Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-04T09:55:58.879Z Has data issue: false hasContentIssue false

A short-term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments

Published online by Cambridge University Press:  30 September 2008

J. F. HERENCIA
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. 41200, Alcalá del Río (Sevilla), Spain
J. C. RUIZ
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. 41200, Alcalá del Río (Sevilla), Spain
S. MELERO
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. 41200, Alcalá del Río (Sevilla), Spain
P. A. GARCIA GALAVÍS
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. 41200, Alcalá del Río (Sevilla), Spain
C. MAQUEDA*
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC), Apdo 1052, P.C. 41080, Sevilla, Spain
*
*To whom all correspondence should be addressed. Email: juanf.herencia@juntadeandalucia.es

Summary

The transition from conventional to organic farming is accompanied by changes in soil chemical properties and processes that could affect soil fertility. The organic system is very complex and the present work carries out a short-term comparison of the effects of organic and conventional agriculture on the chemical properties of a silty loam soil (Xerofluvent) located in the Guadalquivir River Valley, Seville, Spain, through a succession of five crop cycles over a 3-year period. Crop rotation and varieties were compared in a conventional system using inorganic fertilizer and two organic systems using either plant compost or manure. At the end of the study, organic farming management resulted in higher soil organic carbon (OC), N and available P, K, Fe and Zn. The available Mn and especially Cu values did not show significant differences. In general, treatment with manure resulted in more rapid increases in soil nutrient values than did plant compost, which had an effect on several crop cycles later. The present study demonstrated that the use of organic composts results in an increase in OC and the storage of nutrients, which can provide long-term fertility benefits. Nevertheless, at least 2–3 years of organic management are necessary, depending on compost characteristics, to observe significant differences. Average crop yields were 23% lower in organic crops. Nevertheless, only two crops showed statistically significant differences.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altieri, M. A. (1995). Agroecology: the Science of Sustainable Agriculture. London: Intermediate Technology Development Group Publications.Google Scholar
Andrews, S. S., Mitchell, J. P., Mancinelli, R., Karlen, D. L., Hartz, T. K., Horwarth, W. R., Pettygrove, G. S., Scow, K. M. & Munk, D. S. (2002). On-farm assessment of soil quality in California's Central Valley. Agronomy Journal 94, 1223.Google Scholar
Archer, D. W., Jaradat, A. A., Johnson, J. M., Weyers, S. L., Gesch, R. W., Forcella, F. & Kludze, H. K. (2007). Crop productivity and economics during the transition to alternative cropping systems. Agronomy Journal 99, 15381547.CrossRefGoogle Scholar
Beveridge, L. E. & Naylor, R. E. L. (1999). Options for organic weed control – what farmers do. In Brighton Crop Protection Conference – Weeds, vol. 3 (Ed. Marshall, G.), pp. 939944. Farnham, Surrey, UK: British Crop Protection CouncilGoogle Scholar
Bromfield, S. M. (1978). The effect of manganese-oxidizing bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrients solutions. Plant and Soil 49, 2331.CrossRefGoogle Scholar
Bullock, K. P. (1997). Sustainable development of soils in western Europe. An overview. In Ponencias Edafología: Conferences in the 50th Commemorative Meeting of the Spanish Soil Science Society, Madrid, Spain. pp. 109123. Madrid: Consejo Superior de Investigaciones Científicas.Google Scholar
Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. (2002). Organic and synthetic amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19, 147160.CrossRefGoogle Scholar
Clark, M. S., Horwath, W. R., Shennan, C. & Scow, K. M. (1998). Changes in soil chemical properties resulting from organic and low input farming practices. Agronomy Journal 90, 662671.CrossRefGoogle Scholar
CAP (2000–04). Anuario de Estadísticas Agrarias y Pesqueras de Andalucía. Junta de Andalucía: Consejería de Agricultura y Pesca.Google Scholar
De Costa, W. A. J. M. & Sangakkara, U. R. (2006). Agronomic regeneration of soil fertility in tropical Asian smallholder uplands for sustainable food production. Journal of Agricultural Science, Cambridge 144, 111133.CrossRefGoogle Scholar
Drinkwater, L. E., Leturneau, D. K., Workneh, F., Van Bruggen, A. H. C. & Shennan, C. (1995). Fundamental difference between conventional and organic tomato agroecosystems in California. Ecological Applications 5, 10981112.CrossRefGoogle Scholar
Edmeades, D. C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66, 165180.CrossRefGoogle Scholar
European Economic Community (1991). Regulation No. 2092/91 on Organic Production of Agricultural Products and Indications Referring thereto on Agricultural Products and Foodstuffs. Brussels: Office for the Official Publications of the European Union.Google Scholar
Fernández, M. C. (1998). Utilización como fertilizante del compost urbano procedente de la planta de compostaje de Villarasa (Huelva). Proyecto Fin de Carrera E.U.I.T.A. Cortijo del Cuarto, Sevilla.Google Scholar
Garcia, C., Hernández, M. T., Pascual, J. A., Moreno, J. L. & Ros, M. (2000). Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In Research and Perspectives of Soil Enzymology in Spain (Eds García, C. & Hernández, M. T.), pp. 93143. Madrid: Consejo Superior de Investigaciones Científicas.Google Scholar
Gliessman, S. R., Werner, M. R., Swezey, S. L., Caswell, E., Cochran, J. & Rosado-May, F. (1996). Conversion to organic strawberry management changes ecological processes. California Agriculture 50, 2431.CrossRefGoogle Scholar
Gosling, P. & Shepherd, M. (2005). Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agriculture, Ecosystems & Environment 105, 425432.CrossRefGoogle Scholar
Hadas, A. & Portnoy, R. (1994). Nitrogen and carbon mineralization rates of composted manures incubated in soil. Journal of Environmental Quality 23, 11841189.CrossRefGoogle Scholar
Haynes, R. J. & Naidu, R. (1998). Influence of lime, fertilizer and manure application on soil organic matter (SOM) content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems 51, 123137.CrossRefGoogle Scholar
Herencia, J. F., Ruiz-Porras, J. C., Melero, S., Garcia-Galavis, P. A., Morillo, E. & Maqueda, C. (2007). Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agronomy Journal 99, 973983.CrossRefGoogle Scholar
Herencia, J. F., Ruiz-Porras, J. C., Morillo, E., Melero, S., Villaverde, J. & Maqueda, C. (2008). The effect of organic and mineral fertilization on micronutrient availability in soil. Soil Science 173, 6980.CrossRefGoogle Scholar
Hollinger, E., Baginska, B. & Cornish, P. S. (1998). Factors influencing soils and nutrients loss in storm water from a market garden. In Proceedings of the 9th Australian Agronomy Conference (Ed. Australian Society), pp. 741744. Wagga Wagga, Australia: Australian Society of Agronomy.Google Scholar
Jackson, M. L. (1958). Soil Chemical Analysis. London: Prentice Hall.Google Scholar
Kabata-Pendias, A. (2000). Trace Elements in Soils and Plants, 3rd edn. New York: CRC Press LLC.CrossRefGoogle Scholar
Katyal, J. C. & Sharma, B. D. (1991). DTPA-extractable and total Zn, Cu, Mn and Fe in Indian soils and their association with some soil properties. Geoderma 49, 165179.CrossRefGoogle Scholar
Knudsen, M. T., Kristensen, I. S., Berntsen, J., Petersen, B. M. & Kristensen, E. S. (2006) Estimated N leaching losses for organic and conventional farming in Denmark. Journal of Agricultural Science, Cambridge 144, 135149.CrossRefGoogle Scholar
Laboski, C. A. M. & Lamb, J. A. (2003). Changes in soil test phosphorus concentration after application of manure or fertilizer. Soil Science Society of America Journal 67, 544554.CrossRefGoogle Scholar
Lindsay, W. L. & Norwell, W. L. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421428.CrossRefGoogle Scholar
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P. & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science 296, 16941697.CrossRefGoogle ScholarPubMed
Madrid, L. (1999). Metal retention and mobility as influenced by some organic residues added to soils: a case study. In Fate and Transport of Heavy Metals in the Vadose Zone (Eds Selim, H. M. & Iskandar, I. K.), pp. 201223. Boca Raton, FL: CRC Press.Google Scholar
Mandal, L. N. & Mitra, R. R. (1982). Transformation of iron and manganese in rice soils under different moisture regimes and organic matter applications. Plant and Soil 69, 4556.CrossRefGoogle Scholar
MAPA (1994). Métodos Oficiales de Análisis. Tomo III. Madrid: Ministerio de Agricultura, Pesca y Alimentación.Google Scholar
MAPA (2006). Estadísticas 2006 de Agricultura Ecológica en España. Madrid: Ministerio de Agricultura; Pesca y Alimentación. http://www.mapa.es/alimentación/pags/ecologica/pdf/2006.pdf (verified 11 July 2008)Google Scholar
Maroto Borrego, J. V. (1995). Horticultura Herbácea Especial. Madrid: Mundi-Prensa.Google Scholar
Meek, B., Graham, L. & Donovan, T. (1982). Long-term effects of manure on soil nitrogen, phosphorus, potassium, sodium, organic matter and water infiltration rate. Soil Science Society of America Journal 46, 10141019.CrossRefGoogle Scholar
Melero, S., Ruiz Porras, J. C., Herencia, J. F. & Madejon, E. (2006). Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil & Tillage Research 90, 162170.CrossRefGoogle Scholar
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture Circular No. 939. Washington, DC: USDA.Google Scholar
Pimentel, D., Hepperly, P., Hanson, J., Douds, D. & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55, 573582.CrossRefGoogle Scholar
Posner, J. L., Baldock, J. O. & Hedtcke, J. L. (2008). Organic and conventional production systems in the Wisconsin integrated cropping systems trials: I. Productivity 1990–2002. Agronomy Journal 100, 253260.CrossRefGoogle Scholar
Reganold, J. P. (1988). Comparison of soil properties as influenced by organic and conventional farming systems. American Journal of Alternative Agriculture 3, 144155.CrossRefGoogle Scholar
Reganold, J. P., Palmer, A. S., Lockhart, J. C. & Macgregor, A. N. (1993). Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 260, 344349.CrossRefGoogle ScholarPubMed
Rodríguez-Rubio, P., Morillo, E., Madrid, L., Undabeytia, T. & Maqueda, C. (2003). Retention of copper by a calcareous soil and their textural fractions: influence of amendment with two agroindustrial residues. European Journal of Soil Science 54, 401409.CrossRefGoogle Scholar
Sanyal, S. K. & De Datta, S. K. (1991). Chemistry of phosphorus transformations in soil. Advances in Soil Sciences 16, 1120.Google Scholar
Scheller, E. & Raupp, J. (2005). Amino acid and soil organic matter content of topsoil in a long term trial with farmyard manure and mineral fertilizer. Biological Agriculture & Horticulture 22, 379397.CrossRefGoogle Scholar
Sharma, B. D., Mukhopadhyay, S. S., Sidhu, P. S. & Katyal, J. C. (2000). Pedospheric attributes in distribution of total and DTPA-extractable Zn, Cu, Mn and Fe in Indo-Gangetic plains. Geoderma 96, 131151.CrossRefGoogle Scholar
Sharpley, A. N. (2000). Bioavailable phosphorus in soil. In Methods for Phosphorus Analysis for Soils, Sediments, Residuals and Waters (Ed. Pierzynski, G. M.), pp. 3843. Southern Cooperative Series Bulletin No. 396. Raleigh, NC: North Carolina State University.Google Scholar
Sims, J. T. (1995). Organic wastes as alternative nitrogen sources. In Nitrogen Fertilization in the Environment (Ed. Bacon, P. E.), pp. 487490. New York: CRC Press.Google Scholar
Soil Survey Staff (1999). A Basic System of Soil Classification for Making and Interpreting Soil Survey. Agriculture Handbook 436. Washington, DC: US Government Printing Office.Google Scholar
Stockdale, E. A. & Brookes, P. C. (2006). Detection and quantification of the soil microbial biomass – impacts on the management of agricultural soils. Journal of Agricultural Science, Cambridge 144, 285302.CrossRefGoogle Scholar
Stockdale, E. A., Lampkin, N. H., Hovi, M., Keatinge, R., Lennartsson, E. K. M., Macdonald, D. W., Padel, S., Tattersall, F. H., Wolfe, M. S. & Watson, C. A. (2001). Agronomic and environmental implications of organic farming systems. Advances in Agronomy 70, 261327.CrossRefGoogle Scholar
Stockdale, E. A., Shepherd, M. A., Fortune, S. & Cuttle, S. P. (2002). Soil fertility in organic farming systems – fundamentally different? Soil Use and Management 18, 301308.CrossRefGoogle Scholar
Taylor, B. R., Younie, D., Matheson, S., Coutts, M., Mayer, C., Watson, C. A. & Walker, R. L. (2006). Output and sustainability of organic ley/arable crop rotations at two sites in northern Scotland. Journal of Agricultural Science, Cambridge 144, 435447.CrossRefGoogle Scholar
Tiessen, H., Cuevas, E. & Chacon, P. (1994). The role of soil organic matter in sustaining soil Fertility. Nature 371, 783785.CrossRefGoogle Scholar
Van Delden, A., Schróder, J. J., Kropff, M. J., Grashoff, C. & Booij, R. (2003). Simulated potatoes yield, and crop and soil nitrogen management strategies in the Netherlands. Agriculture, Ecosystems & Environment 96, 7795.CrossRefGoogle Scholar
Vogtmann, H., Matthies, K., Kehres, B. & Meier-Ploeger, A. (1993). Enhanced food quality: effects of compost on the quality of plant foods. Compost Science & Utilization 1, 82100.CrossRefGoogle Scholar
Warman, P. R. (2005). Soil fertility, yield and nutrient contents of vegetable crops after 12 years of compost or fertilizer amendments. Biological Agriculture & Horticulture 23, 8596.CrossRefGoogle Scholar
Watson, C. A., Walker, R. L. & Stockdale, E. A. (2008). Research in organic production systems – past, present and future. Journal of Agricultural Science, Cambridge 146, 119.CrossRefGoogle Scholar
Wei, X., Hao, M., Shao, M. & Gale, W. J. (2006). Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil & Tillage Research 91, 120130.CrossRefGoogle Scholar
Werner, M. W. (1997). Soil quality characteristics during conversion to organic orchard management. Applied Soil Ecology 5, 151167.CrossRefGoogle Scholar
Whitehead, C. C., Fleming, R. H. & Julian, R. J. (2003). Skeletal problems associated with selection for increased production. In Poultry Genetics, Breeding and Biotechnology (Eds Muir, W. M. & Aggrey, S. E.), pp. 2952. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar