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The heat transport and corresponding changes in the large-scale circulation (LSC) in turbulent
Rayleigh-Bénard convection are studied by means of three-dimensional direct numerical simulations
as a function of the aspect ratio Γ of a closed cylindrical cell and the Rayleigh number Ra. The
Prandtl number is Pr = 0.7 throughout the study. The aspect ratio Γ is varied between 0.5 and 12
for a Rayleigh number range between 107 and 109. The Nusselt number Nu is the dimensionless
measure of the global turbulent heat transfer. For small and moderate aspect ratios, the global heat
transfer law Nu = A× Raβ shows a power law dependence of both fit coefficients A and β on the
aspect ratio. A minimum of Nu(Γ) is found at Γ ≈ 2.5 and Γ ≈ 2.25 for Ra = 107 and Ra = 108,
respectively. This is the point where the LSC undergoes a transition from a single-roll to a double-
roll pattern. With increasing aspect ratio, we detect complex multi-roll LSC configurations in the
convection cell. For larger aspect ratios Γ >∼ 8, our data indicate that the heat transfer becomes
independent of the aspect ratio of the cylindrical cell. The aspect ratio dependence of the turbulent
heat transfer for small and moderate Γ is in line with a varying amount of energy contained in the
LSC, as quantified by the Karhunen-Loève or Proper Orthogonal Decomposition (POD) analysis
of the turbulent convection field. The POD analysis is conducted here by the snapshot method
for at least 100 independent realizations of the turbulent fields. The primary POD mode, which
replicates the time-averaged LSC patterns, transports about 50% of the global heat for Γ ≥ 1. The
snapshot analysis enables a systematic disentanglement of the contributions of POD modes to the
global turbulent heat transfer. Although the smallest scale – the Kolmogorov scale ηK – and the
largest scale – the cell height H – are widely separated in a turbulent flow field, the LSC patterns in
fully turbulent fields exhibit strikingly similar texture to those in the weakly nonlinear regime right
above the onset of convection. Pentagonal or hexagonal circulation cells are observed preferentially
if the aspect ratio is sufficiently large (Γ >∼ 8).

PACS numbers:

I. INTRODUCTION

One of the most comprehensively studied turbulent flows is Rayleigh-Bénard convection, in which a complex three-
dimensional turbulent motion is initiated by heating a fluid from below and cooling from above. Detailed measurements
of the turbulent heat transport (e.g. Niemela et al. 2000, Funfschilling et al. 2005, Amati et al. 2005, Ahlers et

al. 2009), the statistics of temperature fluctuations and their gradients (Castaing et al. 1989, Emran & Schumacher
2008), and more recently, of coherent thermal plume structures (Zhou et al. 2007, Shishkina & Wagner 2008), which
carry the heat locally through the closed vessel, have been conducted. The variation of turbulent heat transfer with
respect to two of the three dimensionless control parameters in thermal convection – the Rayleigh number Ra and the
Prandtl number Pr – was the focus of most of the laboratory experiments and simulations. The dependence on the
third control parameter, the aspect ratio Γ = D/H with D being the sidelength or diameter and H the cell height,
has been studied much less intensively.
Only a few systematic analyses of high-Rayleigh-number convection in flat cells with Γ > 1 have been reported

(Fitzjarrald 1976, Wu & Libchaber 1992, Funfschilling et al. 2005, Hartlep et al. 2005, Sun et al. 2005, Niemela &
Sreenivasan 2006, du Puits et al. 2007) although the large-aspect ratio setting is relevant for nearly all geophysical
and astrophysical flows (e.g. Stein & Nordlund 2006) and many technological applications such as the energy-efficient
design of indoor ventilation (e.g. Zerihun Desta et al. 2005). Furthermore, an explicit dependence on the aspect ratio
is not contained in any of the existing scaling theories for the turbulent heat transfer (Siggia 1994, Grossmann &
Lohse 2000). Grossmann & Lohse (2003) discussed geometry effects by including variations of the kinetic boundary
layer thickness at the plates and side walls as a function of the aspect ratio. However, they found that the global heat
transfer laws remained independent of Γ. This is because their argumentation is built on the volume flux conservation
which requires a large scale flow – a so-called “wind of turbulence”. In fact all existing scaling theories require such a
large-scale flow for the ansatz of their boundary layer dynamics. It is, however, well-known that the coherent large-
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scale circulations present at Γ ∼ 1 break down into more complex and less coherent patterns when the aspect ratio
is increased far beyond unity. Such phenomena were reported by several authors: for example by means of Fourier
spectrum analysis (Hartlep et al. 2003), plume structure visualizations (Shishkina & Wagner 2006) or comparisons
of the autocorrelations of the temperature and velocity fields (du Puits et al. 2007).
In this work, we therefore want to study the dependence of convective turbulence on the aspect ratio in a cylindrical

cell by three-dimensional direct numerical simulations. Our focus is on aspect ratios Γ larger than unity. Values for Γ
cover a range between 0.5 and 12 for Rayleigh numbers between 107 and 109. The Prandtl number is kept constant.
The present analysis addresses the following three questions: Does the turbulent heat transfer at fixed Rayleigh and
Prandtl numbers depend on the aspect ratio? Similar studies have been carried out by Fitzjarald (1976), Wu &
Libchaber (1992), Funfschilling et al. (2005), Hartlep et al. (2005) and Sun et al. (2005). Which changes in the
global flow structure are associated with an increase of the aspect ratio beyond unity? This aspect has been discussed
in part in Hartlep et al. (2003) and du Puits et al. (2007). Which fraction of the total kinetic energy is carried and
how much heat is transferred by the large-scale circulation (LSC)? Answering the last question requires a systematic
disentanglement of the turbulent large- and small-scale flow and temperature patterns. Therefore, we conduct Proper
Orthogonal Decomposition (POD) of the turbulent flow fields. We observe a dependence of the heat transfer – as
measured by the dimensionless Nusselt number Nu– on Γ. This dependence is due to the rearrangement of the
large-scale flow patterns with varying aspect ratio.
Although the flow is fully turbulent, the time-averaged velocity field patterns will exhibit morphological similarities

with the structures which have been observed at the onset of convection (Charlson & Sani 1971, Oresta et al. 2007)
or in the weakly nonlinear regime right above the onset of convection (see e.g. Busse & Whitehead 1971, Croquette
1989, Clever & Busse 1989, Bodenschatz et al. 2000). For example, a transition from a one-roll to a two-roll flow
pattern right above the critical Rayleigh number was found at an aspect ratio Γ = 1.62 in a cylindrical cell (Oresta
et al. 2007). In a fully turbulent regime, such bifurcations are present at slightly larger aspect ratios. Furthermore,
in the weakly nonlinear case, many specific configurations have been detected such as knot convection, spiral defect
chaos, and textures with wall foci (see Bodenschatz et al. (2000) for a review). We observe that the time-averaged
flow fields for Ra ≥ 107 yield similar patterns. Our findings will be in line with recent studies by Hartlep et al. (2005)
in a rectangular cell with periodic side walls, in which emphasis was given to the variation of patterns with respect to
the Prandtl number Pr at different aspect ratios. Large-scale flow patterns are also present in other closed turbulent
flow systems, such as in high-Reynolds number turbulence in von Kárman swirling flows (La Porta et al. 2001) or
Taylor vortex flows (Lathrop et al. 1992).
The outline of the paper is as follows. In the next section, we summarise the numerical model and the equations of

motion. The subsequent section discusses the dependence of the Nusselt number on the aspect ratio for fixed Rayleigh
numbers and the Nusselt number as a function of the Rayleigh number at fixed aspect ratio. Section 4 studies the
LSC. Section 5 describes the POD analysis and the contributions of different POD modes to the heat transfer. We
conclude with a summary and outlook.

II. NUMERICAL MODEL

The Navier–Stokes equations for an incompressible flow in the Boussinesq approximation are solved in combination
with the advection–diffusion equation for the temperature field in cylindrical coordinates. The system is given by

∂u

∂t
+ (u ·∇)u = −∇p+ ν∇2u+ αgTez , (1)

∇ · u = 0 , (2)

∂T

∂t
+ (u ·∇)T = κ∇2T , (3)

where p(x, t) is the pressure, u(x, t) the velocity field, T (x, t) the total temperature field, ν the kinematic viscosity,
and κ the diffusivity of the temperature. Our studies are conducted for Pr = ν/κ = 0.7. The Rayleigh numbers
Ra = αg∆TH3/(νκ) span a range from 107 to 109. Here, α is the thermal expansion coefficient, g the gravitational
acceleration, and ∆T the outer temperature difference. The horizontal plates have no-slip boundary conditions, i.e.,
u ≡ 0, at a fixed temperature. The side walls are adiabatic no-slip boundaries, i.e., u ≡ 0 and ∂T/∂r = 0. Small
effects of finite conductivity – as present in the experiments – are thus excluded.
The equations are discretized on a staggered grid with a second-order finite difference scheme (Verzicco & Orlandi

1996; Verzicco & Camussi 2003). The pressure field p is determined by a two-dimensional Poisson solver after applying
a one-dimensional Fast Fourier Transform (FFT) in the azimuthal direction. The time advancement is done by a
third-order Runge-Kutta scheme. The grid spacings are non-equidistant in the radial and vertical directions. In the
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FIG. 1: Ratio of the maximum geometric mean grid spacing ∆̃(z) and the Kolmogorov scale ηK(z) for three different Rayleigh
numbers in cells with Γ = 1. The horizontal dotted line indicates the global Grötzbach resolution criterion ∆/ηK ≤ π
(Grötzbach 1983) where ∆ is the global geometric mean grid spacing.

vertical direction, the grid spacing corresponds to the Tschebycheff collocation points. The grid resolutions employed
in all runs are listed in Table 1. The numerical effort grows with Γ2 in the horizontal circular plane since the resolution
at the sidewalls has to be maintained. The smallest mean scale in a turbulent flow is the Kolmogorov dissipation
length which is usually defined as

ηK =
ν3/4

〈ǫ〉1/4 , (4)

where 〈ǫ〉 is the mean of the energy dissipation rate (see e.g. Pope 2000), which is given by

ǫ(x, t) =
ν

2

(

∂ui

∂xj
+

∂uj

∂xi

)2

. (5)

The symbol 〈·〉 stands for a statistical average. The resolution criteria based on ηK works well in homogeneous isotropic
turbulence, but has to be modified for the inhomogeneous situation. We define a height-dependent Kolmogorov scale
as

ηK(z) =
ν3/4

〈ǫ(z)〉1/4A,t

. (6)

The symbol 〈·〉A,t denotes an average over a plane at a fixed height z and an ensemble of statistically independent
snapshots. Following Emran & Schumacher (2008), we define the maximum of the geometric mean of the grid spacing

at height z by ∆̃(z) = maxφ,r[
3

√

∆φ(z)∆r(z)∆z(z)]. Fig. 1 plots the ratios ∆̃(z)/ηK(z) over the cell height for three
different Rayleigh numbers. One can observe that the ratio varies close to the upper and lower plates and levels off
in the bulk. Overall, it does not exceed the global resolution criterion by Grötzbach (1983), ∆/ηK ≤ π, for the given
Rayleigh numbers.
Fig. 2 displays the z-dependent mean profiles of the temperature and the product of the temperature and vertical

velocity component. The variations manifested in the profiles contribute to the Nusselt number variation with Γ .
The inset magnifies the mean temperature profile for Ra = 109 and Γ = 3, where the boundary layer is resolved with
17 grid planes.
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Nφ ×Nr ×Nz Ra Γ t/tf Nu± σ σ in %

97× 65× 128 107 0.50 300 17.08±0.07 0.4
193 × 97× 128 107 1.00 150 16.73±0.08 0.5

217× 133× 128 107 1.50 111 16.37±0.08 0.5
217× 133× 128 107 1.75 151 16.11±0.03 0.2
217× 133× 128 107 2.00 250 15.88±0.07 0.4
217× 133× 128 107 2.25 251 15.97±0.04 0.2
257× 165× 128 107 2.50 251 15.77±0.03 0.1
257× 165× 128 107 2.75 251 15.97±0.04 0.3
257× 165× 128 107 3.00 150 16.06±0.05 0.3
301× 211× 128 107 4.00 150 16.22±0.03 0.2
385× 281× 128 107 6.00 150 16.66±0.04 0.2
401× 311× 128 107 8.00 150 17.44±0.02 0.1
513× 361× 128 107 10.00 150 17.34±0.03 0.2
601× 401× 128 107 12.00 150 17.49±0.03 0.2

151 × 81× 160 5× 107 0.50 150 26.20±0.21 0.8
257× 129× 160 5× 107 1.00 150 25.86±0.13 0.5
271× 151× 160 5× 107 2.00 149 25.83±0.12 0.5
401× 225× 160 5× 107 3.00 145 25.90±0.05 0.2

151× 101× 256 108 0.50 300 32.06±0.24 0.7
271× 151× 256 108 1.00 150 32.21±0.32 1.0
271× 151× 256 108 1.25 150 31.77±0.15 0.5
321× 161× 256 108 1.50 150 31.39±0.11 0.3
321× 161× 256 108 1.75 249 31.57±0.10 0.3
361× 181× 256 108 2.00 145 31.25±0.31 1.0
401× 201× 256 108 2.25 143 31.25±0.21 0.7
401× 201× 256 108 2.50 146 31.87±0.18 0.6
401× 201× 256 108 2.75 145 32.34±0.08 0.3
451× 225× 256 108 3.00 141 32.29±0.12 0.4
541× 257× 256 108 4.00 132 33.20±0.08 0.2
801× 451× 256 108 8.00 81 34.78±0.13 0.4

201× 101× 310 109 0.50 150 63.67±0.56 0.9
361× 181× 310 109 1.00 139 64.31±0.64 1.0
811× 321× 310 109 2.00 109 63.25±0.26 0.4

1025× 551× 310 109 3.00 110 65.11±0.50 0.8

TABLE I: Parameters of simulation runs. The grid resolution, Rayleigh number Ra, and aspect ratio Γ are given. The Prandtl
number is Pr = 0.7 throughout this study. Furthermore, the total integration time in units of the free-fall time tf = H/Uf ,
with Uf =

√
gα∆TH, and the Nusselt number Nu with standard deviation σ are given. For all Rayleigh numbers, we find

that a characteristic convective velocity Uc =
√

〈u2〉V,t is about Uf/5. Consequently, t/tf has to be divided by 5 in order to
get t/tc, where the alternative convective time unit is defined as tc = H/Uc. This time unit was suggested by van Reeuwijk et
al. (2008) since the standard free-fall velocity Uf is too large in comparison with actual turbulent velocity fluctuations.

III. DEPENDENCE OF THE GLOBAL HEAT TRANSFER ON ASPECT RATIO

A. Nu(Γ) at fixed Rayleigh number Ra

The heat transfer through each plane at a fixed height z following the averaging of Eq. (3) with respect to the
horizontal plane is given by

Nu(z) =
〈uzT 〉A,t − κ∂z〈T 〉A,t

κ∆T/H
= const. (7)

The global Nusselt number, Nu, can then be written as

Nu =
1

H

∫ H

0

Nu(z)dz = 1 +
H

κ∆T
〈uzT 〉V,t , (8)
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FIG. 2: The z-dependent mean profiles of the (a) temperature and (b) product of the temperature and vertical velocity
component. Data for four aspect ratios are plotted at Rayleigh number Ra = 109. The inset in (a) magnifies the mean
temperature profile in the thermal boundary layer for the simulation at Ra = 109 and Γ = 3. Profiles are shown for the lower
half (0 ≤ z/H ≤ 0.5) of the cell only due to symmetry.

where 〈·〉V,t denotes an average over the whole cell volume and an ensemble of statistically independent snapshots.
The samples are gathered over the total integration time, which is also listed in Table 1, and given in units of the
free-fall time tf = H/Uf , with the free-fall velocity Uf =

√
gα∆TH as the characteristic velocity. The last columns

of the table display the Nusselt number Nu and the standard deviation σ, which is calculated as

σ =

√

√

√

√

1

Nz

Nz
∑

j=1

[Nu(zj)−Nu]2 . (9)

Here zj is the vertical coordinate of each gridplane and Nu(z) and Nu follow from Eqns. (7) and (8), respectively.
These standard deviations are smaller than or equal to 1% and thus comparable with Kerr (1996). The total integration
time of the simulations is comparable with van Reeuwijk et al. (2008).
Fig. 3 shows the Nusselt number Nu as a function of the aspect ratio, Γ, for three different Rayleigh numbers,

namely Ra = 107, 108 and 109. At Ra = 107 (Fig. 3(a)), Nu decreases with increasing Γ, attains a minimum value
at Γ ≈ 2.5, then increases to a maximum value close to Γ ≈ 8, and finally saturates for Γ > 8. Variations of Nu(Γ)
can also be observed in Figs. 3(b) and 3(c) for the other two larger Rayleigh numbers. The minimum of Nu(Γ) is
detected at Γ ≈ 2.5 and Γ ≈ 2.25 for Ra = 107 and Ra = 108, respectively. This is the point where a transition in the
LSC from a single-roll to a double-roll pattern will occur (see section 4). On the basis of stability analysis, Oresta et

al. (2007) have shown that there is always a single-roll for Γ ≤ 2 in the weakly nonlinear regime irrespective of the
initial conditions. However, our Rayleigh numbers here are in fully turbulent regime. With our present computing
capability, we could not go beyond Γ > 8 for Ra = 108 and Γ > 3 for Ra = 109. In particular, for the largest Rayleigh
number, we can provide four data points only and, therefore, the minimum of Nu(Γ) is inconclusive in this case,
although it is apparently at Γ ≈ 2 in Fig. 3(c). On the basis of our simulation data, we can not conclude exactly
at which aspect ratio the Nusselt numbers become independent of the cell geometry for all the Rayleigh numbers,
however, the trend indicates that it is at Γ ≈ 8 for Ra = 107 and Γ >∼ 8 for Ra = 108. The variations in Nu, as defined
by the difference between the maximum and minimum in the Nusselt number series, are significant – especially for
the lower Rayleigh numbers – and yield 10.9%, 11.3%, and 3.0% for Ra = 107, 108 and 109 respectively.
A closer inspection of the three panels in Fig. 3 reveals non-monotonic graphs of Nu(Γ) with local maxima and

minima, in particular for the two larger Rayleigh numbers. We have first verified that there is sufficient statistical
convergence of the data (see Table 1). Since statistical uncertainties can be excluded, there must be physical reasons
for the behaviour observed in Fig. 3. We observe that the time-averaged flow patterns in the turbulent cell are similar
to those at the onset of convection (Figs. 5 and 6). In this case, an integer number of rolls must fit into the cell.
This is exactly the reason why, for example, the linear instability studies by Koschmieder (1969) and Charlson & Sani
(1970, 1971) in the cylindrical cells with insulated side-walls yield stability curves Racr(Γ) with local extrema in the
low–Γ regime, and extend to an asymptotic value for larger Γ only. Small discontinuities in Nu(Ra) in the weakly
nonlinear regime, which could be traced back to a change of the number of rolls in the cell, have been also reported
by Gao et al. (1987).
These pattern bifurcations can be studied when a small number of degrees of freedom dominates the dynamics. It

is not obvious that in a fully turbulent case, where infinitely many degrees of freedom exist, coherent patterns exist
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FIG. 3: Nusselt number Nu as a function of the aspect ratio Γ for (a) Ra = 107, (b) Ra = 108, (c) Ra = 109. The crossover
from one circulation roll to two rolls is indicated in (a) and (b) by two parallel dashed lines. The errorbars for all Nusselt
numbers shown are smaller than the size of the symbols. For each single snapshot, the Nusselt number was determined as a
volume average. In addition, an arithmetic mean is taken over Nsamp = t/tf statistically independent turbulent samples (see
Eq. (8) and Table 1). The convergence of the standard deviation σ with increasing number of samples Nsamp = t/tf is shown
in (d) for the data set Ra = 107 and Γ = 2.

and prevail. Similar patterns can, however, be found in a turbulent Taylor vortex flow at high Reynolds number
(Lathrop et al. 1992). The POD analysis in section 5 demonstrates that the LSC carries a significant amount of heat
through the cell. We also show that a change of the LSC morphology causes jumps in the amount of heat transported
by the first few POD modes. These findings strengthen our observation of Γ-dependent heat transfer (see Fig. 3).
It should also be mentioned that persistent coherent patterns at larger Rayleigh numbers have been emphasized by
Busse (2003) as a sequence-of-bifurcations to the turbulent state.

B. Nu(Ra) at fixed aspect ratio Γ

Systematic experiments with various values of Γ larger than unity were conducted by three groups. First, Wu &
Libchaber (1992) detected a power law scaling with Ra, namely

Nu(Ra,Γ) = A(Γ)×Raβ . (10)

Their measurements indicated almost an unchanged exponent β and an aspect-ratio-dependent prefactor. Second,
Sun et al. (2005) suggested the following scaling law on the basis of their experiments as

Nu(Ra,Γ) = A1(Γ)×Raβ1 +A2(Γ)×Raβ2 . (11)

This scaling is a combination of two power laws with β1 = 1/3 and β2 = 1/5. Again, the prefactors depend on Γ
and a saturation of the Nusselt number Nu for Γ ≥ 10 has been detected. Third, Funfschilling et al. (2005) did not
observe any sensitivity of the heat transfer on the aspect ratio. Their measurements gave power laws of the form

Nu(Ra,Γ) = A×Raβ , (12)

but with a continuous drift of the exponent from β = 0.28 at Ra ∼ 108 up to β = 0.33 at Ra >∼ 1010. Their results
were essentially unaltered by an increase in the aspect ratio. On the numerical side, a power law of Nu ∼ Γ−1 for
Γ ≤ 3 was obtained by Ching & Tam (2006) on the basis of two-dimensional steady state calculations.
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FIG. 4: Aspect ratio dependence of the fit coefficients, A(Γ) and β(Γ). (a): Data for the Nusselt number and power law fits to
Nu(Ra) as reported in Table 2. (b): Compensated power law plots for A(Γ) and β(Γ). The exponents are λ1 = 0.18 for A and
λ2 = 0.03 for β. The open symbols are the present simulation data. The filled symbols correspond to Niemela & Sreenivasan
(2006). We have fitted their data from Ra = 1.10× 108 to 9.51 × 109 (see their Table 1).

Fit Coefficients Γ = 1
2
Γ = 1 Γ = 2 Γ = 3

A 0.165 0.145 0.127 0.118

β 0.287 0.294 0.300 0.305

TABLE II: Nusselt number as a function of the Rayleigh number for different aspect ratios. The scaling A×Raβ has been fit
for four aspect ratios.

The present data allows us to compare our results with the scaling laws given in (10)–(12). Table 2 displays the fit
results for power laws in the form Nu = A×Raβ at fixed aspect ratios Γ = 1/2, 1, 2 and 3. Each data series contains
four Rayleigh numbers, namely Ra = 107, 5 × 107, 108 and 109. Within this range of Ra, we observe a growth of
the exponent β from 0.287 to 0.305, which is about 6% variation. The present scaling law for Γ = 1 differs slightly
from the earlier reported scaling of Nu = 0.175 × Ra0.283 in Emran & Schumacher (2008). In the former case, six
Rayleigh numbers from 5 × 106 to 109, but fewer snapshots for the higher Rayleigh numbers, were included. This
demonstrates the sensitivity of the scaling laws and demands additional efforts to be taken here. Both the prefactor
A and exponent β seem to be functions of the aspect ratio and the functional form is thus

Nu(Ra,Γ) = A(Γ)× Raβ(Γ) . (13)

Fig. 4(a) shows power law fits (13) to our DNS data for several aspect ratios and Fig. 4(b) shows A(Γ) ∼ Γ−λ1

and β(Γ) ∼ Γλ2 in a compensated form for 0.5 ≤ Γ ≤ 3. The measurements that come closest to the present study,
both in Rayleigh and Prandtl numbers, are those by Niemela & Sreenivasan (2006) at Γ = 4. A power law fit of
their data for 1.10× 108 ≤ Ra ≤ 9.51× 109 yields Nu = 0.114× Ra0.306. Adding these parameters to Fig. 4 covers
data over almost a decade of Γ. We see that both parameters, A and β, almost perfectly follow the power law with
respect to Γ. The exponent for β is λ2 = 0.03, which is small. The dependence of the prefactor A on Γ is stronger,
with λ1 = 0.18. It is clear that further studies are required to determine whether this weak dependence on Γ prevails
at larger Rayleigh numbers or not. Furthermore, we can expect that, for sufficiently large Γ, both exponents will
saturate to aspect-ratio-independent values. This was shown clearly in Fig. 3 for Ra = 107. In addition, the saturation
threshold for A and β most likely depends on the Prandtl number, which is constant in our case.

IV. LARGE-SCALE CIRCULATION

Let us now investigate the behaviour of the LSC. In Fig. 5, we present the LSC for three aspect ratios Γ =2.5, 3, and
6 at Ra = 107. The streamline plots in the upper three panels have been obtained by averaging the velocity field over
50 consecutive snapshots. These snapshots are separated from each other by ∆t = tf = H/Uf . Averaging over three
disjoint sequences of 50 snapshots leaves the observed LSC patterns unchanged. We conclude, therefore, that the
detected LSC pattern is not transient. Transient behaviour and large-scale saturation have been investigated by von
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FIG. 5: Flow patterns at different aspect ratios. Streamlines (top row) and contours of the local heat transfer uzθ (bottom
row) for three different aspect ratios, Γ = 2.5 (left column), Γ = 3 (middle column), and Γ = 6 (right column), at Ra = 107 are
presented. All data are obtained by time averaging a sequence of 50 statistically independent snapshots. In the bottom row
〈uzθ〉t(r, φ, z = 1/2) is shown.

Hardenberg et al. (2008). The time-averaging over the coarse sequence of snapshots removes not only all small-scale
fluctuations of the velocity field, but also oscillations of the LSC, which have been observed in recent experiments (e.g.
Xi & Xia (2008) and Brown & Ahlers (2008)), mostly for Γ ≤ 1. Between Γ = 2.5 and 2.75, the system bifurcates from
a one-roll to a two-roll pattern. We have also identified this crossover in LSC between 2.25 < Γ < 2.5 for Ra = 108.
However, for Ra = 109 we have noticed a single-roll circulation pattern at Γ = 2 and a triple-roll pattern at Γ = 3.
Here, the LSC patterns for aspect ratios between 2 and 3 were not investigated for the highest Rayleigh number. A
single-roll at Γ = 2 is consistent with the findings of Sun et al. (2005), Oresta et al. (2007) and Bukai et al (2009).
The crossovers of the LSC are marked in Fig. 3(a) and Fig. 3(b) by two parallel dashed lines. With increasing aspect
ratio, the LSC becomes a more complex multi-roll configuration, as can be seen in the third column of Fig. 5 for
Γ = 6.
In the lower row of Fig. 5, we show the corresponding contour plots of 〈uzθ〉t at the midplane where

θ(x, t) = T (x, t)− 〈T (z)〉A,t . (14)

The quantity uzθ is the local convective heat flux contribution and uzθ > 0 if rising and falling plumes are present.
The appearance of rising and falling plumes (red in 〈uzθ〉t contours) in the three panels (lower row of Fig. 5) is directly
correlated to the corresponding LSC pattern of the time averaged velocity field. We have also verified that almost
the same pattern holds for the fluctuations of the local heat transfer, as given by 〈(uzθ)

2〉t.
As already indicated in Fig. 5, the LSC becomes more complex when the aspect ratio becomes larger. For Rayleigh

number 107, we were able to run a numerical simulation up to Γ = 12. Fig. 6 reveals such a complex LSC pattern
in convective flow for two different Rayleigh numbers, Ra = 107 and Ra = 6000, at Γ = 12. The left column shows
the top view of the streamlines for instantaneous snapshots of both simulations, while the right column shows the
time-averaged velocity field as in Fig. 5. When the small-scale turbulence (see lower left panel) is filtered out, the
resulting pattern is strikingly similar to the weakly nonlinear regime right above the onset of convection. We observe
extended rolls and pentagon-like cells. These patterns have been reported, for example, in experiments by Croquette
(1989) with argon at Pr = 0.69 for Rayleigh numbers Ra ≈ 2Rac, where Rac is the critical Rayleigh number of the
onset of convection. Fig. 7 adds further support to the Rayleigh-number-dependence of the LSC. The left panel nicely
displays the extended roll patterns in the weakly nonlinear regime at Ra = 6000 and Γ = 8. Relics of these patterns
are still present in the turbulent regime at Ra = 107 (mid panel). For the largest Rayleigh number, Ra = 108, the
LSC is transformed into a pentagon-like cell structure. Similarly, if we compare the top-right panel of Fig. 6 with
the left panel of Fig. 7, we see that there is a reorganization of flow from the roll shape to pentagonal or hexagonal
structures with increasing Γ for a fixed Ra.
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FIG. 6: Top view of the large scale circulation (LSC) patterns at Γ = 12 for two different Rayleigh numbers, Ra = 6 × 103

(top row) and Ra = 107 (bottom row). The streamlines of the instantaneous (left column) and time-averaged (right column)
velocity field are shown here. In both cases, the time averaging is done over 50 convective time units tf .

Regular patterns in the turbulent convection regime were studied in detail by Fitzjarrald (1976) in a square cell
filled with air for aspect ratios between 2 and 58 covering a range of Rayleigh numbers between 4× 104 and 7× 109.
He calculated the dominant horizontal scales from the Fourier co-spectra of uz and T . The spectral peak in the heat
flux corresponds to a wavelength Λ that increased from 4H to 6H for 4× 104 < Ra < 1.7× 107 and thus 58 > Γ > 15.
Based on Figs. 5 and 6 for Ra = 107 and Fig. 7 for Ra = 108, we take the width of the large-scale circulation roll
(which corresponds to the spacing between local maxima of 〈uzθ〉) as Λ/2 and get thus a wavelength Λ ≈ 4H for
Γ = 6, 8 and 12. The associated wavenumber k = 2π/Λ ≈ 1.5H−1 which is about half the size of kc = 3.117H−1 at
the onset of thermal convection in an infinite layer. The dominant horizontal scales are similar to those of Fitzjarrald.
The results in Fig. 5 further confirm the observation made by Fitzjarrald. This wavelength shrinks at smaller aspect
ratios where the pattern has to fit into the cylindrical cell. Hartlep et al. (2005) have also traced back their large-
scale turbulent temperature patterns to the states which are observed in the weakly nonlinear regime. A series of
simulations at Γ = 10 for Rayleigh numbers up to Ra = 107 confirms a characteristic wavelength of half their box
size, i.e. Λ ≈ 5H for Pr = 0.7. This wavelength was Λ ≈ 3H at Ra = 4000. Their study shows in addition a clear
shape dependence of the circulation rolls on the Prandtl number. Slight variations of Λ in the three studies might
be caused by different cell geometries and boundary conditions in the simulations. Nevertheless, the same range of
wavelengths can be observed for Ra ∼ 107 and Pr = 0.7 in all works.
Although qualitative similarities between the LSC patterns at small Ra and those at higher Ra are obvious from

Fig. 6, we can expect that the particular mechanisms that drive the large-scale flow will be different. The onset of a
flow motion for small Ra is triggered by a slight dominance of buoyancy forces per unit mass, fb = gαθ, compared to
the restoring drag forces per unit mass, fd = 1

2Cfu
2
zH . This is the simple chaotic waterwheel picture by Malkus and

Howard (see Strogatz 1994). In the turbulent case, the heat transport through the thin thermal boundary layers is
responsible for large-scale spatial temperature differences. Spatial temperature differences create pressure gradients
which drive the large-scale flow (Reeuwijk et al. 2008). This might the reason why the wavelength of the circulation
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FIG. 7: Rayleigh number dependence of the large scale circulation. Left panel: Ra = 6000. Mid panel: Ra = 107. Right panel:
Ra = 108. All data are for Γ = 8.

FIG. 8: (a) Normalized POD eigenvalue spectrum of the total energy (thermal plus kinetic) is shown for four different Rayleigh
numbers as indicated in the legend. (b) Normalized POD eigenvalue spectrum of the kinetic energy is shown for three different
Rayleigh numbers as indicated in the legend. The snapshot method was conducted over 100 state vectors. The aspect ratio is
Γ = 3 in all four cases. The spectra in (a) and (b) coincide almost perfectly. The inset magnifies the spectra for the first few
modes.

rolls is slightly increasing with growing Ra.
We can summarise that, for the range of parameters covered here, the LSC patterns do not disappear in the

turbulent regime up to Ra = 109. For the larger aspect ratios pentagon-like circulation cells are formed preferentially.

V. PROPER ORTHOGONAL DECOMPOSITION OF THE TURBULENT CONVECTION FLOW

A. The snapshot method

The turbulent heat transfer is the sum of transfers by the LSC and the turbulent fluctuations. In order to dis-
entangle both contributions systematically, we conduct a so-called Karhunen-Loève method or Proper Orthogonal
Decomposition (POD). The reader is referred to Smith et al. (2005) for a compact tutorial on this subject. Here,
we outline the basic ideas only. The application of the POD method to the convection problem goes primarily back
to Sirovich and his co-workers (see e.g. Sirovich & Park 1990). Consider a state vector v = (u, θ) with zero mean,
〈v〉 = 0. It has a mean turbulent energy (kinetic energy plus temperature variance), which is given by

E = 〈(v,v)〉 =
〈

∫

V

4
∑

k=1

vk(x, t)vk(x, t) d
3x

〉

t
, (15)

where V is the cell volume and the scalar product (·, ·) is defined in L2(V ). At the core of the method is the
determination of the POD modes φ(x), which maximize the following functional

〈|(v,φ)|2〉t
(φ,φ)

→ max. (16)
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Variational calculus then yields the following integral equation
∫

V

K̂(x,x′)φ(m)(x′) d3x′ = λmφ(m)(x), (17)

with the kernel (or covariance matrix) Kij(x,x
′) = 〈vi(x, t)vj(x′, t)〉t and i, j = 1, 2, 3, 4. If the kernel is a Hermitian

and non-negative operator, the set of empirical eigenfunctions {φ(m)} forms an orthonormal system, i.e. (φ(m),φ(n)) =
δmn. The integral equation is transformed into a matrix eigenvalue problem. In our case the size of the kernel becomes
extremely large, namely a 4N × 4N matrix for v = (u, θ) and N = Nr ×Nφ ×Nz. Symmetries and incompressibility
of the flow reduce the number of degrees of freedom in many cases. However, we still have to apply the method
of snapshots, which is the preferred choice if N ≫ NT , with NT the number of snapshots. We therefore construct
empirical eigenfunctions as a linear combination of the state vectors v, where the eigenfunctions are given by

φ(m)(x) =

NT
∑

i=1

α
(m)
i v(x, ti) . (18)

Such a procedure reduces the complexity of the problem and leads to the solution of an eigenvalue problem of NT ×NT

matrix, as is evident from the subsequent expressions. If 〈·〉t is substituted by an arithmetic mean over the snapshots,
it follows from (17) that

1

NT

∫

V

NT
∑

k=1

vp(x, tk)vn(x
′, tk)φ

(m)
n (x′) d3x′ = λmφ(m)

p (x). (19)

With (18) one can arrive at

NT
∑

k=1

vp(x, tk)

[

NT
∑

i=1

1

NT

∫

V

vn(x
′, tk)vn(x

′, ti) d
3x′ α

(m)
i

]

=

NT
∑

q=1

vp(x, tq)λmα(m)
q , (20)

and thus

NT
∑

i=1

1

NT
(v(tk),v(ti))α

(m)
i =

NT
∑

i=1

Ckiα
(m)
i = λmα

(m)
k . (21)

Eventually, NT eigenvectors {α(m)}, with m = 1, 2, ..., NT , represent NT POD modes {φ(m)} (vectors of 4N compo-
nents) constructed from the state vectors.
We proceed in two different steps. First, we use v = u only and not the combined velocity-temperature state

vectors. The eigenvalue spectrum E1 ≥ E2 ≥ . . . ENT
then quantifies the fraction of the turbulent kinetic energy

contained in each of the NT POD modes. Second, we use v = (u, θ) and determine the total energy spectrum
λ1 ≥ λ2 ≥ . . . λNT

. The latter will be used in the subsequent sections. Both eigenvalue spectra are presented in
Fig. 8 for different Rayleigh numbers and NT = 100 snapshots. At the smallest Rayleigh number Ra = 6 × 103, the
first few POD modes contain most of the total energy (Fig. 8(a)) and kinetic energy (Fig. 8(b)). This is the weakly
nonlinear regime of convection. With increasing Rayleigh number, the spectra decay slowly. For Rayleigh numbers
Ra ≥ 107 the convection is turbulent and a significant fraction of the kinetic and total energy is distributed among
the higher-order POD modes. The inset in Fig. 8(a) shows the magnified view for the first few POD modes. This
observation is in agreement with Sirovich & Park (1990). The dynamic significance of the subsequent modes increases
steadily with increasing Rayleigh number since turbulent fluctuations are present.

B. Spatial structure of primary and secondary modes

Before we proceed to the analysis of the turbulent heat transfer, we visualize the spatial structure of the first two
POD modes and compare it with the LSC. Fig. 9 shows the three-dimensional view of the primary and secondary

modes. The velocity field (φ
(m)
1 (x), φ

(m)
2 (x), φ

(m)
3 (x)) with m = 1, 2, is plotted as streamlines in the left column and

the temperature field φ
(m)
4 (x) at two isolevels is plotted in the right column. The data set corresponds to Γ = 3 and

Ra = 107. The structure of the velocity field of the primary mode almost exactly replicates the time-averaged velocity
field shown in Fig. 5. This replication is also verified for other aspect ratios, which are not shown here. The shape of
the primary temperature POD mode indicates hot up- and cold downwellings on the side wall. The two lower panels
of Fig. 9 show that the secondary modes exhibit a more complex structure. The primary and secondary POD mode
have the same number of large-scale rolls. In addition, we detect smaller substructures of the secondary modes, such
as recirculation vortices close to the top and bottom plates and weak modulations of the large-scale rolls.
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Ra 107 108

Γ 0.5 1.0 2.0 2.5 3.0 0.5 1.0 2.0 2.5 3.0

Nu 17.08 16.73 15.88 15.77 16.06 32.06 32.21 31.25 31.87 32.29

Nu(NT = 100) 16.74 16.42 15.28 15.26 15.42 31.13 31.78 30.64 30.88 31.05
Nu−Nu(NT =100)

Nu
2.0% 1.8% 3.8% 3.3% 4.0% 2.9% 1.3% 1.9% 3.1% 3.8%

Nu(NT =1)
Nu(NT =100)

30% 46% 51% 47% 55% 27% 47% 51% 63% 41%

TABLE III: Turbulent heat transport of POD modes. The Nusselt number Nu of the analysis of the DNS data (taken from
Table 1) is compared with that obtained from a sequence of NT = 100 snapshots denoted by Nu(NT = 100). Furthermore, the
contribution of the primary mode, Nu(NT = 1), is compared to the total transport, Nu(NT = 100).

C. Heat transfer by different POD modes

The contribution of different subsets of the POD modes to the turbulent heat transfer is determined as follows. We
can decompose turbulent snapshots as

ui(x, t) =

NT
∑

m=1

am(t)φ
(m)
i (x) , (22)

θ(x, t) =

NT
∑

m=1

am(t)φ
(m)
4 (x) , (23)

with i = 1, 2, 3 (or x, y, z). The coefficients am(t) correspond to the projection of the turbulent flow field at time t
to mode φ(m)(x), which are calculated from the scalar product in L2(V ). The Nusselt number definition (8) then
translates to

Nu(NT ) = 1 +
H

κ∆T

NT
∑

m,n=1

〈

am(t)φ
(m)
3 (x)

[

T (z) + an(t)φ
(n)
4 (x)

] 〉

V,t

= 1 +
H

κ∆T

NT
∑

m,n=1

〈

am(t)φ
(m)
3 (x)an(t)φ

(n)
4 (x)

〉

V,t

= 1 +
H

κ∆T

NT
∑

m=1

λm

〈

φ
(m)
3 (x)φ

(m)
4 (x)

〉

V
, (24)

where T (z) = 〈T (z)〉A,t. The contribution of the mean profile drops out.
In Fig. 10, we report the contribution of various POD modes to the global heat transfer for Ra = 107 and 108.

The contribution of the primary and secondary modes is displayed in panels (a) and (b). The expansion (24) is then
truncated after 1, 2, 5, 20, and 100 POD modes. Panels (c) and (d) show the accumulated fraction to the heat transfer
for the number of modes as given in the legend of both figures. As a consistency check, we compare the full expansion
which is based on 100 snapshots with the Eulerian value as determined in section 3. Computational resources limit
the present analysis to NT = 100 since intensive data in- and output is required. The values of Nu still deviate
slightly from those in Tab. 1. It is found that the convergence is slow in particular for the higher-order modes. The
slow convergence was also underlined in Fig. 3(d). In Tab. 3 we have listed in addition some quantitative details of
the POD analysis of the heat transfer. The results are consistent with the Eulerian values in Tab. 1.
The primary POD mode carries the following fraction of the global heat transfer

Nu(NT = 1) = 1 +
λ1H

κ∆T

〈

φ
(1)
3 φ

(1)
4

〉

V
. (25)

For flow patterns with a single-roll circulation, i.e. Γ = 1, 2, and 2.5 for Ra = 107 and Γ =1 and 2 for Ra = 108, the
contribution to the heat transfer by the primary POD mode is about the same. It makes up about one half of the total
amount. This contribution increases by 10% due to the transition from a single-roll to a double-roll pattern between
Γ = 2.5 and 3 for Ra = 107. The double-roll LSC can carry more heat through the cell since the number of up- and
downwelling regions with 〈uzθ〉t > 0 increases across the cell. This can also be seen in the plots in the lower row of
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FIG. 9: Three-dimensional visualization of the first two POD modes for Ra = 107 and Γ = 3. Upper row: Streamlines of the

primary flow mode (φ
(1)
1 , φ

(1)
2 , φ

(1)
3 ) (left) and isosurfaces of the primary temperature mode φ

(1)
4 (right) at the isolevels ±0.5∆T .

Lower row: Streamlines of the secondary flow mode (φ
(2)
1 , φ

(2)
2 , φ

(2)
3 ) (left) and isosurfaces of the secondary temperature mode

φ
(2)
4 (right) at the isolevels ±0.095∆T . Blue isosurfaces correspond to negative values and red isosurfaces to positive values in

both figures.

Fig. 5. One can consider the dynamics around Γ = 2.5 as a bottleneck for the heat transfer. The one-roll pattern gets
ever flatter with increasing Γ and can thus transfer heat less efficiently through the cell. Once the two-roll pattern is
established, this bottleneck is removed and the share of the primary mode in the total heat transfer increases. The
same transition appears between aspect ratios of 2 and 2.5 for Ra = 108. Again, we detect a jump of the primary
mode contribution by 12%. The opposite is the case for the slender cell at Γ = 0.5. One observes a much lower Nu
fraction due to the primary mode in comparison to the cases with Γ ≥ 1. This can be attributed to the complex
flow configuration in the slender cell, in which there are either two counter-rotating rolls on top of each other, or one
slender roll (Verzicco & Camussi 2003, Xi & Xia 2008a).
The secondary and higher-order modes provide information that can be obtained within the present POD analysis

only. The fraction of the secondary POD mode (see Fig. 10 (a) and (b)) to the global heat transfer is much smaller
than that of the primary. It is about 5% for the larger aspect ratios and remains almost insensitive when the primary
mode switches from a one-roll to a two-roll pattern. A closer inspection of both plots suggests, however, that an
increase of the portion of the total heat transfer due to the primary mode causes a decrease of that of the secondary
mode. This is clearly indicated for Γ = 0.5 and 1 in both Ra = 107 and 108 series, and for Γ = 2, 2.5 and 3 in the
series with Ra = 108. It further supports our arguments in the last paragraph. The local minimum of the secondary
POD mode contribution coincides with the local maximum of the primary one. When the primary mode becomes less
efficient in transferring heat, the secondary mode has to take a bigger share. The two panels in Fig. 11 display finally
the time dependence of the expansion coefficients of the first three POD modes, am(t) with m = 1, 2, 3. The graphs
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FIG. 10: Contribution of various POD modes (as indicated in the legend) to the global heat transfer for two Rayleigh numbers
and five different aspect ratios. (a) Contribution of the primary and secondary modes for Ra = 107. (b) Contribution of the
primary and secondary modes for Ra = 108. (c) Accumulated contributions for Ra = 107. (d) Accumulated contributions for
Ra = 108. For completeness we also add the original Eulerian values of the Nusselt number.
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FIG. 11: Time dependence of ai(t) for Γ = 2. The snapshots are therefore projected on the primary (i = 1), secondary (i = 2),
and tertiary mode (i = 3). (a) Ra = 107. (b) Ra = 108.

are obtained by projecting the 100 snapshots onto the POD modes φ
(m)
i (x) for m = 1, 2, 3. While the primary modes

remains nearly constant, we see that the secondary and tertiary modes oscillate with a period of approximately 30tf
and are shifted with respect to each other by about 10tf . The secondary and tertiary mode contribute thus mainly to
temporal variance of the heat transfer. Their time-averaged contributions remain, however, significantly lower than
that of the primary mode.

VI. SUMMARY AND DISCUSSION

Within the parameter range of the present study, the DNS results have revealed a dependence of the Nusselt number
on the aspect ratio. The variation in Nu(Γ) curve is between 11% and 3%, depending on the Rayleigh number and
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the range of accessible aspect ratios. A minimum of Nu(Γ) is found at Γ ≈ 2.5 and Γ ≈ 2.25 for Ra = 107 and
Ra = 108, respectively. This is exactly the point where the LSC undergoes a transition from a single-roll to a double-
roll pattern. The trend in Nu(Γ) curve indicates that the heat transfer becomes independent of the aspect ratio of
the cylindrical cell for sufficiently large aspect ratios. This is Γ >∼ 8 at Ra = 107 and Γ > 8 for Ra ≥ 108. The LSC
patterns reorganize from roll shape to pentagonal or hexagonal structures with increasing Γ and fixed Ra as well as
with increasing Ra and fixed Γ.
We provide arguments, which rationalize the non-monotonic graphs Nu = f(Γ). Furthermore, we demonstrate that

the power law relation Nu = A × Raβ gives rise to a coefficient A(Γ) which decreases from 0.165 to 0.118 and an
exponent β(Γ) which increases from 0.287 to 0.305. Furthermore, they follow algebraic scaling relations A(Γ) ∼ Γ−λ1

and β(Γ) ∼ Γλ2 , with λ1 = 0.18 and λ2 = 0.03 for aspect ratios between 0.5 and 4 and Rayleigh numbers between
107 and 109. We believe that it is important to include this dependence, albeit weak, in future scaling theories. The
variation of β seems to bridge the gap between the well-known exponents β =2/7 and 1/3, which have been measured
in the past. Further studies at higher Rayleigh numbers and larger aspect ratios have to be conducted to draw a
firm conclusion on the robustness of the observed scaling. We cannot comment on the trend with respect to Prandtl
number, which will exist as indicated in Hartlep et al. (2005).
The primary POD mode contains most of the energy, and transports about one half of the global heat for Γ ≥ 1.

Their contribution to the total heat transfer varies with Γ and Ra as indicated in table 3. This has been demonstrated
with the help of a Karhunen-Loève analysis of samples of turbulent convection field. We also observe that the LSC
patterns in turbulent convection at Ra ≥ 107 are still strikingly similar to those in the weakly nonlinear regime
immediately beyond the onset of convection (Bodenschatz et al. 2000). The system does not seem to “forget” these
patterns. This might partly be attributed to the closed volume, in which the studies are conducted. A large-scale
circulation is, therefore, always present similar to high-Reynolds number turbulence in von Kárman swirling flows (La
Porta et al. 2001) or Taylor vortex flows (Lathrop et al. 1992).
One possible argument against our observation of Γ–dependent Nusselt number could be that the Rayleigh number

for the given Prandtl number Pr = 0.7 is still too small and that the convective turbulence has not yet reached
the so-called hard turbulence regime, as discussed for example by Castaing et al. (1989). In order to weaken this
argument, we determine the dissipation scale and relate it to the height of the cell. Since Pr < 1, the diffusive scale
of the temperature, the Corrsin scale ηc = (κ3/〈ǫ〉)1/4, is larger than the Kolmogorov scale ηK = (ν3/〈ǫ〉)1/4. The
scale separation ratio gives: H/ηK =133, 278 and 588 for Ra = 107, 108 and Ra = 109 respectively. Here ηK is
directly evaluated from the energy dissipation field as discussed in section 2. Even if we take a fraction of H, the scale
separation is of O(102). Furthermore, for all the Rayleigh numbers discussed here, we reported strongly non-Gaussian
temperature statistics in Emran & Schumacher (2008), which clearly indicate that the convective motion is in a state
of fully developed turbulence.
Further numerical simulations and experiments in the regime of large aspect ratio and high Rayleigh number

are necessary. One can expect that the aspect-ratio-dependence of the turbulent heat transfer will disappear for
sufficiently large Γ and that turbulent convection approaches an asymptotic geometric regime in which the physics
becomes independent of side wall effects. To achieve those goals, some efforts are underway for the cylindrical case
and will hopefully shed more light on the dependencies A(Γ) and β(Γ) in the heat transport law as reported in Fig. 4.
Another important aspect, in our view, would be to conduct a closer study of the same issues for fixed flux boundary
conditions (which correspond, for example, to a radiative cooling on top of an atmospheric boundary layer). Recently,
the first step in this direction has been undertaken by Verzicco & Sreenivasan (2007) and Johnston & Doering (2008).
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