA + ^ <Vncos[í„(z + A)], 
n odd « odd 

(A 9a) 
while if the second equation of (A 6) holds (even modes), then 

Qo = 5 3 aMlnr)oos[ln{z +A)]> F0 = ^cosz/sin.4 + ^ a ^ c o s ^ í z +yl)]. 
TI even n even 

(A 96) 
£/0 and WQ are readíly calculated by means of the second and third equations of (3.5). 

The functions Q\ and F\ appearing in (3.37)—(3.39) are as given by 

& = - (1 - i)[bQo + dQQ/dA] + J2 bnloikr)cos[ln(z + A)]¡{2Q)V\ (A 10) 
n odd 

fi - - (1 - i) [6F0 + 8Fo/dA + 2A{dQ/dA - a1(2í2)I/2sin2/(í2 eos A)] 

+ 5^6BrflcosPI,(z + ^)]/(2fi)1^ (A 11) 
ÍI odd 

if £3 is a solution of the first equation of (A 6), or 

fíi = - (1 -i)[6fío + dQo/dA] + £ V o í W c o s ^ z + A)]/(2Q)^\ (A 12) 
n even 

Fy = - (1 - i)[M?0 + 5^/5/1 + 2A{dQ/dA - ax{2Q)^2) cosz/(£3 sin^í)] 

+ Y. ^«cos tUz +yl)]/(2Q)1/2, (A 13) 



if Q satisfies the second equation of (A 6); Ui and W\ are 

Ui = [ieir + íl-iJaiUol/fi , Wi = [iQi2 + ( l - i )« iWb] /a 

Here the constant b„ is given by 

6n = 2Q{dQ/dA - al{2Q)í/2)qllan/{Q2ql1 - sn) for n = 0 ,1 , . . . , 

(A 14) 

and the constants a)}, /„, íj¡„ r„ and s„ are as given in (A7)-(A8). The results in the 
paper (i.e. the coefficients íf3, H4 and H5 of the amplitude equation (3.3b)) do not 
depend on thé constant b. The remaining functions appearing in (3.37)-(3.39) are 
given by 

Q21 = 2Q2cQ + 4£32 ¿ C2kJ0(2/kr) cos[2/fc(z + A)], (A 15) 
fe=í 

Í ^ ÍKÍZWÍU) -^ )^ 
¡t=l 

C/22 = Í622r/2Í2, ^ 2 2 = Í022,/2O, 
020 = i>3 - goA 

íao = -»4 cosz - £>3 - 5 3 g a ( l - 4©- 1 cos[2/t(z + ¿)], 

{A 17) 
(A 18) 

(A 19) 

where 

/

A t» 

F0(z)2dz/4^ + ^ [ s a e a + 2(1 - 4 © ^ f í 2
Í 2 f c ] / (4Q2q2k - Sat) (1 - 4l¡) 

Z>2 - vi cot y( - 1 + 8Í22 J 3 ra/(4fi2
Í2fc - s2fc), 

/(=o 

D* = 

Dd = 

tanA52(l-4i kVg2fc+ / |Fo(z)|2dz/2 

^E( 1 - 4 í ) " 1 *»+ / lfo(z)!2dz/2 

(yl — tan A), 

(A eos A — sin/í), 

and for n > 0, the constants í„, r„, q„ and s„ are as given in (A 8), while c„, d„, e„ and 
g„ are as given by 

cn = [2DJD2 + (1 - ¿„2)4/2 + eH] /(4fl2a, - s„), 

dn = - Í / K ( z ) Í T o ( l , z ) - J i o ( z ) ü ' o r ( l , z ) ] c O S [ / J I ( z + ^ ) ] d z / ( ^ l í 3 ) , 

e„= / [ (2 -3Q 2 )Fo(z ) 2 +Woaz^-F i í zñcosP^z + ^ d z / l y l , 

g„= í [(f í2^2) |f0(z)f2- |^0( l ,z)¡2+|^(z) |2]cos[/ ( ((Z+^)]dz/A 
J-A 

Notice that as 2Ü approaches a solution of the second equation of (A 6), D2 —> 0 and 
U22, ^22* G22 and f 22 diverge; also, as A — tan A —* 0 (i.e. as a solution of the second 



equation of (A 6) approaches the solution Q — 0) D3 —> 00, D4 —» 00 and Q20 and F2o 
diverge. 
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